The present application for patent is related to the following co-pending U.S. Patent Application(s):
The disclosed embodiments are directed in general to the efficient floorplanning of integrated circuits. More specifically, the disclosed embodiments are directed to systems and methods for floorplanning a 3D integrated circuit that minimizes wirelength and improves the overall power/performance envelope of the design.
In electronic design automation, a floorplan of an integrated circuit is a schematic representation of tentative placement of its major functional blocks. In modern electronic design process, floorplans are created during the floorplanning stage, which is an early stage in the hierarchical approach to chip design. Floorplanning takes into account some of the geometrical constraints in a design, including for example the location of bonding pads for off-chip connections.
It would be advantageous to implement flip-flops and other integrated circuitry in a 3D format. A 3D semiconductor device (or stacked IC device) can contain two or more semiconductor devices stacked vertically so they occupy less space than two or more conventionally arranged semiconductor devices. The stacked IC device is a single integrated circuit built by stacking silicon wafers and/or ICs and interconnecting them vertically so that they behave as a single device.
Conventionally, the stacked semiconductor devices are wired together using input/output ports either at the perimeter of the device or across the area of the device or both. The input/output ports slightly increase the length and width of the assembly. In some new 3D stacks, through-silicon vias (TSVs) completely or partly replace edge wiring by creating vertical connections through the body of the semiconductor device. By using TSV technology, stacked IC devices can pack a great deal of functionality into a small footprint. This TSV technique is sometimes also referred to as TSS (Through Silicon Stacking).
Device scaling and interconnect performance mismatch has increased exponentially (i.e., up to 50× for global and up to 163× for local interconnects) and is expected to continue to increase even further. This exponential increase in device and interconnect performance mismatch has forced designers to use techniques such as heavy buffering of global interconnects which subsequently has increased chip area and power. Current 3D methodologies only try to assemble 2D blocks into 3D stacks. This approach only helps to reduce the inter-block nets, if applicable, and does not leverage the 3D-IC within the blocks and further improvements are left on the table. The following two references disclose known 3D block-level TSV planning and 3D floorplanning of 2D blocks, respectively: D. H. Kim, R. O. Topaloglu and S. K. Lim, “Block-Level 3D IC Design with Through-Silicon-Via Planning”, Proc. ASPDAC, 2011, pp. 335-340; and J. Knechtel, I. Markov and J. Lienig, “Assembling 2-D Blocks Into Chips”, IEEE Trans. On CAD, 2012, pp. 228-241.
Accordingly, there is a need for systems and methods to improve the capabilities of 3D designs, thereby minimizing wirelength and improving the overall power/performance envelope of the 3D design.
The disclosed embodiments are directed to systems and method for floorplanning an integrated circuit design using a mix of 2D and 3D blocks that provide a significant improvement over existing 3D design methodologies. The disclosed embodiments provide better floorplan solutions that further minimize wirelength and improve the overall power/performance envelope of the designs. The disclosed embodiments include methodologies that may be used to construct new 3D IP blocks to be used in designs that are built using monolithic 3D integration technology. In electronic design a semiconductor intellectual property (IP) core or IP block is a reusable unit of logic, cell, or chip layout design. IP blocks/cores are typically pre-designed circuitry that can be used as building blocks for a larger design that includes the pre-designed block.
More specifically, the disclosed embodiments include a method of generating a library of blocks to be floorplanned, the steps comprising: assembling a plurality of blocks comprising 2D implementations and 3D implementations; providing a first additional tier for at least one of said plurality of blocks and generating a first re-implementation of said at least one of said plurality of blocks that includes said first additional tier; evaluating at least one performance objective of said first re-implementation to determine whether said at least one performance objective has improved; and adding said first re-implementation to the library of blocks to be floorplanned if a result of said evaluating step is that said at least one performance objective has improved. The above-described method may further comprise the steps of: if said at least one performance parameter improved, providing a second additional tier for said at least one of said plurality of blocks and generating a second reimplementation of said at least one of said plurality of blocks that includes said second additional tier; further evaluating said at least one performance objective for said second re-implementation to determine whether said at least one performance objective has improved; and adding said second re-implementation to the library of blocks to be floorplanned if a result of said further evaluating step is that said at least one performance objective has improved.
