The present application is a continuation-in-part of U.S. application Ser. No. 13/750,731 filed on Jan. 25, 2013 which is incorporated herein by reference.
Not applicable.
The present invention relates to extrusion-based 3-D printers, termed fused deposition modeling or fused filament fabrication printers, in general and more particularly to printers using a printhead which applies layers of thermoplastic (e.g. ABS, HDPE, PLA, PVA) a metal or metal containing carrier, or polymers and composites that are doped with a variety of secondary materials such as wood and carbon nano-tubes to create models, prototypes, patterns, and production parts.
Fused filament fabrication works on an “additive” principle by laying down material in layers. This technique was initially developed by S. Scott Crump in 1989 and is described in U.S. Pat. No. 5,121,329. Initially such printers were extremely expensive, purchasable only by large companies, or accessible by outsourcing a 3-D model file to a fused filament fabrication printer or a competing technology, such as stereolithography as described in U.S. Pat. No. 4,575,330. Recent interest in fused filament fabrication has been increased by the development of consumer models of such printers of much lower cost. The development of low cost alternatives has been fueled by the expiration of U.S. Pat. No. 5,121,329 and the decreasing cost of high precision and reliable motors, motor controllers, and other key components required by fused filament fabrication printers.
A US patent application entitled Three-Dimensional Printing System Using Dual Rotating Axes, to Thomas Mackey, Nathan Patterson, Benjamin Cox, Nathan Schumacher, and George Petry, filed in 2012 (Mackey et al.) shows a rotating build platform and rotary mounted printheads.
Fused filament fabrication, i.e. three-dimensional printing, in addition to providing three-dimensional models or parts for conceptual design studies also allows the manufacturing of functional items or tooling. Patterns for various metal and plastic casting technologies can also be formed. Typically, a plastic filament or metal wire is unwound from a coil and supplies material to an extrusion nozzle that can start and stop material flow. The nozzle is heated to melt the material and can be moved in both horizontal and vertical directions by a numerically controlled mechanism which is often directly controlled by a computer-aided manufacturing (CAM) software package. The model or part is produced by extruding small amounts of thermoplastic or other material to form layers as the material hardens immediately after extrusion from the nozzle. Tools for thermoforming and injection molding can be made, as well as fixtures which assist the manufacturing operation. In addition to providing for very low run manufacturing operations, art objects and display objects can be readily manufactured. Improvements of fused filament fabrication printers requires an increase in printing speed, printing with multiple materials, and lower printer costs.
The fused filament fabrication printer of this invention employs an arrangement where the printing head(s) are fixed during printing and the build platform on which parts are made is moved in three dimensions or directions. This arrangement allows optimization of the printheads for greater speed and less cost. In the co-pending U.S. patent application Ser. No. 13/750,731, filed on Jan. 25, 2013, the build platform is formed of a circular disk mounted for rotation about a z-axis, and mounted for linear motion along a radial y-axis direction perpendicular to the z-axis, and for linear motion along the z-axis between successive print planes. But any arrangement where the printheads are fixed and only the build platform moves can be used. Because the printing heads are fixed, multiple printing heads can be affixed with respect to the build platform without causing interference of the printheads with each other and without increasing the complexity of controlling movements of multiple printheads. The fixed arrangement of the printing heads allows the close spacing of multiple printheads in a printhead unit and the simple routing of multiple plastic filaments to the individual printheads. The closely spaced printheads in the printhead unit allow the printheads to share common components. An exemplary printhead unit has four printheads which share a common heating block and heating block temperature sensor(s). The heating block incorporates a group of four print tips evenly spaced along a line. Each printhead has a separate plastic filament which is controlled and driven by its own stepper motor through the heating block to one of the print tip. The spacing of the drives which supply the multiple plastic filaments is independent of the nozzle spacing. This allows much closer together nozzles while maintaining consistent flow paths for the filament. Printing of a plastic part is effected by control of the individual stepper motors which drive each of the plastic filaments through the heating block and through one of the printing tips. Printing heads using the same material enable material deposition to be increased resulting in increased printing speed, while heads using different materials provides increased printing speed and permit the simultaneous deposition of different materials, e.g., different colors, onto the part on the build platform. When multiple colors are used all colors can be used to fill the interior of the part, while particular colors are used to color the exterior surface of the part.
In an alternative embodiment, a printhead unit incorporating an array of printheads can be used to replace a conventional printhead in a fused filament fabrication printer with a moving printhead.
It is an object of the present invention to provide a fused filament fabrication printer of reduced cost and increased speed.
