3D reverse printing method and device

Information

  • Patent Grant
  • 12070905
  • Patent Number
    12,070,905
  • Date Filed
    Tuesday, December 22, 2020
    4 years ago
  • Date Issued
    Tuesday, August 27, 2024
    3 months ago
Abstract
The present invention relates to a method and a device for producing three-dimensional models, wherein binding/bonding material is applied in layers to a building platform and media are selectively applied which delay or completely prevent the binding of the applied material.
Description

The invention relates to a method and a device for producing three-dimensional models, wherein binding/bonding material is applied in layers to a building platform and media are selectively applied which delay or completely prevent the binding of the applied material.


A method for producing three-dimensional objects from computer data is described, for example, in EP 0 431 924 B1. In this method, a particulate material is deposited in a thin layer onto a platform, and a binder material is selectively printed on the particulate material, using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is achieved. A three-dimensional object is thereby produced from the printed and solidified areas.


3D printing methods are furthermore known, in which areas are selectively printed with media for the purpose of preventing a sintering of these areas, and the unprinted areas are then permanently bonded to each other in a sintering step, whereby a three-dimensional model is ultimately created. One example of this is WO 01/38061 A1, which neither discloses nor suggests the invention.


The known 3D printing methods may be used to process different particulate materials, such as natural biological raw materials, polymers, plastics, metals, ceramics and sands.


Binders that are used outside of 3D printing applications are highly developed. Epoxy resin may serve as an example. When mixed with sand, for example, it results in a stone-like material with excellent strength properties.


Up to now, however, making material systems which are intrinsically advantageous for 3D printing and have very positive material properties accessible to this method has been unsuccessful either entirely or only to an unsatisfactory degree. These positive material properties are thus lost to 3D printing. The print head process component, which is able to process only a very limited range of materials and is susceptible to errors when using known and intrinsically advantageous materials, is problematic in this context.


Specifically, 3D printing methods are subject to the disadvantages described below.


Powder-based 3D printing methods are described, for example, in patent EP 0 431 924 B1. In this case, a base material in the form of powder is applied in layers. Cavities naturally result between the particles. These cavities weaken the strength of the printed component.


To increase the strength, the cavities must be filled with material that is introduced through the print head in liquid form. The printed material must harden without drying. Since the material is dosed via the print head, relatively low viscosities in the liquid state are necessary, especially in the ink jet methods used here.


For example, if we examine the material system of concrete, we will see that concrete mixed at the point of use solidifies on its own without supplying any air. However, the cement paste per se cannot be processed with the aid of an ink jet print head.


Reactive resin systems may be a second example. These materials polymerize, e.g., after the mixing of two reactive components, and thus harden. The chain length of the prepolymers is usually very high in this case in order to minimize shrinkage during the reaction. The health hazard decreases as the chain length of the prepolymers increases, although the viscosity also increases. Such material systems are thus usually difficult or impossible to print.


Another feature of such products is that they require intimate mixing prior to casting. Only by doing so is the right reaction between the functional groups in the viscous medium ensured. A mixture of this type would have to take place prior to the dosing operation and would thus endanger the print head, since the mixture may harden in the print head before it is dosed.


One objective of the invention is to make the use of standard materials having positive material properties accessible to 3D printing or to avoid or at least reduce the disadvantages of the prior art.


The approach according to the invention is achieved in one aspect by a method for producing three-dimensional models using a layering technique, wherein particulate build material is applied to a build space in a defined layer thickness in the form of powder or dispersion, a liquid is then selectively applied via a print head to the build material in the areas in which the build material is not to be solidified by a solidification reaction, the build space is moved, preferably lowered, raised or horizontally moved, by the layer thickness, and these steps are repeated until the desired model is produced, wherein the solidification reaction of the build material has already started, starts or may be started by introducing energy upon the application of the build material, and a reaction-inhibiting or reaction-stopping liquid is selectively applied by the print head, and no binder material is preferably applied and/or no sintering step is carried out.


In one aspect, the invention essentially consists in making the mixing and consolidation methods known from material processing usable for 3D printing when using standard materials by applying a method in which the negative of the necessary mold is treated in layers with a retarding agent.


The advantage of the method according to the invention is that material systems having advantageous material properties may now be made accessible to 3D printing. It is thus possible to produce 3D models having very good molding properties cost-effectively and in a time-saving manner.


