The invention relates to the field of packaging biopharmaceutical fluids and relates, more particularly, to a flexible reservoir to be filled, in the form of a 3-D (three-dimensional) flexible bag, which must generally be placed in a rigid container. The invention also relates to an item of equipment and a method for producing such a 3-D flexible bag.
The meaning of “biopharmaceutical product”, is a product coming from biotechnology, culture mediums, cell cultures, buffer solutions, artificial nutrition liquids, blood products and derivatives of blood products, or a pharmaceutical product or more generally, a product configured to be used in the medical field. Such a product is in liquid, pasty, or possibly powder form. The invention is also applied to the filling of flexible bags with other products but subjected to similar requirements concerning the packaging thereof.
In 3-D bags of this type, single-use and configured to receive a biopharmaceutical product (of international class A61J 1/05 according to the international or cooperative classification), the volume is typically delimited by a lower end wall, an upper end wall and a flexible lateral wall, which could be located in two extreme states—folded-flat and expanded-unfolded. The 3-D bag can be deformed to pass from either of these states or be in a whole intermediate state. The walls of the bag, composed of a single-layer or multilayer film, made of plastic material such as polyethylene or a complex comprising polyethylene, delimit an inner space which, in folded state, is of minimum volume and, in unfolded and expanded state, is maximum. This space is configured to receive the biopharmaceutical product for storage, processing and transportation. Such a flexible bag, biocompatible, single-use, can be of significant volume or 2 or 5 liters at least, up to 3000 liters, possibly even more, which justifies 3-D being qualified. Such a bag thus offers a significant capacity, while being able to be easily stored. An example of such a bag is described in international application WO00/04131 or in document FR 2781202. Contrary to the bags of which only the bottom has a gusset (with an increased risk of breaks), it is preferable to create two opposite gussets, illustrated in FIGS. 3 to 5 of document WO00/04131. The welds at the top and at the bottom of the bag are made of K, before proceeding with a cut of the portions of angles (cut to remove the outer parts of the films beyond the weld zones).
Sometimes, the closed products in this type of bag are used thousands of kilometers away from the place where the bag has been filled. These products are often of a high financial value, even often of a high value for the health of individuals since they can be used, for example, for producing medication configured for human health. It is therefore essential that these bags safely reach their destination, full of liquid with which they have been filled at the start, and not contaminated.
In certain options, the bag can also comprise sensors (temperature, pH, physico-chemical characterization of the biomass) and/or a processing member, for example in the form of a mixer that can be actuated by mechanical or mobile coupling by magnetic drive.
Regarding numerous stresses to which these bags are subjected, in particular during the transportation thereof or during certain processing of the biopharmaceutical product: accelerations, braking, tossing, shocks, vibrations, etc. (i.e. numerous forces of which the shear forces which tend to alter the film which constitute them, in particular in sensitive places like folds), it is essential to form the connection port(s), being used in particular for the filling or emptying, in a portion of the bag which is separated from the weld zones. Furthermore, these connection ports are the only ports with access to the inner space, the bags having no hinged or removable cover, opening/closing flap, peelable or tearable portion, and no fragile zones. The bags have no weak zones in the weld zones.
It can be provided, that the bag is provided with an port for entering or introducing a biopharmaceutical product and a port for creating gas, for example on the side of an upper end wall. Corresponding supply ducts, each connected to a supply source (which is generally external to the rigid container being used to transport and store the 3-D bag in a folded state), are connected to these respective ports. Alternatively, the filling can be done by using a lower supply line. Document EP-B1-0326730 describes a filling of this type with the disadvantage that the flexible bag is more complex, this being provided with side panels, which limits the interest of this option type. It is generally desirable to limit the complexity and the cost of the 3-D flexible bag which is a single-use consumable (here, it is a flexible bag without the possible accessories).
The K-shaped weld is applied also for bags for medical or medicinal use (also single-use) which have a large upper opening in a parallelepipedal expanded configuration, as described in particular in patent U.S. Pat. No. 6,332,711 B1. In this case, it is preferably to provide a lower connection port for the emptying.
In practice, it is desirable that the flexible bag can be expanded without undesirable folding which limits the actual folding volume. Indeed, filling generally requires a human monitoring, because of the expansion defects, in particular connected to the flexibility of the bag and to the mobility of the supply ducts. The loading system described in document WO 2015/118269 makes it possible for guiding, to avoid the undesirable appearance of folds, but this requires a specific implementation.