It is another object of the present invention to provide a fused filament fabrication printer which facilitates the use of multiple printheads which are simultaneously active.
It is another object of the present invention to provide a fused filament fabrication printer which facilitates the use of multiple printheads to apply different materials.
It is a further object of the present invention to provide a fused filament fabrication printer with the printhead unit incorporating an array of printheads to create the printed part.
Further objects, features and advantages of the invention will be apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring more particularly to exemplar
As shown in
As shown in
The extrusion module 144, best shown in
Each of the motor mount plates 123, 124 has a milled opening 145 along the lower edge 146. The insulating standoffs 148 are clamped between the motor mount plates 123, 124, with one end engaged within the milled openings 145.
The insulating standoffs 148 have external circumferential grooves 147 which are captured by portions of the milled openings 146 as shown in
The printhead unit 120 is mounted to the upper T-shaped plate 54 in a milled groove (not shown) similar to the nonfunctional milled groove 168 shown for illustrative purposes in the base 42. Bolts 172 extend through support holes formed by the motor mount plate opposed grooves 174. The bolts 172 extend upwardly through support holes 170 in the upper T-shaped plate 54 and extend above the upper surface 59. The printhead unit support holes 170 are positioned on either side of the filament holes 57.
The motor mount plates 123, 124 are joined together by screws 175 passing through holes 178 so that the grooves 174 define support holes. The plates 123, 124 are supported on the bolts 172 by nuts 176 as shown in
An alternative embodiment printhead unit 182 is shown in
Multiple printhead units 120 or 182 can be arranged on either side of the z-axis 28 to the full radius of the printer platform 24. Increasing the number of print tips 34 will proportionately increase the speed of printing a print layer, assuming the model 31 is of such size that all print tips can simultaneously print on portions of the model. Using more print tips 34 also reduces the necessary motion of the printer platform 24 along the y-axis 36. With a sufficient number and optimum arrangement of printheads the maximum movement of the cross slide 68 can be limited to only a maximum spacing between print tips 34 which is the spacing as shown in
Additional printhead units 182 or 120 with their additional print tips 34 can be arranged radially about a z-axis 28 as shown in
The fused filament fabrication printer 20 printhead units 120 can be arranged such that the printheads completely span the radial width of the part 31 to be formed. For example in forming a 10 cm part with an array of printheads 26 with a spacing between printhead tips 34 of one centimeter, an array of six printheads extending from the center of the part 31 to the edge of the part allows printing a layer of the part with a one centimeter movement of the cross slide. Thus the printer 20 can employ an array of printheads over the entire radius of the print platform of, for example, 25 to 50 cm with 25 to 50 printheads. In setting up to print a particular part, filaments can be run to every printhead, or if the number of filaments 61 is limited for practical reasons, only every other or every third or fourth printhead can be supplied with the filament depending on the radius of the part 31 to be formed. In this way the total movement of the cross slide would be limited to 1, 2, 3, or 4 cm centimeters.
Control of the printing of a part layer involves determining the maximum extent of the print object 31 and using an optimization algorithm or a Monte Carlo simulation to determine the optimal radial start point and movement of the cross slide 68. Control of the print layer by the turning on and off of extrusion of plastic or metal under control of the stepper motors 126 employs a coordinate transform from the model coordinates to the instantaneous path of the print tips 34 and printing where the model indicates material is to be added.
If multiple print tips are available, different colored plastic filaments can be used to produce color models. To maximize print speed, all colors are used to fill solid parts of the model with a particular selected color for portions of the visible surfaces of the model. By printing with three or four colors RGB (red green blue) or CMYK (cyan, magenta, yellow and black) the possibility of creating a broad range of color hues is offered.
It should be understood that the fused filament can be a low melting point metal, for example solder with a melting point of 90 to 180-190° C. or even up to 450° C. If solder is employed, the heater block 149 may be made of stainless steel or other material compatible with liquid metal with a thermal conductivity of even less than 25 W/(m·K) and the insulating standoffs 148 may also be made of stainless steel or other material compatible with liquid metal. The standoffs 148, particularly in the case of a filament of solder, may be of a relatively high conductive material (i.e., greater than 5 W/(m·K)) like stainless steel where an insulating effect is created by the design geometry, for example using thin materials such as thin walled metal tubes for the filament guides 162. The inner filament guides 166 of polytetrafluoroethylene (PTFE) can still be used since PTFE may be used up to a maximum use temperature of 260° C./500° F.
