The present disclosure claims priority to Chinese Patent Application No. 202110685700.9 filed with the China National Intellectual Property Administration (CNIPA) on Jun. 21, 2021, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates to the technical field of signal processing, and, for example, to a three-dimensional (3D) filter circuit and a 3D filter.
As essential elements in radio-frequency front ends of wireless communication, filters are widely used in wireless communication. With the rapid development of wireless communication fields such as 5G and Internet of Things, the demand for filters in radio-frequency front ends has greatly increased, resulting in an increasingly high requirement for miniaturization and high performance of the filters.
Embodiments of the present disclosure provide a 3D filter circuit and a 3D filter so as to achieve the design requirement for miniaturization and high performance of the filter circuit.
In a first aspect, embodiments of the present disclosure provide a 3D filter circuit. The 3D filter circuit includes a multilayer structure.
The multilayer structure includes at least two conductive layers and at least one organic dielectric layer. Each organic dielectric layer is disposed between different conductive layers. The multilayer structure is configured to form at least one capacitor.
In a second aspect, embodiments of the present disclosure further provide a 3D filter. The 3D filter includes the 3D filter circuit provided in any embodiment in the first aspect.
Drawings used in the description of the embodiments or the related art are described hereinafter. The drawings described hereinafter illustrate only part of embodiments of the present disclosure. For those skilled in the art, other structures and drawings that fall into the scope of claims of the present disclosure can be extended and expanded based on basic concepts of a device structure, driving method and manufacturing method disclosed and suggested by various embodiments of the present disclosure.
Embodiments of the present disclosure will be described in conjunction with drawings in embodiments of the present disclosure. The embodiments described herein are part, not all, of embodiments of the present disclosure. Based on the embodiments described herein, all other embodiments obtained by those skilled in the art without creative work are within the scope of the present disclosure.
Embodiments of the present disclosure provide a 3D filter circuit.
In this embodiment, the multilayer structure 100 is a three-dimensional structure composed of the at least two conductive layers 110 and the at least one organic dielectric layer 120. The organic dielectric layer 120 in the multilayer structure 100 may serve as a dielectric between substrates of the capacitor C. Exemplarily, the at least one organic dielectric layer 120 included in the multilayer structure 100 is disposed between the at least two conductive layers 110. The at least one capacitor C may be formed at a position where a vertical projection of the at least two conductive layers 110 overlaps a vertical projection of the at least one organic dielectric layer 120. A conductive layer 110 at the position where the vertical projection of the at least two conductive layers 110 overlaps the vertical projection of the at least one organic dielectric layer 120 serves as an electrode plate of the at least one capacitor C. An organic dielectric layer 120 at the position where the vertical projection of the at least two conductive layers 110 overlaps the vertical projection of the at least one organic dielectric layer 120 serves as a dielectric of the capacitor C. A material of the at least one organic dielectric layer 120 used in the multilayer structure 100 is various in type, highly selective and low in cost. Additionally, the at least one organic dielectric layer 120 has a diversified composition structure and a wide space-adjusting performance and can adjust the performance of the at least one capacitor C well to enable the at least one capacitor C to meet the requirement for high performance. Thus, the 3D filter circuit is composed of at least one multilayer structure 100, and the integration level of the at least one capacitor C can be improved, so that the design requirement for miniaturization and high performance of the filter circuit is achieved.
Exemplarily,
It is to be noted that
Optionally, with continued reference to
In an embodiment, when a plurality of device structures are formed in the multilayer structure 100, different device structures may be formed through different pattern structures in the conductive layers 110, avoiding a short circuit between the different device structures. Exemplarily, one conductive layer 110 in
Optionally, with continued reference to
In this embodiment, an inductor may be formed in the conductive layers 110 in the multilayer structure 100. Optionally, the inductor includes a planar inductor L1 and a 3D inductor L2. The planar inductor L1 is formed by a single conductive layer 110. The 3D inductor L2 is formed by electrically connecting the at least two conductive layers 110. Thus, the at least two conductive layers 110 in the multilayer structure 100 may be densely provided with at least one of the planar inductor L1 or the 3D inductor L2, not only meeting the requirement of the 3D filter circuit for an inductor to ensure the design requirement for the high performance of the 3D filter circuit, but also achieving the miniaturization of the 3D filter circuit.