There is therefore a need for a 3-D bag, robust and suitable for the conservation, processing, and/or transportation of biopharmaceutical fluid (of volume of 50 liters and more), which remains sufficiently simple to product and limiting the risk of undesirable folding in the filling phases.
According to a first aspect, the invention aims for a 3-D flexible bag (with gussets) for a biopharmaceutical product, provided with at least one connection port for the filling and/or the emptying, and designed to be expanded from a flat, empty configuration to a substantially parallelepipedal configuration in a folded state.
The 3-D flexible bag has:
the first wall element and the second wall element being welded to one another along a direction called transverse, to one at least of the two opposite ends.
In this bag, the first wall element and the second wall element have, along said transverse direction, a determined dimension (typically the width) which is, at least in the flat configuration, substantially the same:
Thanks to these arrangements, the bag has a sufficiently long and rigid welded end, to both:
On the side of this end, a face can be formed which is thus more robust than when a K-shaped weld is done. The design method can further be simplified by limiting to four, the joining angles between two straight-lined welds, the welds being done while the first and second wall elements of the bag are kept parallel to one another.
According to a particularity, in the flat configuration, the two folding lines are separated by a transverse space which is less than one half, and preferably less than one quarter, of the determined dimension.
According to a particularity, in the flat configuration of the 3-D flexible bag, the folding line of each gusset is straight-lined, and the continuous weld is transverse (typically perpendicular) to each straight-lined folding line of the gussets.
According to a particularity, the flexible bag is provided with at least one connection port placed in a flap defined by the first wall element, on the side of the continuous weld and with a clearance with respect to this weld. Thus, it is made possible to introduce a biopharmaceutical liquid or to empty such a liquid on the side of an elongate welded edge. For emptying in particular, it is observed that the gussets further keep the orientation thereof, which encourages the smooth functioning of the emptying. Indeed, the junction type between the gussets and the first and second wall elements, with such an elongate welded edge, significantly limit the risk of fold formation (in particular, folding through, with respect to the folding line, predefined for each gusset) which shows the residual volumes of biopharmaceutical product retention.
For filling in a rigid container, this configuration can also contribute to limiting the expansion defects connected to the flexibility of the bag. Thus, it has been observed with bags without such an elongate welded edge as the flexible bag, because of significant folds, is blocked against the inner faces of the axial wall of the rigid container, leading to an unfolding defect, and the risks of damaging the flexible, single-use bag.
In various embodiments of the flexible bag, one or more of the following arrangements can furthermore possibly be resorted to:
According to a second aspect, a method for producing a 3-D flexible bag according to the invention to be filled by a biopharmaceutical product is proposed, method wherein the following occur along a longitudinal scrolling direction and the following are cut transversally:
This method more specifically comprises the steps which essentially consist of:
According to a particularity, it is provided to weld two opposite end rims, parallel, in order to define the same outer determined dimension (L2) of the flexible bags at these ends, the first wall element and the second wall element having a rectangular perimeter in the flat configuration.
According to a preferred option, the first wall element, the second wall element, the first gusset and the second gusset are defined by rectangular sheets having one same multilayer structure.
Other characteristics and advantages of the invention will appear during the following description of several embodiments, given as non-limiting examples facing the appended drawings wherein:
Below, a detailed description of several embodiments of the invention matched with examples and in reference to the drawings.
In the different figures, identical references indicate identical or similar elements.
As can be seen in
Of course, the position of the connection port(s) 4, 6 can vary, preferably by making openings on one (preferably only one) of the wall elements 2 and 3. These connection ports 4, 6 are placed at a distance from the connection zones between the two wall elements 2 and 3, and they do not interfere with the unfolding of the gussets 11 and 12 of the flexible bag 1, of 3-D type. The ports 4, 6 can be closed sealed in a manner known per se (in the example of
Increasing volume of the flexible bag 1 can be done by minimizing the risk of forming an incorrect fold in the face W1. The lateral wall W3 can also swell with no obstacle and with no incorrect fold to pass from an extreme state (completely flat) to another extreme state (by defining a parallelepipedal volume), by resting on the inner face of the storage device 10. This type of storage device 10 can be presented in the form of a rigid container, possibly with a stacking possibility.