The advantage of the invention also consists in the fact that a building material which solidifies over time may be applied in layers, and a 3D model having good material properties may thus be produced without requiring any additional treatment or solidification steps, such as sintering.


The present invention and, in particular, the method according to the invention, relate to a 3D printing method with the proviso that the latter does not involve any sintering step and preferably uses material systems or materials other than those in WO 01/38061 A1.


The difference between the invention described in the present case and, for example, WO 01/38061 A1 is, in particular, that the method described therein relates to a sintering method. A method having a sintering step is preferably excluded from the scope of protection of the present invention or represents a disclaimer.


A number of terms in the invention are explained in greater detail below.


Within the meaning of the invention, “3D printing method” or “layering technique” relates to all methods known from the prior art which facilitate the construction of models in three-dimensional forms and are compatible with suitable method components and devices. In particular, these are powder-based methods, which may be carried out using suitable material systems.


“Molded body,” “model” or “component” within the meaning of the invention are all three-dimensional objects that are produced with the aid of the method according to the invention and/or the device according to the invention and which have a nondeformability.


Any known 3D printing device that contains the necessary components may be used as the “device” for carrying out the method according to the invention. Common components include a coater, a build space, a means for moving the build space or other components, a dosing device and a heating means and other components which are known to those skilled in the art and therefore do not need to be listed in greater detail here.


All materials in powder form, in particular sands, ceramic powders, metal powders, plastics, wood particles, fibrous materials, celluloses and/or lactose powders may be used as “particulate materials.” The particulate material is preferably a dry, free-flowing or a cohesive, firm powder. Dispersions of the particulate materials employed may also be used.


“Build space” is the geometric place in which the particulate material feedstock grows during the build process by repeated coating with particulate material. The build space is generally delimited by a floor, the building platform, by walls and an open cover surface, the build plane.


“Building platform” within the meaning of the invention is the plane on which the model is built. It may be moved after each layer application during the construction of the model. The building platform may be mounted in the device essentially horizontally or at an angle.


A “moving” of the building platform means that the building platform is lowered, raised or moved horizontally by one layer thickness in order to apply the next layer.


“IR heating” in this patent means an irradiation of the build space using an infrared emitter. The emitter may be static, or it may be moved over the build space with the aid of a positioning unit.


“UV hardening” refers to the initiation of a material system by means of radiation. The wavelength of the radiation does not necessarily have to be in the spectrum of the UV radiation. Wavelengths of the UV-Vis and Vis classes may also be used. A radiation of this type may be used as the activation step.


“Build material” within the meaning of the invention is any material or material mixture that may be applied with the aid of a device within the meaning of the invention. These may be powders or particulate materials. They are preferably two-component mixtures, in which a solidification reaction is started only by mixing them together. The build material may also be present in the form of a dispersion. Materials or build materials or a material system within the meaning of the invention may consist, in particular, of concrete or mortar, a mixture of a filler and a reactive resin system, a mixture of a foundry molding material and a reactive resin system which is common in foundries, a mixture of a filler and water glass or a mixture of particles and meltable material. Build materials within the meaning of the invention are described in more detail below.


“Layer thickness” within the meaning of the invention is set selectively, depending on the material and special method implementation. It may remain the same throughout the method or be varied during the course of the method. The layer thickness is preferably in the range of 50 to 500 μm, more preferably 100 to 400 μm and even more preferably 150 to 300 μm.


The “solidification reaction of the build material” within the meaning of the invention has already begun when the build material is applied. It may be accelerated by suitable measures, such as regulating the temperature of the build space, or initially started by an activation measure. An application of energy in the form of heat or thermal radiation may be used for this purpose.


A “reaction-inhibiting” or “reaction-stopping material” or “liquid” within the meaning of the invention—also referred to as a “retarding agent”—is any material which is able to slow down, inhibit or entirely stop a solidification of the building material by being applied. A “retarding agent” within the meaning of the invention is a substance that influences and slows down the hardening process. These include bases, acids, alcohols, hydrophobic solutions, oils, hydroquinone, or substances having monofunctional groups.


“Binding agents” within the meaning of the invention may preferably be a cement or gypsum, an acrylate or styrene, a polyurethane, an epoxy resin, a polyester and/or a polyamide. Additional details are discussed below.