In at least some circumstances the print head units 120, 180 can be simplified by fabricating the motor mount plate 123, 124, or 184, the standoffs 148, the filament guides 162, and the heater block 149 as one unitary part of the same material such as stainless steel or a similar material.
It should be understood that where a filament is described or claimed the filament may be any printing material in a form factor which can be used as a filament which function in the disclosed printhead. If the filament is plastic any functional material can be used e.g., ABS, HDPE, PLA, PVA or can be of made of a plastic filled with other material, for example nano particles (between 1 and 100 nanometers in size) of carbon or metal. Such filled plastic filaments could be sintered to form, for example, metal parts.
It should also be understood that the filaments 61 can be of a wide range of plastic materials such as acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), polylactic acid (PLA), and polyvinyl alcohol (PVA), waxes, and other thermoplastics.
It should be understood that a stepper motor is defined to include any motor with or without feedback which can be controlled to rotate in discrete steps.
It should be understood that where thermoconductivity of a material is described or claimed it is in reference to a temperature of between about 20° C. and 350° C.
It should be understood that the insulating standoff 148 can be constructed of low thermal conductivity materials, i.e. less than about 5 W/(m·K) such as certain stainless steel alloys, Hastelloy C, ceramics such as Steatite (soap stone) or fused silica could be used.
It should be understood that there can be more than one extrusion module mounted to the fixture in filament receiving relation to at least one of the filament guide paths such that several or only one filament is supplied to each of a plurality nozzle block, each block having a heating element, a thermal sensor, a heated guide path, and a filament guide connects a filament guide path to the heated guide path and from there to a portion of the nozzle block forming a print tip.
It should be understood that thermally conductive materials of greater than about 25 W/(m·K) can be used to form the heater bock 149 for example, aluminum, copper, silver or their alloys having thermal conductivity of 25, 50, 100, 200 or 350 or greater. It may be of particular advantage to have a greater conductivity when the filaments have a greater diameter.
It should be understood that the plurality of drive gears 132 used in the printhead units 120, 182 can be of different configuration or sizes, for example where the filaments used are of different materials, shapes or sizes.
It is understood that the invention is not limited to the particular construction and arrangement of parts herein illustrated and described, but embraces all such modified forms thereof as come within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1574726 | Bullard, Jr. | Feb 1926 | A |
1671354 | DeLeeuw | May 1928 | A |
1743862 | Morris | Jan 1930 | A |
2393696 | Kraut et al. | Jan 1946 | A |
2404146 | Scarff | Jul 1946 | A |
2540186 | Bullard et al. | Feb 1951 | A |
2965208 | Forster et al. | Dec 1960 | A |
3498772 | Stalego | Mar 1970 | A |
3792633 | Filipiev et al. | Feb 1974 | A |
4156383 | Maddox | May 1979 | A |
4267893 | Mannon, Jr. | May 1981 | A |
4341502 | Makino | Jul 1982 | A |
4568238 | Hirano et al. | Feb 1986 | A |
4575330 | Hull | Mar 1986 | A |
4589174 | Allen | May 1986 | A |
4594670 | Itoh | Jun 1986 | A |
4648785 | Nakagawa et al. | Mar 1987 | A |
4787813 | Stevens et al. | Nov 1988 | A |
5121329 | Crump | Jun 1992 | A |
5503785 | Crump et al. | Apr 1996 | A |
5633021 | Brown et al. | May 1997 | A |
5697270 | Link | Dec 1997 | A |
5905514 | Rhoads et al. | May 1999 | A |
5944893 | Anderson | Aug 1999 | A |
5968561 | Batchelder et al. | Oct 1999 | A |