It is, in the case of
In the specific embodiment of
In reference to
Examples of functional, multilayer films making it possible to constitute the wall elements 2, 3 and the gussets 11, 12 of the flexible bag 1 are known, in particular in document US2012/028039 of the same applicant. These films make it possible to obtain a great flexibility coupled with a satisfactory resistance, which facilitates the unfolding of the gussets 11, 12 without risk that a swelling (during filling) in the first end face W1 or in the lateral wall W3 generates a breaking of the film.
The first wall element 2 is typically a flexible part consisting of a multilayer film and making it possible to define a front face 2a of the flexible bag 1, while the second wall element 3, produced similarly or identically (by a multilayer film) is a flexible part making it possible to define a rear face 3a of the flexible bag 1, as can be seen in
Advantageously for a filling with a biopharmaceutical fluid 7, the inner layer of each of the films which compose the flexible bag 1, is made of hot-weldable plastic material, which is biocompatible with the mediums transported. In a preferred embodiment, each film has a multilayer structure. This multilayer structure can be broken down, for example, into three layers which are typically non-metal, plastic layers. As a non-limiting example, the film can be transparent or translucid.
In a preferred embodiment, the first gusset 11 and the second gusset 12 each have:
The first wall element 2 and the second wall element can have a similar or identical structure to that of the gussets 11, 12. An intermediate layer, for example having a barrier effect (for example EVOH-based or equivalent material), can be provided in the multilayer structure of the elements 2, 3, 11, 12 delimiting the volume of the flexible bag 1. The multilayer structure can be broken down into at least three non-metal, plastic layers, and is preferably transparent or translucid.
Now, in reference to
The folding lines FL1 and FL2 for the first gusset 11 and the second gusset 12 are thus straight-lined and parallel to the side edges 8, 18 and 9, 19 defined by the wall elements 2 and 3. It can be seen, that the folding lines FL1 and FL2 extend on either side of the longitudinal axis A (in this case, a central axis, as can be seen in
In reference to
The first gusset 11 and the second gusset 12 can each be folded along the folding line FL1 and FL2 thereof, towards the inside. In this example, the folding is done in two equal halves for each gusset 11, 12, at least in the flat configuration of the flexible bag 1. Each folding line FL1, FL2 extends between two opposite ends 14, 15 of the flexible bag 1 where the gussets 11, 12 are joined.
In reference to
The expansion, without any false fold which would limit the size of this section FL1′, is obtained more easily thanks to the continuous weld which is done to hold the edge portions 11a, 11b, 12a, 12b (
In this example, a continuous weld 140 is provided on the side of the first end 14 of the flexible bag 1 and also a continuous weld 150 on the side of the second end 15 (opposite the first end 14). More generally, at one at least of the two ends 14, 15 of the flexible bag 1, the first wall element 2 and the second wall element 3 are welded to one another along a transverse direction by a continuous weld 140 and/or 150 which perpendicularly joins (in the flat configuration) the four side edges 8, 9 and 18, 19.
It can be provided to thus form two rims at the opposite ends 14, 15, which are welded simultaneously. In order to delimit the ends 14 and 15 of the flexible bag 1, a step of cutting before sealing the films is, for example, provided to separate two weld zones.
In reference to
The first flaps 21, 31, on the one hand, and the two second flaps 22, 32 are made joining by the corresponding weld zone 140, 150. Thus, welded end rims are formed, in the form:
By comparing
More generally, at least one outer face W1, W2 of the flexible bag 1 can be formed in the parallelepipedal configuration by joining by a weld 140 or 150, two flaps 21, 31 or 22, 32, by forming a strip which protrudes towards the outside, with respect to the filled volume delimited by the flexible bag 1 (from the outer face of the bag defined by a pair of flaps 21, 31 or 22, 32).
Here, in the case of
As can be seen in
The protruding strip(s) are here further rigidified on either side of the central weld portion CB, because of the increase of thickness, due to the edge portions 11a, 11b, 12a, 12b. The rigidified portions RP of each protruding strip are elongate portions, longer than the central weld portion CB (by measuring along the length of the straight strip, transversally with respect to the longitudinal scrolling direction DD), and preferably at least twice longer.
