The technical field relates to 3D printers, and more particularly to a 3D color printer and its operation method.
In Selective Laser Sintering (SLS), a paving roller is used to pave a layer of powder, the powder is heated by a heating device in a chassis chamber to a temperature just below its melting, a laser beam is projected onto the layer of powder until the temperature of the powder rises to its melting point for sintering, and then the powder is stuck with the portion as manufactured below. This process is repeated until the printing of the whole 3D object is completed.
However, the heating device heats up the whole chassis chamber. When the chassis chamber is heated to a predetermined temperature, the powder is naturally heated to a predetermined temperature as well. If the temperature of the chassis chamber is too high, only heat resistant components can be installed in the chassis chamber, and non-heat resistant components such as a color printer head, a motor, etc. have to be omitted or installed outside the chassis chamber. Obviously, the conventional 3D laser printer has the drawbacks of poor function, complicated installation, etc.
In view of the aforementioned drawbacks of the prior art, the discloser of this disclosure based on years of experience in the related industry to conduct extensive research and experiment, and finally developed a 3D laser printer and its operation method to overcome the drawbacks of the prior art.
This disclosure is directed to a 3D laser printer and its operation method, wherein a mobile preheating mechanism is provided for heating a feeding machine or a construction machine, and thus omitting the step of using a heating device to heat up the whole chassis chamber, and preventing the temperature of a chamber of a body of this disclosure body from being too high. Further, non-heat resistant components such as a color printer head, a motor, etc. can be installed in the chamber directly to achieve the effects of diversified function and simple installation.
To achieve the aforementioned and other objectives, this disclosure provides a 3D laser printer, comprising: a body, having a chamber formed therein, a carrying platform disposed in the chamber, and a feeding machine and a construction machine capable of ascending and descending with respect to the carrying platform; a powder paving mechanism, accommodated in the chamber and reciprocately moved between the feeding machine and the construction machine; a mobile preheating mechanism, accommodated in the chamber and reciprocately moved in at least one of the feeding machine and the construction machine; and a laser module, configured to be corresponsive to the construction machine.
To achieve the aforementioned and other objectives, this disclosure also provides an operation method of a 3D laser printer comprising the steps of: (a) providing a powder to be sintered and a body, wherein the body has a chamber formed therein a carrying platform disposed in the chamber, and a feeding machine and a construction machine capable of ascending and descending with respect to the carrying platform to stack the powder to be sintered onto the feeding machine; (b) providing a powder paving mechanism accommodated in the chamber and reciprocately moved between the construction machine and the feeding machine, wherein the powder paving mechanism is provided for paving the powder to be sintered onto the construction machine from the feeding machine; (c) providing a mobile preheating mechanism accommodated in the chamber and reciprocately moved in at least one of the feeding machine and the construction machine, wherein the mobile preheating mechanism is provided for heating the powder to be sintered to a temperature slightly lower than the melting point of the powder to be sintered; (d) providing a laser module configured to be corresponding to the construction machine, wherein the laser module is provided for heating the powder to be sintered to the melting point of the powder to be sintered according to the required figure in order to sinter the powder to be sintered into a construction layer; (e) descending the construction machine with respect to the carrying platform until the powder to be sintered is paved smoothly onto the construction machine; and (f) forming a finished product by the plurality of construction layers after repeating the steps (a) to (e).
In the aforementioned 3D laser printer, the mobile preheating mechanism is configured to be corresponsive to the construction machine, and the mobile preheating mechanism includes a moving seat and a heating element, and after the heating element heats the powder to be sintered, the laser module immediately sinters the powder to be sintered to prevent affecting the sintering operation caused by a drop of the temperature of the powder to be sintered.
In the aforementioned 3D laser printer, the powder paving mechanism and the mobile preheating mechanism are jointly combined onto the same moving seat, so that the powder to be sintered can be paved onto the construction machine simultaneously and heated and sintered to achieve the effect of saving the manufacturing time of the 3D laser printer.
The technical contents of this disclosure will become apparent with the detailed description of preferred embodiments accompanied with the illustration of related drawings as follows. It is noteworthy that same numerals are used for representing same respective elements in the drawings.
With reference to
With reference to
Specifically, the 3D laser printer 10 further comprises a feeding mechanism 6 configured to be corresponsive to the feeding machine 13 and provided for stacking the powder to be sintered 100 onto the feeding machine 13. Wherein, the feeding mechanism 6 of this embodiment is disposed under the feeding machine 13 and has a feeding slot for accommodating the feeding machine 13. However, this disclosure is not limited to such arrangement only, and the feeding mechanism 6 may be a feeding bucking disposed at the top of the feeding machine 13.
With reference to the step (b) as shown in
With reference to the step (c) as shown in
Further, the powder paving mechanism 2 and the mobile preheating mechanism 3 jointly include a moving seat 5, and the powder paving mechanism 2 further includes a powder paving module 22 installed at the moving seat 5 and moved with the moving seat 5, and the mobile preheating mechanism 3 further includes a heating element 32 installed at the moving seat 5 and moved with the moving seat 5, wherein the heating element 32 heats the powder to be sintered 100 to a temperature slightly lower than the melting point of the powder to be sintered 100. Wherein, the heating element 32 is a radiant heat source which is an infrared light source (such as an IR Lamp) or a radiant heat source (such as an electric heating tube).