An “activation step” within the meaning of the invention is a method measure which causes the solidification reaction to progress faster and/or more completely. In one preferred implementation of the method, an activation step may also mean a crossing of a threshold which is critical for the particular reaction, which results in the controlled starting of the solidification reaction.


Reactions within the meaning of the invention may preferably be without being limited thereto—a hydration, a polymerization or a phase transition reaction.


The mechanism according to the invention is based in part on the “retardation” or blocking of the hardening process. A duration of the retardation which makes it possible to safely remove deposits from the component is meant hereby. In the case of activatable materials, the duration is nearly unlimited.


“Deposits” are partially solidified areas which occur outside the geometric boundary of the component. They are generally undesirable and should be removable by means of brushing, blowing off or powder blasting.


“Outer area” describes the surface outside the geometric boundary of the component. According to the invention, a retarding agent is applied here. This may take place, according to the invention, over the entire surface or only on the component boundaries or outside the component in each layer, or partially.


“Melting temperature” within the meaning of the invention relates to a temperature which must be present in the build space and ultimately in the build material in order for a solidification process to result. It may vary and depends on the particular materials used.


In the method according to the invention, the particulate material (build material) is preferably selected from the group consisting of freshly mixed concrete or mortar, a mixture of a filler and a reactive resin system, a mixture of a foundry molding material and a reactive resin system common in foundries, a mixture of a filler and water glass or a mixture of particles and meltable material, the mixture being heated to a temperature above the melting temperature of the meltable material prior to application.


In the method, the build material is normally mixed intimately in a means provided for this purpose shortly before being applied, and a hardening reaction then independently sets in. Additional activation steps or solidification measures, such as sintering, are no longer necessary to obtain the hardened component.


However, it may be advantageous to additionally carry out an activation step to accelerate the method and the build process for producing the 3D molded parts. This activation step preferably takes place after the application from the print head.


The additional activation step preferably takes place by means of irradiation, more preferably with the aid of IR radiation.


It may be advantageous for different reasons, for example to obtain advantageous material properties in the 3D components, to delay the solidification reaction in the method according to the invention by hours, particularly preferably by multiple days, or to essentially stop it altogether.


In another preferred embodiment, the method and the materials for building the 3D molded part may be selected in such a way that the solidification reaction is started by radiation.


The solidification reaction may be based on different mechanisms, depending on the selected build materials. The solidification reaction may be a hydration, a polymerization or a phase transition reaction.


Any suitable binding agent may be used which is compatible with the other material components and device means. A cement or gypsum, an acrylate or styrene, a polyurethane, an epoxy resin, a polyester and/or a polyamide is/are preferably used as the binding agent.


In another aspect, the invention relates to the use of a material system, as described herein, in a 3D printing method described herein.


The invention furthermore relates to a device for carrying out a 3D printing method according to the invention.


In another aspect, the invention relates to a device which includes means known to those skilled in the art for carrying out a 3D printing method. This device has particular device means, modified in a special manner or additionally, to be able to carry out the method according to the invention.


Those skilled in the art will understand that precautions must be taken to carry out the method according to the invention, in order to ensure a fault-free operation, for example, of the print head.


The print head may be specially designed in different aspects for this purpose, such as being coated with non-stick media to prevent the print head from sticking. For example, a Teflon coating of the print head may be provided in this case.


Another advantageous embodiment of the printing device may consist in the fact that the device includes a cleaning station for the print head and/or the coating means (coater, recoater). The print head and/or the coater is/are preferably moved to this cleaning station after each coating, more preferably after every tenth coating, or as needed, and is freed of contaminants of the applied materials (build material/particulate material, material mixture, reaction-inhibiting or reaction-stopping liquid). At the cleaning station, contaminants are removed from the coater along its entire length.


In the method according to the invention, build material which is already capable of binding or bonding or hardening, or whose material components pass through a reaction that permits a binding of the particle components, is already situated in the coater.


One approach for keeping the coater operational and protecting it against contaminants or from being clogged with binding material therefore consists in the fact that the device has a so-called dump station, to which the coater is moved while other method steps are being carried out, or there is, for example, a coating pause during the course of the method. This dump station is designed in such a way that the coater continues the coating process here and thereby ensures that the build material is continuously dispensed, and a clogging by the build material is prevented.