Such elongate rigidified portions RP, which are absent in conventional 3-D flexible bags (see
In reference to
As can be seen in
The first triangular portions T11 and the second triangular portions T12, which extend substantially in a plane parallel to the end faces W1, W2 in the parallelepipedal configuration, contribute to obtaining a planarity of the flaps (21, 31, 22, 32). This is advantageous for filling with biopharmaceutical fluid 7 of very large volumes (which could go up to 3000 liters and beyond), without generating folds in the faces W1, W2 which prevent reaching a target volume of biopharmaceutical fluid. Here, each triangular portion T11, T12 is formed by folding one of the wall elements 2 and 3 which is illustrated in
As can be seen in
In the variants, the flexible bag 1 shown in
In the embodiments, the junction between the flaps 21, 31 and 22, 32 is the result of a local heating for a sufficiently long exposure period (which can be around 4 or 6 seconds or possible 10 seconds, for example) to heat or to heating by a low-voltage electrical impulse (for example up to 9 impulses), using a weld head. The heating technique by a low-voltage electrical impulse can be used such that the appearance of the visible face is unchanged, while guaranteeing a good weld quality: indeed, it does not require any high pressure at the time of the weld.
Impulse weld, thermal or laser weld techniques can make it possible to obtain resistant welds 140, 150. In the case of a thermal weld, it is preferable to simultaneously weld the four films by applying a pressure of between 4 and 8 bars between the weld blades or bars SB2. The heating of the weld blade on the outer film belonging to one of the wall elements 2, 3 (blade flattened with pressure of 6 bars, for example), is programmed to reach a target temperature, for example around 168° C. or 180° C. As a non-limiting example, the blades are heated to 168° C. and the blades are applied by keeping this temperature on the film for 4 s, then the blades are removed. There is no cooling period before moving the weld blades or bars SB2 from the film. The heating can start, substantially at the same time as obtaining contact with pressure on the zone to be welded.
These parameters are, of course, variable, according to the film and the thickness thereof. However, given that the thickness is typically broadly greater than 100 micrometers, it is preferably to provide an exposure duration of at least 2 or 3 seconds, the exposure duration being able to be between 3 and 6 seconds.
Of course, the target temperature can vary if necessary. It is preferred that this temperature is between 150° C. and 250° C. A target temperature between 165° C. and 190° C. can be preferred to advantageously reduce the heating duration (for example, to avoid exceeding 10 seconds), without risk of damaging the outer surface of a wall element 2, 3. Given the thickness of the films (thickness at least equal to 180 micrometers with several non-metal layers) and of the high resistance sought, the heating duration at the target temperature can here be at least 3 or 4 seconds.
In the case of an impulse weld, the blades are applied on the film, then the heating is started. The increase in temperature is very quick (less than one second). The temperature of the blades can be brought to a target temperature of between 170° C. and 190° C., for example 180° C. This setpoint temperature is conserved for an exposure duration which could be between 6 seconds and 10 seconds, for example. An exposure duration of around 5 or 6 seconds or a little more, makes it possible to obtain the weld of four layers with a target temperature at 180° C. (without this value being limiting). Then, the blades are left to cool by simply stopping the heating (the current is cut), typically up to 80° C. or similar threshold. The cooling time can be less than or equal to 50 seconds, and for example between 15 or 20 seconds and 40 seconds. This cooling time can be reduced by using a cooling system of the weld blades (ventilation, circulation of a heat transfer fluid). Then, the weld blade or bars SB2 are moved to disconnect them from the film. In reference to
The step 50 of supplying and making available four films 102, 103, 111 and 112 is typically made possible by using rollers (not represented) which unwind these films in one same general direction, called longitudinal scrolling direction DD. Of course, this direction is used simply as a reference point to explain the drawings and it is made possible, of course, to convey the films with one or more direction changes (no need for the transport direction to correspond to a straight-lined route).
It is understood, that the films 102, 103, 111 and 112, which respectively constitute the first wall element 2, the second wall element 3, the first gusset 11 and second gusset 12, are here welded by defining together, in the flat configuration, a total of six welds, of which:
In reference to
At least along the weld zones and in the six welds SL, 140, 150, the thickness of each of the films 102, 103, 111 and 112 is not reduced with respect to the thickness E of said films in the elongate zones of the welds, the thickness E of these films 102, 103, 111 and 112 being typically constant. There is no frangible zone or other weakened region to make it possible for an opening.