5969731 | Michael et al. | Oct 1999 | A |
6022207 | Dahlin et al. | Feb 2000 | A |
6090445 | Anderson | Jul 2000 | A |
6165406 | Jang et al. | Dec 2000 | A |
6212968 | Hiruma et al. | Apr 2001 | B1 |
6508971 | Leyden et al. | Jan 2003 | B2 |
6532394 | Earl et al. | Mar 2003 | B1 |
6813822 | Baldini et al. | Nov 2004 | B2 |
7077638 | Leyden et al. | Jul 2006 | B2 |
7591536 | Silverbrook | Sep 2009 | B2 |
7604470 | LaBossiere et al. | Oct 2009 | B2 |
7625200 | Leavitt | Dec 2009 | B2 |
7726761 | Ishida | Jun 2010 | B2 |
7833001 | Silverbrook | Nov 2010 | B2 |
8033811 | Swanson et al. | Oct 2011 | B2 |
8222908 | Paul et al. | Jul 2012 | B2 |
8226395 | Pax et al. | Jul 2012 | B2 |
8404171 | Heenan | Mar 2013 | B2 |
8512024 | Pax | Aug 2013 | B2 |
20040126452 | Swanson et al. | Jul 2004 | A1 |
20050280185 | Russell et al. | Dec 2005 | A1 |
20070090568 | Teal et al. | Apr 2007 | A1 |
20070228590 | LaBossiere et al. | Oct 2007 | A1 |
20090035405 | Leavitt | Feb 2009 | A1 |
20100096072 | Hopkins et al. | Apr 2010 | A1 |
20120018924 | Swanson et al. | Jan 2012 | A1 |
20120068378 | Swanson et al. | Mar 2012 | A1 |
20120164256 | Swanson et al. | Jun 2012 | A1 |
20120189729 | Pax | Jul 2012 | A1 |
20120237631 | Jenko | Sep 2012 | A1 |
20120267813 | Perret et al. | Oct 2012 | A1 |
20120286453 | Pettis | Nov 2012 | A1 |
20120287459 | Pettis | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
1262305 | Jun 2006 | EP |
2003954 | Dec 2008 | EP |
2009017739 | Feb 2009 | WO |
Entry |
---|
RepRapWiki “RepOlaRap”, Wikipedia, last modified on Jan. 29, 2011, website. Date of Access: Jan. 10, 2013. <http://reprap.org/wiki/RepOlaRap>. |
BeagleFury, RepRap: Builders “Meet Ola, the RepolaRap (At least, her first parts)” posted Jan. 12, 2010, website. Date of Access: Jan. 10, 2013. <http://builders.reprap.org/2010/01/meet-ola-repolarap-at-least-her-first.html>. |
BeagleFury “New direction on RepolaRap firmware” posted Feb. 1, 2010, website. Date of Access: Jan. 10, 2013. <http://forums.reprap.org/read.php?147,34720,34784,quote=1>. |
Microcontroller Forum Tracker “Giving Sight to ‘Ola’”, website. Date of Access: Jan. 10, 2013. <http://www.microcodes.info/giving-sight-to-ola-119541.html>. |
Cb4, adafruit support “rather awesome positioning system (R.A.P.S.)” Adafruit Industries, posted on Jun. 11, 2010 and Jun. 12, 2010, website. Date of access: Jan. 10, 2013. <http://www.adafruit.com/forums/viewtopic.php?f=31&p=80257>. |
BeagleFury, RepRap: Builders “RepolaRap Calibration thoughts” posted on Jan. 14, 2010, website. Date of Access: Jan. 10, 2013. <http://builders.reprap.org/2010/01/repolarap-calibration-thoughts.html>. |
BeagleFury, RepRap:Builders “RepolaRap Motor Mounted” posted on Jan. 17, 2010, website. Date of Access: Jan. 10, 2013. <http://builders.reprap.org/2010/01/repolarap-motor-mounted.html>. |
BeagleFury, “RepolaRap Two Motor Test.mpg”, uploaded Jan. 31, 2010, YouTube video. Date of Access: Jan. 24, 2013. <http://www.youtube.com/watch?v=UYO6RD787fM>. |
BeagleFury, “RepolaRap—BuildPlatformMotor.mpg”, uploaded Jan. 23, 2010, YouTube video. Date of Access: Jan. 24, 2013. <http://www.youtube.com/watch?v=uv8xSAuwKdY>. |
Wolfgang Boehler, Andreas Marbs, “3D Scanning Instruments”, i3mainz, Institute for Spatial Information and Surveying Technology, FH Mainz, University of Applied Sciences, Mainz, Germany. <i3mainz@geoinform.fh-mainz.de>. |
Fausto Bernardini, Holly Rushmeier, “The 3D Model Acquisition Pipeline”, Computer Graphics Forum, vol. 21, (2002), No. 2, pp. 149-172. |
U.S. Patent Application Titled “Three-Dimensional Printing System Using Dual Rotation Axes”, Unpublished (filing date Jan. 20, 2012) (Mackie et al., applicants). |
“All Metal” 1.75 Filament Rostock Delta Dual Extruder, Bowden, Reprap, 3D, found at <http://www.ebay.com/itm/ALL-METAL-1-75-FILAMENT-ROSTOCK-DELTA-DUAL-EXTRUDER-BOWDEN-REPRAP-3D-/181271173914>, accessed on Dec. 9, 2013. |