Optionally, with continued reference to
In this embodiment, the multilayer structure 100 includes the at least two conductive layers 110 and the at least one organic dielectric layer 120. The at least organic dielectric layer 120 is disposed between the at least two conductive layers 110. The multilayer structure 100 includes the 3D inductor L2, which requires the at least two conductive layers 110 included in the multilayer structure 100 be electrically connected to each other. Optionally, the first through hole T1 may be disposed on the at least one organic dielectric layer 120 and filled with the conductive material, so that conductive layers 110 in different layers are electrically connected to each other through the first through hole T1, thereby forming the 3D inductor L2. To avoid a short circuit between different device structures, the different device structures are formed through different pattern structures in the conductive layers 110. For example, parts of conductive layers 110 in different layers that are electrically connected through the first through hole T1 are taken as second pattern structures 112. Each conductive layer 110 in the multilayer structure 110 includes at least one second pattern structure 112. If second pattern structures 112 in different conductive layers 110 are connected through the first through hole T1, at least one 3D inductor L2 may be formed. Thus, the at least two conductive layers 110 in the multilayer structure 100 may be densely provided with at least one 3D inductor L2, improving the arrangement compactness of inductor and achieving the miniaturization of the 3D filter circuit.
Optionally, the material of the at least one organic dielectric layer includes at least one of epoxy resin, polypheylene ether (PPE) resin, or polyimide (PI).
In this embodiment, the material, for example, epoxy resin, PPE resin, or PI resin, used in the at least one organic dielectric layer provides good insulation. Epoxy resin has, for example, excellent insulating properties, excellent mechanical properties, excellent chemical stability. With dielectric properties ranking the first among engineering plastics, PPE resin has, for example, good mechanical properties, thermal properties, water-resisting properties and flame-retardant properties. PI resin features stable insulation, corrosion resistance, high-temperature resistance, wear resistance, impact resistance, and long service life. Thus, the at least one organic dielectric layer is made of epoxy resin, PPE resin, PI resin, or the like, which can well serve as a dielectric material for a capacitor, thereby ensuring the insulation between two electrode plates of the capacitor.
Optionally, a material of the at least two conductive layers includes copper foil or electroplated copper.
In this embodiment, the copper foil or electroplated copper may be attached to various base materials, for example, metal or an insulating material, and has a relatively wide temperature range. The conductive copper foil is disposed on a base surface, and combined with a metal base material, the conductive copper foil has excellent conductivity and provides an electromagnetic shielding effect. Copper ions in an electrolyte are plated on a base surface to acquire a relatively thin, fine and smooth copper layer with good electrical conductivity. The use of copper foil or electroplated copper as the material of the conductive layer not only ensures the thinness of the conductive layer to reduce the volume of the conductive layer, but also ensures good conductivity of the conductive layer.
In this embodiment, the encapsulation layer 200 is wrapped outside the multilayer structure 100 so that the multilayer structure 100 is encapsulated in the encapsulation layer 200, protecting the multilayer structure 100 from being affected by various unfavorable factors in the external environment, and prolonging the service life of the multilayer structure 100.
Optionally, with continued reference to
In this embodiment, the encapsulation layer 200 is composed of the insulating dielectric layer 210 and the conductive structure 220. Optionally, the insulating medium is wrapped outside the multilayer structure 100, and the multilayer structure 100 needs to be electrically connected to the external circuit. Accordingly, the second through hole T2 filled with the conductive material needs to be disposed on the insulating dielectric layer 210 to form the conductive structure 220 configured to conduct the multilayer structure 100 to the external circuit. The at least two conductive layers 110 of the multilayer structure 100 may be connected to a circuit of an external device through the second through hole T2 to achieve the transmission of an electric signal.
Optionally, with continued reference to
In this embodiment, to avoid a short circuit between different device structures, different device structures are formed through different pattern structures in the conductive layers 110. For example, the third pattern structure 113 may serve as a part of a conductive layer 110 forming the planar inductor L1 or a part of a conductive layer 110 for connecting a capacitor C to an inductor in the multilayer structure 100. The at least two conductive layers 110 include at least one third pattern structure 113, namely, the at least two conductive layers 110 may form at least one planar inductor L1 or one conductive part for connecting a capacitor C to an inductor in the multilayer structure 100. The at least one third pattern structure 113 is connected to the conductive structure 220 so that different third pattern structures 113 of the multilayer structure 100 can be connected to each other through the conductive structure 220. Alternatively, the at least one third pattern structure 113 is connected to the conductive structure 220, which enables the at least one planar inductor L1 formed by the at least one third pattern structure 113 to be connected to the conductive structure 220, so that the at least one planar inductor L1 is connected to the external circuit, achieving the transmission of an electric signal.
It is to be noted that
Embodiments of the present disclosure further provide a 3D filter. The 3D filter includes any 3D filter circuit in the preceding embodiments.
The 3D filter includes the 3D filter circuit provided in any embodiment of the present disclosure and therefore has the effect of the 3D filter circuit provided in embodiments of the present disclosure, which is not repeated here.
Number | Date | Country | Kind |
---|---|---|---|
202110685700.9 | Jun 2021 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2022/093484 | 5/18/2022 | WO |