As a non-limiting example, the thickness E (
As illustrated by the non-limiting example of
The cutting step 53 can be optional. The material of the four films 102, 103, 111, 112 is identical here. More generally, it is understood that the first wall element 2, the second wall element 3, the first gusset 11 and the second gusset 12 are defined by rectangular sheets optionally having one same multilayer structure, with a layer defining an inner face suitable for contact with a biopharmaceutical fluid 7.
In reference to
Although
Moreover, it is understood that all the weld steps are carried out without prior introduction of material, contained such that a biopharmaceutical fluid 7, between the four constitutive elements 2, 3, 11 and 12 of the flexible bag 1.
In preferred applications, a filling of the flexible bag 1 of 3-D type can only be done after the complete sealing of the flexible bag 1 and to the formation of the connection port(s) 4, 6. It is understood, that the sealed closing system(s) C1, C2 can be connected, from the design, to the connection ports 4, 6, in order to avoid any air entering the flexible bag 1. Thus, the flexible bag 1 can be proposed empty, without the least orifice letting ambient air enter or, in a variant, systematically with the connection ports which form an inlet for the biopharmaceutical fluid and an outlet (placed on the same side as the inlet) to expel air. This is particularly advantageous for keeping a biopharmaceutical fluid 7 in a sterile state. The flexible bags 1, of 3-D type, shown in
In the embodiment variant that can be seen in
To obtain the bags of
Contrary to what is required to form a K-shaped weld, with the need to accumulate a weld step in the transverse direction on the production line and two angled welds followed by a step for cutting angles, the production method is here advantageously simplified with a last simple cutting step which is carried out through the longitudinal scrolling direction DD of the bags, as can be seen in
Of course, the same arrangement is provided for the connection of the folding line FL2 to the continuous welds 140, 150, such that the torsion tendency is minimized in:
In reference to
0.05<D2/L2/<0.5
where D2 means a transverse space (minimum distance) between the first gusset and the second gusset, measured along the transverse direction (same direction as for the measurement of the width L2).
In reference to
A second intermediate face (defined by the second gusset 12) is also formed in the same manner and extends parallel to the first face F1 in the parallelepipedal configuration. It can be noted, that the longitudinal axis A belongs to a virtual median plane, perpendicular to the base of the U-shape, such that the U-shaped longitudinal edge has two symmetrical halves with respect to this median plane.
The U-shape of the longitudinal edges has the advantage of a better guiding of the expansion of the gussets 11, 12, with respect to what is produced with a conventional K-shaped weld. In addition, the substantially right angle which is formed between the “U-shaped” arms formed by the longitudinal edges and the “U-shaped” base avoids, at the side welds SL, the torsion effects met with a K-shaped weld which weaken the sealing in the angles of the corresponding faces. While the triangular portions T11 and T12 have a right angle (of 90°) at the junction of the corresponding side weld SL and of the continuous weld 140 or 150, the two other angles can be preferably between 30° and 60°.
In order to improve the mechanical resistance of the flexible bag 1, each of the films 102, 103, 111, 112 can have a set 17 of functional layers superposed on a contact layer 16. In reference to
The contact layer 16 can consist of a layer of material, compatible with biological materials without any deterioration effect. Polyethylene, in particular linear low-density polyethylene, is an example of preferred material to constitute the contact layer 16, as it accumulates the advantages of compatibility with the biopharmaceutical fluid 7 and of good weldability. Other materials with similar properties can be used, for example, ethylene vinyl acetate copolymer.
An intermediate layer 17a can correspond to the layer with a barrier effect to gases (particularly to dioxygen and carbon dioxide present in ambient air). In certain options, one or two layers of binding material (adhesive layers) can be provided on one side and/or the other of the layer with a barrier effect.
Another intermediate layer 17b can consist of polyamide (PA), which improves the resistance to impacts (mechanical resistance). Here, as a non-limiting example, the intermediate layer 17b for mechanical resistance is placed between the outer layer 17c and the layer 17a with a barrier effect to gases. Because of the least resistance of the layer 17a with a barrier effect to gases, this can be placed advantageously between the contact layer 16 and the other layers 1b, 17c of the assembly 17. The composition of the multilayer film represented in
In a variant, only three layers can be used, and define an assembly 17 in two layers with more flexibility. For this, the layers 17b and 17C are replaced by a simple polyethylene layer, preferably linear low-density polyethylene. In this case, it is preferably to define a thicker contact layer 16 than in the example illustrated, such that the thickness E is around 400+/−50 μm, as a non-limiting example. The material of the contact layer 16 can also be made of linear low-density polyethylene.