The above-described methods of the disclosed embodiments may further include: the step of adding said 3D implementations to the library of blocks to be floorplanned; floorplanning the library of blocks wherein said floorplanning utilizes a simulated annealing 3D floorplan engine and comprises monolithic 3D floorplanning having a network of high density vias; and the step of using said 3D floorplanning to generate an IP block that may be used for a larger design that includes the IP block.
The accompanying drawings are presented to aid in the description of disclosed embodiments and are provided solely for illustration of the embodiments and not limitation thereof.
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the terms “embodiments of the invention” does not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
Methodology 200 of
The disclosed embodiments are particularly advantageous when the 3D implementation technology is of a type known generally as “monolithic.” In monolithic 3D integrated circuits, electronic components and their connections (wiring) are built sequentially in layers on a single semiconductor wafer, which is then diced into 3D ICs. Initially each subsequent layer has no devices in it, hence there is no need for alignment resulting in greater integration density. A network of high density vias provides the communication paths for monolithic 3D ICs. Further, the disclosed embodiments include methodologies that may be used to construct new 3D IP blocks to be used in designs that are built using monolithic 3D integration technology. The new 3D IP blocks/cores of the disclosed embodiments can be utilized as reusable units of logic, cell, or chip layouts, which may be used for a larger design that includes the pre-designed block.
While the foregoing disclosure and illustrations show embodiments of the invention, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. For example, the functions, steps and/or actions of the method claims in accordance with the embodiments of the invention described herein need not be performed in any particular order. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
Those of skill in the relevant arts will also appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The methods, sequences and/or algorithms described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. Accordingly, an embodiment of the invention can include a computer readable media embodying a method for performing the disclosed and claimed embodiment. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in embodiments of the invention.
The present application for patent claims priority to the following: Provisional Application No. 61/730,743 entitled “3D FLOORPLANNING USING 2D AND 3D BLOCKS,” filed Nov. 28, 2012, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.Provisional Application No. 61/730,755 entitled “CLOCK DISTRIBUTION NETWORK FOR 3D INTEGRATED CIRCUIT,” filed Nov. 28, 2012, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5606186 | Noda | Feb 1997 | A |
5636125 | Rostoker et al. | Jun 1997 | A |
5724557 | McBean, Sr. | Mar 1998 | A |
6040203 | Bozso et al. | Mar 2000 | A |
6125217 | Paniccia et al. | Sep 2000 | A |
6260182 | Mohan et al. | Jul 2001 | B1 |
6295636 | Dupenloup | Sep 2001 | B1 |
6305001 | Graef | Oct 2001 | B1 |
6374200 | Nakagawa | Apr 2002 | B1 |
6448168 | Rao et al. | Sep 2002 | B1 |
