The disclosure relates to the generation of an internal supporting structure for 3D printing of a model. According to the structural difference of different parts of the model, two different internal supporting structures that can be applied to different structures are added. Printing materials can be saved, while a certain strength level of the model can be ensured.
3D printing is a kind of rapid forming technology, which, based on digital model files, constructs an object by using powdered metal or plastic and other adhesive materials through a layer by layer printing procedure. The most prominent advantage of this technology is that it can directly generate parts of any shape from computer graphics data without machining or using any mold, and thereby the product development cycle can be greatly shortened, productivity can be improving, and production cost can be reduced.
Although 3D printing technology has brought about rapid development in science and technology, the same emerging industry will also have a variety of issues including strength, accuracy, material limitations and cost. In particular, materials that can be used are very limited and costly, and there are not many alternatives can be selected. Traditional models are designed as a solid structure. Although it has the highest strength, but due to the total volume limitation, the printer's running trajectory is increased and the material amount is almost doubled. In order to avoid this problem, the easiest way is to hollow out the inside and leave a “shell”. However, this kind of practice will cause a decrease in strength and even lose the original functions of the model. Therefore, on the basis of hollowing out, additional internal supports are added to minimize the amount of the consumed model material while ensuring the necessary strength to achieve a balanced effect.
In addition, models are generally complicated, mechanical structures of different parts are not the same, and it cannot be treated with a single type of internal supporting structure. This will increase the overall material consumption due to the strength requirements of fragile parts, thereby increasing the waste of materials.
A main object of the disclosure is to generate a 3D printing supporting structure for a biological structure in a 2D to 3D manner. This method reduces the problem of large consumption of traditional solid structural materials, and at the same time increases the strength under force in a specified direction of the model through an adaptive algorithm, which has good practical significance and theoretical research value for ensuring structural strength and saving printing materials.
Based on research on biological body structures, the disclosure builds a mechanical device similar to the biological body or a part of it, so that the model structure design is more reasonable. Similar functions can be realized by structural similarity, and its strength, toughness and practicability can also be simulated and verified by testing the formed items. Combining 3D printing model design with bionic technology can achieve highly optimized and coordinated results, thereby improving the adaptability of the designed model to the environment.
Crystal structure, such as diamond, belongs to the simple substance of carbon. It is a molecular structure with excellent physical properties such as super-hardness, wear resistance, heat sensitivity, thermal conductivity, semiconductor and penetration. The Mohs hardness of diamond is 10. Since it has the highest hardness among natural substances, it is used as the internal supporting structure material of the model in the disclosure.
Therefore, the disclosure proposes a design algorithm for the internal supporting structure of the three-dimensional model, which is a logic based on the biological structure, and is developed from the perspective of printable layers.
The technical solution of the disclosure is realized by the following steps:
1) extracting a picture of a reference biological structure for forming a supporting structure to obtain a complete texture structure image;
2) performing fusion processing to the obtained texture image and a model slice that needs to add an internal supporting structure to obtain a complete slice image with the internal supporting structure;
3) performing model analysis and adaptive structural design, in which a strength-to-material ratio is adjusted;
4) restoring a three-dimensional model through a three-dimensional reconstruction algorithm; and
5) performing a simulation test to the model to verify the effectiveness of the algorithm.
The disclosure will be described in detail below in conjunction with the drawings and implementation steps.
The disclosure is based on 2D slice image processing. A system of the disclosure includes a computer and an FDM type 3D printer, and can generate internal supporting structure for any given model. As shown in
A specific embodiment of the disclosure will be described below.
(1)
Preprocessing of this biological structure includes biological structure image expansion algorithm and image segmentation algorithm. For the segmentation method, watershed algorithm has a good response to weak boundaries, which is a guarantee for obtaining closed continuous boundaries. The result of the transformation of this algorithm is a water collection basin image of an input image, and the boundary point between the water collection basins is a watershed. Obviously, the watershed represents the maximum point of the input image.
The main purpose of image segmentation is to accurately segment muscle fibers areas (dark colored) and connective tissue areas (white), and the white areas correspond to supporting areas.
(2) After the texture image of the supporting structure is obtained, an internal supporting structure can be added to the target model. As shown in
(3) The purpose of model analysis is to analyze the pressing force and pressure applied on each slice according to supporting strength requirements, and further estimate the required minimum supporting area according to the pressure requirements, calculate the ratio between the minimum supporting area and the existing area, determine the key slice according to the area ratio, and determine a processing method for changing the key slice structure according to the area ratio of the key slice.
Further, a relationship between the slice area of each layer (S0), the weight of the single layer (Gs) and the specific gravity (d) of the material under a specific pressing force F is calculated. The pure weight of the model is 160 g, a pressing force of F=100 N is applied on the head of the model cat, the thickness of the model slice is H=0.01 mm, the specific gravity of the material is d=0.3575 mg/mm3, and the maximum pressure that the material can bear is P=300 Pa. The pressing force Ftotal of each slice can be calculated. Further, the minimum area Smin required for each layer of slices is calculated, and the weight of a single layer is equal to the area of the layer multiplied by the height and the specific gravity of the material. Since the top of the model is located on the 280th layer, the 0-279th layers are only subjected to the pressing force caused by the model's own weight. The 280th layer has an external force of 100 Newtons. From this layer, the pressing force on each layer suddenly increases. The minimum area required also become bigger.
It can be seen from
First, the slice corresponding to the largest area ratio is determined as the key slice. If the maximum area ratio is greater than 1, it means that the existing area cannot support the strength required by the existing stress, and the existing supporting area needs to be expanded (dilated). The existing supporting area is expanded by pixel-by-pixel dilation. The existing area is expanded by one pixel width, and the area ratio is recalculated. If the area ratio is still greater than 1, then continue to expand. If the ratio is less than or equal to 1, then stop the expansion, and determine the enlarged area of the supporting area as the width of the expanded pixels.
If the ratio of the maximum supporting area to the existing area is less than 1, it means that the existing area support is redundant in required stress, and the existing supporting area needs to be reduced. The method of pixel-by-pixel eroding is used here. One pixel width is removed by erosion from the existing area, and then the area ratio is recalculated. If the ratio is greater than 1, continue to corrode; otherwise, if the ratio is less than or equal to 1, then stop corroding, and determine the reduced area of the supporting area as the width of the removed pixels.
The key slice is the 920th slice, and the area ratio of this slice is 1.47, indicating that the existing supporting area is insufficient, so the supporting area in the existing slice structure needs to be expanded. Through the pixel-by-pixel expansion, the final expansion pixel width is determined to be 6 pixels.
For the existing supporting areas of other layers, by expanding/removing its width by N pixels according to the operation process described above for the key layer, each layer of supporting structure that meets the stress requirements can be obtained. For the slice image of the illustrated 920th layer, the original slice image and the result image resulted from the expansion of 6 pixels are shown in
(4) Using “Marching Cubes”, the sliced three-dimensional structure is reconstructed, so a three-dimensional model with internal supporting structures can be obtained.
(5)
From Table 1 below, it can be seen that the model generated by this calculation method can save material by 9.884%, while the strength is almost maintained as the same.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/125213 | 12/29/2018 | WO | 00 |