Once the coating operation is to be continued in the method, the coater is returned to the building platform, and the build process of the 3D model may be continued.


The method according to the invention furthermore uses build material, in which the binding reaction/solidification reaction has already started when the coater is filled. To minimize the so-called dead material, which is ultimately not used in the build process, the material components are mixed with each other using a mixing means a short time prior to filling the coater. This has multiple advantages. Due to the relatively small amounts of this mixture, an intimate mixing as well as a good reaction and thus solidification in the build material is ensured, which has a positive effect on the material properties of the 3D component produced. In addition, the amount of dead material in the material to be discarded is kept as small as possible, and the use of material is thus also minimized.


As a result, in one preferred embodiment, the device comprises a cleaning station for the coater and, if necessary, for the print head, a mixing device for the build material and preferably a dump station for discharging dead material, in addition to the usual structural means of a 3D printing device.


In another preferred aspect, the invention thus relates to a device, suitable for 3D printing, comprising a movable building platform, a coater for applying build material which is a self-hardening material mixture, at least one print head unit, at least one mixing unit, at least one cleaning unit for cleaning the coater, if necessary, at least one cleaning unit for cleaning the print head unit and, if necessary, a receiving unit for receiving build material.


The receiving unit is preferably used to receive dead material which is not used for the build process, while the coater must be moved into a waiting position due to other work steps to be carried out. By discharging build material from the coater into this receiving unit, it is advantageously achieved that the coater is not contaminated, remains fully operational, and the coating may continue in a precise manner after the waiting position and waiting time. This also partially avoids the need for cleaning, or at least reduces the cleaning cycles. This has a positive effect on the process speed and increases the productivity of the build process, while maintaining the same standard of quality.





BRIEF DESCRIPTION OF THE FIGURES

The figures describe 3D printers from the prior art as well as preferred specific embodiments of the invention.



FIG. 1: shows a schematic representation of the components of a powder-based 3D printer in an isometric view.



FIG. 2: shows a sequence of a conventional 3D printing process with the use of a layered radiation hardening technique.



FIG. 3: shows a diagram of the unpacking of components from a reaction-inhibited material which may be used according to the invention.



FIG. 4: shows a diagram of an inhibited phase transition reaction which may be used according to the invention.





Reaction Schemata:


Schema 1: Chemical reaction of a reaction-inhibited cold resin method which may be used according to the invention.


Schema 2: Chemical reaction of a reaction-inhibited cold-box method which may be used according to the invention.


PREFERRED EMBODIMENTS OF THE INVENTION

In a first step, a liquid or powdered material (build material) is applied to a building platform and smoothed with the aid of a coater. This material solidifies on its own over time or preferably by means of an activation process. The material may solidify, for example, by means of drying. A chemical reaction that progresses slowly is also conceivable. Physical processes, such as a phase transition, are also conceivable.


A liquid substance, or a substance located in a liquid, which slows down or blocks the particular solidification mechanism, is then applied via an ink jet print head (print head) before or after an optional solidification step.


A solidification step may be, e.g., a drying process following the print process. However, a UV activation of a hardenable polymer is also conceivable.


The building platform is subsequently lowered by one layer thickness.


The aforementioned steps are repeated until the desired body has been created.


In the end, the material surrounding the component and the deposits are removed. This may take place by brushing, blasting or rinsing, depending on the type of the mechanism.


The advantages of this method are that the slowing down or blocking of the solidification mechanism may usually be achieved using a very small amount of an inhibiting medium. This medium is usually easier to dose than the solidifying materials.


In addition, intimate mixtures may be achieved in this manner. The material may be intensively prepared using the customary mixing tools. Powerful mixing energies may be used.


The third aspect relates to the introduction of reinforcements into the component. Due to the premixing, much more complex materials may be processed as a layer than when using prior-art methods.


The consolidation of the base material is likewise influenced. Methods for the liquid dispensing of powder materials may be used, which advantageously influence an efficient particle packing.


In summary, the inventors have developed a means for advantageously making the use of materials accessible to 3D printing methods which were previously unusable for 3D printing. For example, a conventional concrete may be processed.


The result is a component which is in no way inferior to a cast quality. For example, a plastic component may likewise be produced from highly viscous reactive resins. Strengths that are excellent for additively produced components are associated therewith.