The films preferably have three layers and have a resistance to traction, typically greater than 60 or 80 Newtons. This resistance to traction can generally be between 60 and 220 Newtons. The flexible bag 1 is thus particularly difficult to damage.
The extension to breaking, which defines the capacity of each of the films to be extended before breaking (in response to a traction test), is for example greater than or equal to 80%, but less than or equal to 400% or 500%. It is understood, that the flexible bag has physical and mechanical properties, suitable for the expansion from a folded-flat state to a parallelepipedal expanded state, which remove, in practice, the risk of accidental tearing.
One of the advantages of the flexible bag 1, of 3-D type, is the robustness thereof, in particular in the corners which are reinforced and in the transverse welds, for an obtaining method which limits the number of welding and cutting steps. The production method is more easily automatable to make it possible to increase the production rate. In addition, the fragilities due to the precision of the positioning of the welds at the junctions between the side weld and the angle welds which must be perfectly located facing the folds of the gussets to obtain a perfect K-shaped weld (the least fragile possible) are removed.
The expansion is facilitated for filling thanks to a guiding effect generated by the continuous weld(s) 140, 150, even if the films 102, 103, 111, 112 have a reduced flexibility (this reduced flexibility corresponding for example to a desire to increase the longevity and/or the mechanical properties of the flexible bag 1, of 3-D type).
Number | Date | Country | Kind |
---|---|---|---|
1670374 | Jul 2016 | FR | national |
This application is a continuation application of U.S. patent application Ser. No. 16/313,553 filed Dec. 27, 2018, which is a 371 of International App. No.: PCT/FR2017/000136 filed Jul. 4, 2017, published on Jan. 11, 2018 as WO 2018/007691 A1 which claims priority to French Patent Application No. 1670374, filed Jul. 8, 2016. The entire disclosure of each application indicated is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5547284 | Imer | Aug 1996 | A |
5988422 | Vallot | Nov 1999 | A |
6092933 | Treu | Jul 2000 | A |
6126315 | Ichikawa | Oct 2000 | A |
6332711 | Inuzuka | Dec 2001 | B1 |
6371646 | LaFleur | Apr 2002 | B1 |
6425847 | Broenstrup | Jul 2002 | B1 |
6517660 | Ausnit | Feb 2003 | B2 |
6527445 | LaFleur | Mar 2003 | B2 |
8579779 | Totani | Nov 2013 | B2 |
8777826 | Totani | Jul 2014 | B2 |
9126383 | Yeager | Sep 2015 | B2 |
9346612 | Plunkett | May 2016 | B2 |
9688441 | Koesters | Jun 2017 | B2 |
10493715 | Totani | Dec 2019 | B2 |
20070237433 | Plunkett et al. | Oct 2007 | A1 |
20110000918 | Plunkett | Jan 2011 | A1 |
20120028039 | Klenke | Feb 2012 | A1 |
20180370173 | Garriga Jimenez | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1505581 | Jun 2004 | CN |
102844245 | Aug 2014 | CN |
104995027 | Jun 2018 | CN |
202007008772 | Oct 2008 | DE |
0326730 | Feb 1988 | EP |
1277666 | Jan 2003 | EP |
2781202 | Jan 2000 | FR |
0004131 | Jan 2000 | WO |
2002085726 | Oct 2002 | WO |
2007112383 | Oct 2007 | WO |
2015118269 | Aug 2015 | WO |
Entry |
---|
International Search Report (and English translation) and Written Opinion of the International Searching Authority for PCT/FR2017/000136 dated Sep. 20, 2017. |
International Preliminary Report on Patentability (and English Translation) for International Application No. PCT/FR2017/000136 dated Jan. 8, 2019. |
Preliminary Search Report for French Priority Application No. 1670374 dated Dec. 19, 2016. |
English translation of China National Intellectual Property Notification of First Office Action dated Jul. 16, 2019 and Search Report for Application No. 201780041852.7. |
Search Report for European patent application No. 17 740 426.6-1017 dated Oct. 3, 2020. |
India Examination Report dated May 20, 2020. |
Number | Date | Country | |
---|---|---|---|
20210122553 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16313553 | US | |
Child | 17140589 | US |