6627985 | Huppenthal et al. | Sep 2003 | B2 |
6727530 | Shen et al. | Apr 2004 | B1 |
6754877 | Srinivasan | Jun 2004 | B1 |
6834380 | Khazei | Dec 2004 | B2 |
6846703 | Shimoda et al. | Jan 2005 | B2 |
6965527 | Fasoli et al. | Nov 2005 | B2 |
6979630 | Walitzki | Dec 2005 | B2 |
7107200 | Korobkov | Sep 2006 | B1 |
7173327 | Siniaguine | Feb 2007 | B2 |
7209378 | Nejad et al. | Apr 2007 | B2 |
7280397 | Scheuerlein | Oct 2007 | B2 |
7288418 | Barge et al. | Oct 2007 | B2 |
7298641 | Madurawe et al. | Nov 2007 | B2 |
7356781 | Koeder et al. | Apr 2008 | B2 |
7459716 | Toda et al. | Dec 2008 | B2 |
7546571 | Mankin et al. | Jun 2009 | B2 |
7579654 | Couillard et al. | Aug 2009 | B2 |
7622955 | Vilangudipitchai et al. | Nov 2009 | B2 |
7653884 | Furnish et al. | Jan 2010 | B2 |
7663620 | Robertson et al. | Feb 2010 | B2 |
7669152 | Tcherniaev et al. | Feb 2010 | B1 |
7796092 | Holly et al. | Sep 2010 | B2 |
7877719 | He | Jan 2011 | B2 |
7964916 | Or-Bach et al. | Jun 2011 | B2 |
7969193 | Wu et al. | Jun 2011 | B1 |
7989226 | Peng | Aug 2011 | B2 |
8006212 | Sinha et al. | Aug 2011 | B2 |
8026521 | Or-Bach et al. | Sep 2011 | B1 |
8046727 | Solomon | Oct 2011 | B2 |
8059443 | McLaren et al. | Nov 2011 | B2 |
8060843 | Wang et al. | Nov 2011 | B2 |
8114757 | Or-Bach et al. | Feb 2012 | B1 |
8115511 | Or-Bach | Feb 2012 | B2 |
8136071 | Solomon | Mar 2012 | B2 |
8146032 | Chen et al. | Mar 2012 | B2 |
8164089 | Wu et al. | Apr 2012 | B2 |
8208282 | Johnson et al. | Jun 2012 | B2 |
8218377 | Tandon et al. | Jul 2012 | B2 |
8222696 | Yamazaki et al. | Jul 2012 | B2 |
8230375 | Madurawe | Jul 2012 | B2 |
8258810 | Or-Bach et al. | Sep 2012 | B2 |
8298875 | Or-Bach et al. | Oct 2012 | B1 |
8332803 | Rahman | Dec 2012 | B1 |
8450804 | Sekar et al. | May 2013 | B2 |
8576000 | Kim et al. | Nov 2013 | B2 |
8683416 | Trivedi et al. | Mar 2014 | B1 |
8701073 | Fu et al. | Apr 2014 | B1 |
8803206 | Or-Bach et al. | Aug 2014 | B1 |
8803233 | Cheng et al. | Aug 2014 | B2 |
20040036126 | Chau et al. | Feb 2004 | A1 |
20040113207 | Hsu et al. | Jun 2004 | A1 |
20040241958 | Guarini et al. | Dec 2004 | A1 |
20050280061 | Lee | Dec 2005 | A1 |
20060190889 | Cong et al. | Aug 2006 | A1 |
20070040221 | Gossner et al. | Feb 2007 | A1 |
20070147157 | Luo et al. | Jun 2007 | A1 |
20070244676 | Shang et al. | Oct 2007 | A1 |
20080276212 | Albrecht | Nov 2008 | A1 |
20080283995 | Bucki et al. | Nov 2008 | A1 |
20080291767 | Barnes et al. | Nov 2008 | A1 |
20090070728 | Solomon | Mar 2009 | A1 |
20090174032 | Maejima et al. | Jul 2009 | A1 |
20090302394 | Fujita | Dec 2009 | A1 |
20100031217 | Sinha et al. | Feb 2010 | A1 |
20100115477 | Albrecht et al. | May 2010 | A1 |
20100140790 | Setiadi et al. | Jun 2010 | A1 |
20100193770 | Bangsaruntip et al. | Aug 2010 | A1 |
20100229142 | Masleid et al. | Sep 2010 | A1 |
20100276662 | Colinge | Nov 2010 | A1 |
20110049594 | Dyer et al. | Mar 2011 | A1 |
20110053332 | Lee | Mar 2011 | A1 |
20110059599 | Ward et al. | Mar 2011 | A1 |
20110078222 | Wegener | Mar 2011 | A1 |
20110084314 | Or-Bach et al. | Apr 2011 | A1 |
20110121366 | Or-Bach et al. | May 2011 | A1 |
20110215300 | Guo et al. | Sep 2011 | A1 |
20110221502 | Meijer et al. | Sep 2011 | A1 |
20110222332 | Liaw et al. | Sep 2011 | A1 |
20110253982 | Wang et al. | Oct 2011 | A1 |
20110272788 | Kim et al. | Nov 2011 | A1 |