OTHER PREFERRED EMBODIMENTS OF THE INVENTION

The system according to the invention draws heavily on powder-based 3D printing. The mechanical engineering is augmented to meet the requirements according to the invention.


The device according to the invention includes a coater (2). This coater is used to apply and smooth premixed particulate material or a liquid containing particulate material onto a building platform (3) (FIG. 2(a)). The applied particulate material may consist of a wide range of materials. For example, sands, ceramic powders, metal powders, plastic, wood particles, fibrous materials, celluloses, lactose powders, etc. may be used. The flow characteristics of these materials may vary enormously. Different coater techniques permit layering from dry, free-flowing powders and cohesive, firm powders to liquid-based dispersions. The height of powder layers (4) is determined by building platform (3). It is lowered after one layer has been applied. During the next coating operation, the resulting volume is filled and the excess smoothed. The result is a nearly perfectly parallel and smooth layer of a defined height.


According to the invention, the solidification process of the applied build material begins before the application, since all components needed for the reaction have been recently mixed intimately in a mixing means. The build material is thus produced in a preparation means prior to dispensing and quickly fed to the coater. The transport times and flow rates are monitored. If an error occurs, the material is not supplied to the machine, and the machine is rinsed with neutral material. The neutral material may comprise, for example, a passive component of the build material.


The material feed is structurally carried out without any dead space. I.e., the material flow always carries along all material quantities located in the feed laminarly.


After a coating process, the layer is printed with a liquid—the so-called retarding agent—with the aid of an ink jet print head (1) (FIG. 2(b)). The print image corresponds to the inverted section of the component in the present build height of the device. The liquid slowly and diffusively penetrates the particulate material.


Following the method according to the invention, the retarding agent solidifies the layer during or shortly after printing (FIG. 2(c)). To speed up this process, or to initiate the hardening, an IR radiator (5), for example, may be additionally passed over the build space in one preferred embodiment. This IR radiator may be coupled with the axis of the coating system. The solvent evaporates during heating. In the case of liquids that present a fire hazard, the evaporating material is extracted immediately (7).


This process may be used to influence, and preferably to speed up, the time sequences of the solidification reaction. The period of time until the parts are unpacked may be shortened thereby.


In the method according to the invention, a job block (300) is generally produced by the build process, from which the embedded components (301) must be removed following the build process. This procedure may take place, e.g., by rinsing with a liquid (302, 303). Likewise or additionally, the component may be exposed by scrubbing or brushing manually (305).


Brief descriptions of preferred material systems are provided below. In each case, the overall process is briefly illustrated.


Cement-bound material An aggregate, such as sand, is mixed with a cement paste, water and additives. This paste-like substance is applied to a building platform with the aid of a special coater.


An acidic sugar solution is dispensed as the reaction-retarding substance onto the areas that are not to be solidified. This combination interferes with the hydration of the cement and thus the solidification.


After a certain binding time, the resulting job block may be detached with the aid of water. The “retarded” material is then brushed off under the action of water. The rinsing solution is environmentally safe, since it is non-toxic.


The component produced in this manner is comparable to a cement component produced by casting in terms of its condition and strength characteristics.


Polymer Synthesis Reaction (Cold Resin)


A reaction-retarded cold resin binding agent for metal casting applications is mixed with a hardener and sand as a batch and fed into the coater. The latter applies the build material as a layer. Compared to the prior art, a special coater is used, which is able to process very cohesive sand mixtures.


An ink-jet print head prints a basic substance in the area in which the sand is to be removed later on. Only a small quantity of a highly basic-acting substance must be applied.


The build material completely solidifies in this process without a substance being printed thereon. Special measures must be taken to protect the mixer, coater and build container.


The result of this process is a porous mold or a core having a cold resin binding, which may be used in metal casting in the known manner.


Polymer Synthesis Reaction (Polyurethane)


An at least difunctional prepolymer isocyanate is mixed with at least difunctional phenol-containing polyol and other additives and with foundry sand. The mixture is set in such a way that the polymerization reaction takes multiple tens of minutes or sets in only after at least this dwell time.