In addition, the mobile preheating mechanism 3 of this embodiment is reciprocately moved between the feeding machine 13 and construction machine 14, but this disclosure is not limited to such arrangement only. The mobile preheating mechanism 3 of this disclosure may just heat one of the feeding machine 13 and the construction machine 14 only. Compared with the conventional heating device that heats the whole chassis chamber, this disclosure is significantly different.
In addition, when the heating element 32 is the infrared light source and the spacing between the infrared light source and the powder to be sintered 100 is smaller than 10 mm, the infrared light source heats the powder to be sintered 100 within a short distance apart to prevent a large quantity of heat from dispersing to other areas and non-heat resistant components such as the color printer head and motor in the chamber 11 from being damaged by high temperature.
With reference to the step (d) as shown in
With reference to
Wherein, the cooling mechanism 9 of this embodiment is disposed at the front of the color printing module 8 and moved with the color printing module 8, so that the 3D laser printer 10 has the effect of cooling before coloring.
In the step d03, the color printing module 8 is accommodated in the chamber 11 and moved on the construction machine 14, wherein the color printing module 8 has a color printer head 81 for coloring according to the required color and position.
Wherein, the workflow order of the step d01 and the step d02 may be switched and the step d01 mainly cools the construction layer 200 and protects the color printer head 81, so as to prevent the color printer head 81 from being damaged by high temperature. However, the step d01 is non-essential and may be skipped according to actual requirements.
With reference to the step (e) as shown in
With reference to the step (f) and as shown in
In addition, the workflow order of the steps (b) and (c) may be switched, and when the mobile preheating mechanism 3 is configured to be corresponsive to the construction machine 14, the step (c) is arranged behind the step (b). In other words, the powder to be sintered 100 is paved smoothly onto the construction machine 14 first, and then the mobile preheating mechanism 3 heats the powder to be sintered 100. When the mobile preheating mechanism 3 is configured to be corresponsive to the feeding machine 13, the step (c) is arranged before the step (b). In other words, the mobile preheating mechanism 3 heats the powder to be sintered 100 first, and then the powder to be sintered 100 is paved smoothly onto the construction machine 14.
With reference to
In a preferred embodiment, the mobile preheating mechanism 3 is configured corresponsive to the construction machine 14, and the mobile preheating mechanism 3 includes a moving seat 5 and a heating element 32, wherein the heating element 32 heats the powder to be sintered 100, and then the laser module 4 sinters the powder to be sintered 100 according to the required figure to prevent affecting the sintering operation due to a drop of temperature of the powder to be sintered 100.
In addition, the powder paving mechanism 2 and the mobile preheating mechanism 3 are jointly combined onto the same moving seat 5, so that the powder to be sintered 100 can be paved smoothly onto the construction machine 14, heated and sintered, so as to achieve the effects of saving the quantity of powder used, reducing the heating and sintering time, and saving the manufacturing time of the 3D laser printer 10.
With reference to
Specifically, the powder paving module 22 includes a powder roller 221 and a driver 222 coupled to the powder roller 221 for driving the powder roller 221 to roll, wherein the driver 222 may be a motor, and the powder roller 221 is provided for paving the powder to be sintered 100 onto the construction machine 14 from the feeding machine 13. Since the temperature of the chamber 11 of the body of this disclosure body 1 is not too high, non-heat resistant components such as the driver 222 can be installed directly into the chamber 11 to allow the powder roller 221 to roll, so as to improve the powdering efficiency of the 3D laser printer 10.
With reference to
Further, the powder paving mechanism 2 includes a first moving seat 21 and a powder paving module 22′ installed at the first moving seat 21 and moved with the first moving seat 21, and the mobile preheating mechanism 3 includes a second moving seat 31 and a heating element 32′ installed at the second moving seat 31 and moved with the second moving seat 31, and the heating element 32′ is provided for heating the powder to be sintered 100 to a temperature slightly lower than the melting point of the powder to be sintered 100. Unlike the powder paving mechanism 2 and the mobile preheating mechanism 3 of the first embodiment that must be moved together, the powder paving mechanism 2 and the mobile preheating mechanism 3 of the fourth embodiment may be moved individually.
Wherein, the first moving seat 21 and the second moving seat 31 of this embodiment are accommodated in the chamber 11 and reciprocately moved between the feeding machine 13 and the construction machine 14. In other words, the powder paving mechanism 2 and the mobile preheating mechanism 3 are reciprocately moved between the feeding machine 13 and the construction machine 14. However, this disclosure is not limited to such arrangement only. The mobile preheating mechanism 3 of this disclosure may be used for heating at least one of the feeding machine 13 and the construction machine 14, and does not heat the whole chassis chamber as the conventional heating device does.
In addition, the powder paving mechanism 2 of the third embodiment is disposed between the mobile preheating mechanism 3 and the construction machine 14 to achieve the effect of paving the powder to be sintered 100 first and then heating the powder to be sintered 100. The mobile preheating mechanism 3 of the fourth embodiment is disposed between the powder paving mechanism 2 and the construction machine 14 to achieve the effect of heating the powder to be sintered 100 first and then paving the powder to be sintered 100.
In summation of the description above, this disclosure achieves the expected objectives and overcomes the drawbacks of the prior art, and this disclosure complies with patent application requirements, and is thus duly filed for patent application.
While this disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of this disclosure set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
201810846144.7 | Jul 2018 | CN | national |