20110280076 | Samachisa et al. | Nov 2011 | A1 |
20110298021 | Tada et al. | Dec 2011 | A1 |
20120012972 | Takafuji et al. | Jan 2012 | A1 |
20120056258 | Chen | Mar 2012 | A1 |
20120129276 | Haensch et al. | May 2012 | A1 |
20120129301 | Or-Bach et al. | May 2012 | A1 |
20120152322 | Kribus et al. | Jun 2012 | A1 |
20120171108 | Kim et al. | Jul 2012 | A1 |
20120181508 | Chang et al. | Jul 2012 | A1 |
20120187486 | Goto et al. | Jul 2012 | A1 |
20120193621 | Or-Bach et al. | Aug 2012 | A1 |
20120195136 | Yoko | Aug 2012 | A1 |
20120217479 | Chang et al. | Aug 2012 | A1 |
20120280231 | Ito et al. | Nov 2012 | A1 |
20120286822 | Madurawe | Nov 2012 | A1 |
20120304142 | Morimoto et al. | Nov 2012 | A1 |
20120305893 | Colinge | Dec 2012 | A1 |
20120313227 | Or-Bach et al. | Dec 2012 | A1 |
20130026539 | Tang et al. | Jan 2013 | A1 |
20130026608 | Radu | Jan 2013 | A1 |
20130105897 | Bangsaruntip et al. | May 2013 | A1 |
20130148402 | Chang et al. | Jun 2013 | A1 |
20130240828 | Ota et al. | Sep 2013 | A1 |
20130299771 | Youn et al. | Nov 2013 | A1 |
20140008606 | Hussain et al. | Jan 2014 | A1 |
20140035041 | Pillarisetty et al. | Feb 2014 | A1 |
20140085959 | Saraswat et al. | Mar 2014 | A1 |
20140097868 | Ngai | Apr 2014 | A1 |
20140145347 | Samadi et al. | May 2014 | A1 |
20140225218 | Du | Aug 2014 | A1 |
20140225235 | Du | Aug 2014 | A1 |
20140269022 | Xie et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1432032 | Jun 2004 | EP |
2551898 | Jan 2013 | EP |
2973938 | Oct 2012 | FR |
H06204810 | Jul 1994 | JP |
2001160612 | Jun 2001 | JP |
20010109790 | Dec 2001 | KR |
20080038535 | May 2008 | KR |
2011112300 | Sep 2011 | WO |
2012113898 | Aug 2012 | WO |
2013045985 | Apr 2013 | WO |
Entry |
---|
Cong et al.; “Three Dimensional System Integration”; Springer, Jan. 2011; e-ISBN 978-1-4419-0962-6; pp. 1-246. |
Co-pending U.S. Appl. No. 13/784,915, filed Mar. 5, 2013. |
Co-pending U.S. Appl. No. 13/788,224, filed Mar. 7, 2013. |
Co-pending U.S. Appl. No. 13/792,486, filed Mar. 11, 2013. |
Co-pending U.S. Appl. No. 13/792,592, filed Mar. 11, 2013. |
Fujio I. et al., “Level Conversion for Dual-Supply Systems”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, No. 2, Feb. 2004, pp. 185-195. |
Mototsugu H. et al., “A Top-Down Low Power Design Technique Using Clustered Voltage Scaling with Variable Supply-Voltage Scheme”, IEEE 1998 Custom Integrated Circuits Conference, pp. 495-498. |
Arunachalam V., et al., “Low-power clock distribution in microprocessor”, Proceedings of the 18th ACM Great Lakes Symposium on VLSI , GLSVLSI '08, Jan. 1, 2008, 3 pages, XP055106715, New York, USA DOI: 10.1145/1366110.1366212 ISBN: 978-1-59-593999-9 p. 429-p. 434. |
Co-pending U.S. Appl. No. 13/792,384, filed Mar. 11, 2013. |
Donno M., et al., “Power-aware clock tree planning”, Proceedings of the 2004 International Symposium on Physical Design, ISPD '04, Jan. 1, 2004, 5 pages, XP055106989, New York, New York, USA DOI: 10.1145/981066.981097 ISBN: 978-1-58-113817-7 p. 140-p. 144. |
Ganguly S., et al., “Clock distribution design and verification for PowerPC microprocessors”, Computer-Aided Design, 1997, Digest of Technical Papers., 1997 IEEE/AC M International Conference on San Jose, CA, USA Nov. 9-13, 1997, Los Alamitos, CA, USA, IEEE Comput. Soc, US, Nov. 5, 1995, pp. 58-61, XP032372227, DOI: 10.1109/ICCAD.1995.479991 ISBN: 978-0-8186-8200-1 p. 58-p. 61. |