In the area where the sand is to be removed later on, an ink-jet print head prints a substance which, on the one hand, is monofunctional and, on the other hand, reacts with a reactive component much faster than with the multifunctional reactant. The reactive groups needed for a polymerization are reduced thereby. In this system, for example, a printing of compounds with the formula R—OH or R1-NH—R2 is efficacious, short-chain alcohols, such as ethanol or 2-propanol being preferred with regard to the resulting reaction products. Isocyanate groups are effectively and irreversibly deactivated with these substances.


For unpacking, the loose sand is brushed and blasted off.


The result is a casting mold for metal casting applications of the cold box type known in this field.


Polymer Synthesis Reaction (Polyacrylate)


A base material, such as expanded glass or a polymer, is mixed with radically polymerizable acrylates. A photoinitiator is also added to the system.


In the area where the base material is to be removed later on, an ink-jet print head prints a substance which interferes with the further concatenation or deactivates the photoinitiator. These may be known inhibitors such as TEMPO or hydroquinone.


The printing process is followed by an exposure to light using a UV lamp. Due to the deactivated photoinitiator, either no radicals for the polymerization, or only as many radicals as can be immediately absorbed by the added inhibitors, are formed in the printed areas. As a result, no solidity may build up in the printed areas.


The result of this process is a filled plastic component. The latter may be used as a function component in industrial applications or as a visual aid.


Phase Change


A base material (600), e.g. polystyrene powder, is mixed with a wax (601) and heated to a temperature above its melting point (FIG. 4a). In the hot state, it is applied to the building platform with the aid of the coater. The temperature in the build space is maintained above the melting point of the wax.


This layer is printed with oil drops (602), e.g., paraffin oil (FIG. 4b). This oil is mixable with the hot wax. This mixture (603) is located between the particles in the outer area.


During the slow cooling process, a solidity forms in the unprinted area, due to the cooled particle bridges (604). In the printed area, the oil interferes with the formation of solidity. The particles in this area (outside component contour 605) may subsequently be easily brushed off.


The component produced in this manner may be used as a so-called wax model for investment casting applications.


To simplify the separation of the desired component and the surrounding material, printing the retarding agent only linearly along the outer contour of the particular layer cross section and printing the areas outside the component contour with a grid are expedient for reasons of material economy. If all-over separating planes are now inserted in a certain order, a cube structure arises around the component, which may be easily removed, even from complex geometric sections. The size of the cube geometry may be either set as standard, or it may automatically adapt to the component contour with the aid of corresponding algorithms.


A number of reaction schemata are furthermore illustrated for the material systems according to the invention:


Reaction schema 1 (chemical reaction, cold resin/reaction stop):




embedded image


Reaction of furfuryl alcohol with condensation under acidic conditions; increase in pH value prevents the reaction from taking place.


Reaction schema 2 (chemical reaction, cold box):




embedded image


Polymerization is prevented by a competition reaction of the isocyanate with 2-propanol.