Tsao C.W.A., et al., “UST/DME: a clock tree router for general skew constraints”, Computer Aided Design, 2000, ICCAD-2000, IEEE/ACM International Conference on, IEEE, Nov. 5, 2000, pp. 400-405, XP032402965, DOI: 10.1109/ICCAD.2000.896505 ISBN: 978-0-7803-6445-5 p. 400-p. 401. |
Xie J., et al., “CPDI: Cross-power-domain interface circuit design in monolithic 3D technology”, Quality Electronic Design (ISQED), 2013 14th International Symposium on, IEEE, Mar. 4, 2013, pp. 442-447, XP032418452, DOI: 10.1109/ISQED.20136523649 ISBN: 978-1-4673-4951-2 Section II. “Monolithic 3D Technology”; figures 1,3. |
Cong J. et al., “An automated design flow for 3d microarchitecture evaluation”, Design Automation, 2006. Asia and South Pacific Conference on Jan. 24, 2006, Piscataway, NJ, USA, IEEE, Jan. 24, 2006, pp. 384-389, XP010899545, DOI: 10.1109/ASPDAC.2006.1594713, ISBN: 978-0-7803-9451-3, the whole document. |
Freidman, E. G., “Clock Distribution Networks in Synchronous Digital Integrated Circuits”, 2001, IEEE, Proceedings of the IEEE, vol. 89, No. 5, pp. 665-692. |
International Search Report and Written Opinion—PCT/US2013/072384—ISA/EPO—Sep. 12, 2014. |
Jain A. et al., “Thermala electrical co-optimisation of floorplanning of three-dimensional integrated circuits under manufacturing and physical design constraints”, IET Computers and Digital Techniques,, vol. 5, No. 3, May 9, 2011, pp. 169-178, XP006037867, ISSN: 1751-861X, DOI:10.1049/1ET-CDT:20090107, pp. 170-172. |
Khan Q.A., et al., “A Single Supply Level Shifter for Multi-Voltage Systems,” IEEE Proceedings of the 19t h International Conference on VLSI Design (VLSID'06), 2006, 4 pages. |
Kim, T-Y., et al., “Clock Tree Syntheis for TSV-Based 3d IC designs”, Oct. 2011, ACM, ACM Transactions on Design Automation of Electronic Systems, vol. 16, No. 4m Article 48, pp. 48:1-48:21. |
Kulkarni J., et al., “Capacitive-Coupling Wordline Boosting with Self-Induced VCC Collapse for White VMIN Reduction in 22-nm 8T SRAM,” IEEE International Solid-State Circuits Conference, 2012, pp. 234-236. |
Lin, C-T., et al., “CAD reference flow for 3d Via-Last Integrated Circuits”, 2010, IEEE, pp. 187-192. |
Lin S., et al., A New Family of Sequential Elements with Built-in Soft Error Tolerance for Dual-VDD Systems, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, vol. 16(10), pp. 1372-1384. |
Loh, Gabriel H. et al., “Processor design in 3D die-stacking technologies,” IEEE 2007 p. 31-48. |
Minz J. et al., “Block-level 3-D Global Routing With an Application to 3-D Packaging”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, No. 10, Oct. 1, 2006, pp. 2248-2257, XP055137904, ISSN: 0278-0070,DOI:10.1109/TCAD.2005.860952 p. 2249-p. 2252. |
Minz J. et al., “Channel and Pin Assignment for Three Dimensional Packaging Routing”, May 24, 2004, pp. 1-6, XP055138056, Georgia Tech. Library. CERCS; GIT-CERCS-04-21, Retrieved from the Internet: URL:http://www.ceres.gatech.edu/tech-reports/tr2004/git-cercs-04-21.pdf. |
Bobba S., et al., “Performance Analysis of 3-D Monolithic Integrated Circuits”, 2010 IEEE International 3D Systems Integration Conference (3DIC), Nov. 1, 2010, pp. 1-4, XP55165273, DOI: 10.1109/3DIC.2010.5751465,ISBN: 978-1-45-770526-7. |
Number | Date | Country | |
---|---|---|---|
20140149958 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61730743 | Nov 2012 | US | |
61730755 | Nov 2012 | US |