LIST OF REFERENCE NUMERALS






    • 100 Ink-jet print head


    • 101 Powder coater


    • 102 Building platform


    • 103 Component


    • 104 Build space boundary


    • 107 Powder layers


    • 200 Solidifying unit


    • 300 Job block


    • 301 Embedded component


    • 302 Rinsing nozzle


    • 303 Dripping material in the outer area


    • 304 Exposed component


    • 305 Brush


    • 600 Base particles


    • 601 Liquid wax


    • 602 Oil drops


    • 603 Bridge of wax/oil


    • 604 Solidified wax


    • 605 Component contour




Claims
  • 1. A material system for 3D printing wherein the material system comprises: a particulate build material for applying to a build space in a defined layer thickness in the form of a powder or a dispersion, anda liquid for selectively applying via a print head to the particulate build material in one or more areas in which the particulate build material is not to be solidified by a solidification reaction;wherein the particulate build material is selected so that a solidification reaction of the particulate build material has already started, starts or may be started by introducing energy upon the application of the particulate build material, andthe liquid is selected for inhibiting or stopping the solidification reaction; wherein the particulate build material is selected from the group consisting of a freshly mixed concrete or mortar, a mixture of a filler and a reactive resin system, a mixture of a foundry molding material and a reactive resin system common in foundries, a mixture of a filler and water glass, and a mixture of particles and a meltable material;with the proviso that the mixture of particles and the meltable material is heated to a temperature above the melting temperature of the meltable material prior to application.
  • 2. The material system of claim 1, wherein the particulate build material is a mixture of a foundry molding material and a reactive resin system common in foundries, or a mixture of a filler and water glass.
  • 3. The material system of claim 2, wherein the liquid is a reaction-inhibiting liquid.
  • 4. The material system of claim 3, wherein the liquid is a reaction-stopping liquid.
  • 5. A material system for 3D printing wherein the material system comprises: a particulate build material for applying to a build space in a defined layer thickness in the form of a powder or a dispersion, wherein the particulate build material solidifies by a salification reaction including a hydration, anda liquid for selectively applying via a print head to the particulate build material in one or more areas in which the particulate build material is not to be solidified by a solidification reaction;wherein the particulate build material is selected so that a solidification reaction of the particulate build material has already started, starts or may be started by introducing energy upon the application of the particulate build material, andthe liquid is selected for inhibiting or stopping the hydration.
  • 6. The material system of claim 1, wherein the particulate build material solidifies by a solidification reaction including a polymerization.
  • 7. The material system of claim 1, wherein the particulate build material solidifies by a phase transition.
  • 8. The material system of claim 1, wherein the particulate build material includes a powder material and a binding agent, wherein the powder material includes a sand, a ceramic powder, a metal powder, a wood particle, a fibrous material, a cellulose, or a lactose powder.
  • 9. The material system of claim 8, wherein the binding agent includes an acrylate, a styrene, a polyurethane, an epoxy resin, a polyester or a polyamide.
  • 10. The material system of claim 9, wherein particulate build material includes products of a solidification reaction of the particulate build material.
  • 11. A material system of claim 1, for 3D printing wherein the material system comprises: a particulate build material for applying to a build space in a defined layer thickness in the form of a powder or a dispersion, anda liquid for selectively applying via a print head to the particulate build material in one or more areas in which the particulate build material is not to be solidified by a solidification reaction;wherein the particulate build material is selected so that a solidification reaction of the particulate build material has already started, starts or may be started by introducing energy upon the application of the particulate build material, andthe liquid is selected for inhibiting or stopping the solidification reaction;wherein the liquid includes a monofunctional reactant.
  • 12. A material system for 3D printing wherein the material system comprises: a particulate build material for applying to a build space in a defined layer thickness in the form of a powder or a dispersion, anda liquid for selectively applying via a print head to the particulate build material in one or more areas in which the particulate build material is not to be solidified by a solidification reaction;wherein the particulate build material is selected so that a solidification reaction of the particulate build material has already started, starts or may be started by introducing energy upon the application of the particulate build material, andthe liquid is selected for inhibiting or stopping the solidification reaction;wherein the particulate build material is a self-hardening material mixture.
  • 13. The material system of claim 12, wherein the liquid slows down or prevents a self-hardening reaction of the particulate build material.
  • 14. A material system for 3D printing wherein the material system comprises: a particulate build material for applying to a build space in a defined layer thickness in the form of a powder or a dispersion, anda liquid for selectively applying via a print head to the particulate build material in one or more areas in which the particulate build material is not to be solidified by a solidification reaction;wherein the particulate build material is selected so that a solidification reaction of the particulate build material has already started, starts or may be started by introducing energy upon the application of the particulate build material, andthe liquid is selected for inhibiting or stopping the solidification reaction;wherein the liquid includes an acidic sugar solution, an acid, or a hydrophobic solution.
  • 15. A material system for 3D printing wherein the material system comprises: i) a build material for applying to a build space in a defined layer thickness in the form of a paste-like substance, wherein the build material includes an aggregate material, a paste, water, and optionally additives; andii) a liquid for selectively applying via a print head to the build material in one or more areas in which the particulate build material is not to be solidified, wherein the liquid interferes with a hydration of the build material or interferes with a solidification reaction of the build material.
  • 16. The material system of claim 15, wherein the aggregate includes a metal or a ceramic, optionally wherein a solidification reaction of the build material has started prior to applying to a build space and/or prior to introduction of energy.
  • 17. The material system of claim 15, wherein the paste is a cement paste and the liquid includes an acidic sugar solution that interferes with hydration of the cement; optionally wherein a solidification reaction of the build material has started prior to applying to the build space and/or prior to introduction of energy.
  • 18. A material system for 3D printing wherein the material system comprises: i) a build material for applying to a build space in a defined layer thickness including a powder material and a phase change material, wherein the build material is above a melting temperature of the phase change material; andii) a liquid for selectively applying via a print head to the build material in one or more areas in which the particulate build material is not to be solidified, wherein the liquid interferes with the solidification of the phase change material.
  • 19. The material system of claim 18, wherein the build material is in a coater device and the build material has a temperature above the melting temperature of the phase change material prior to application by the coater device to the build space.
US Referenced Citations (379)
Number Name Date Kind
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima et al. May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5824250 Whalen Oct 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6905645 Iskra Jun 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Corp Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
9388078 Rael Jul 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020015783 Harvey Feb 2002 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040137228 Monsheimer Jul 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050059757 Bredt Mar 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Tsubaki et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050219942 Wallgren Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20050283136 Skarda Dec 2005 A1
20060013659 Pfeiffer et al. Jan 2006 A1
20060050104 Sakakitani Mar 2006 A1
20060061618 Hernandez et al. Mar 2006 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060175346 Ederer et al. Aug 2006 A1
20060176346 Ederer et al. Aug 2006 A1
20060208388 Bredet et al. Sep 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20060257579 Farr et al. Nov 2006 A1
20070045891 Martinoni Mar 2007 A1
20070054143 Otoshi Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070065397 Ito et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070215020 Miller Sep 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20080299321 Ishihara Dec 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100026743 Van Thillo et al. Feb 2010 A1
20100152865 Jonsson et al. Jun 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100207288 Enrico Sep 2010 A1
20100243123 Ederer et al. Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann Apr 2012 A1
20120113439 Ederer May 2012 A1
20120126457 Abe et al. May 2012 A1
20120189102 Maurer, Jr. et al. Jul 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20120329943 Hicks et al. Dec 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130157193 Moritani et al. Jun 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140236339 Fagan Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Hartmann Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grassegger et al. Apr 2016 A1
20160263828 Ederer et al. Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20160318251 Ederer et al. Nov 2016 A1
20170028630 Ederer et al. Feb 2017 A1
20170050378 Ederer Feb 2017 A1
20170050387 Ederer Feb 2017 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
20170151727 Ederer et al. Jun 2017 A1
20170157852 Ederer et al. Jun 2017 A1
20170182711 Gunther et al. Jun 2017 A1
20170197367 Ederer et al. Jul 2017 A1
20170210037 Ederer et al. Jul 2017 A1
20170217098 Hartmann et al. Aug 2017 A1
20170297263 Ederer et al. Oct 2017 A1
20170305139 Hartmann Oct 2017 A1
20170326693 Ederer et al. Nov 2017 A1
20170355137 Ederer et al. Dec 2017 A1
20180079133 Ederer et al. Mar 2018 A1
20180141271 Gunter et al. May 2018 A1
20180141272 Hartmann et al. May 2018 A1
20180169758 Ederer et al. Jun 2018 A1
20180222082 Gunther et al. Aug 2018 A1
20180222174 Guneter et al. Aug 2018 A1
Foreign Referenced Citations (66)
Number Date Country
720255 May 2000 AU
101146666 Mar 2008 CN
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
102006040305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
361847 Apr 1990 EP
0 431 924 Dec 1990 EP
1400340 Mar 2004 EP
1415792 May 2004 EP
1457590 Sep 2004 EP
1381504 Aug 2007 EP
2297516 Aug 1996 GB
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
9003893 Apr 1990 WO
0138061 May 2001 WO
0140866 Jun 2001 WO
01078969 Oct 2001 WO
2004014637 Feb 2004 WO
2006100166 Sep 2006 WO
2007114895 Oct 2007 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011067319 Jun 2011 WO
2011063786 Jun 2011 WO
2013075696 May 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (16)
Entry
US 4,937,420 A, 06/1990, Deckard (withdrawn)
International Search Report, Application No. PCT/DE2015/000256, dated Sep. 16, 2015.
Written Opinion of the International Search Authority, Application No. PCT/DE2015/000256, dated Sep. 16, 2015.
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993.
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000.
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005.
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Related Publications (1)
Number Date Country
20210107227 A1 Apr 2021 US
Divisions (1)
Number Date Country
Parent 15312722 US
Child 17130789 US