The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to ear pieces.
The use of earpieces at the external auditory canal affords the user with the ability to perceive sound presented to them at a relatively close proximity to the tympanic membrane. Currently sound is delivered to each middle ear without detailed discrimination of greater details concerning the right or left sides of their environments. As such, a great deal of the audio experience is lost through the lack of availability of such audio data. What is needed is a new system and method for the transmission of greater details so that a three dimensional sound field is presented to the user. This would serve to heighten the user experience through the variable expression of sound in a three dimensional space.
Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.
It is a further object, feature, or advantage of the present invention to experience sound in a three dimensional sphere from different points of view.
It is a still further object, feature, or advantage of the present invention to enhance the user experience within a sound sphere.
Another object, feature, or advantage is to increase user comfort through the ability to tune the user's own sound environment to fit what is most comfortable for them.
Yet another object, feature, or advantage is to allow the user to experience the sound field from varying points of view.
A further object, feature, or advantage is to detect the position of the user in the three dimensional sound sphere that could be achieved through data emerging from the onboard accelerometers.
A still further object, feature, or advantage is to position the user in a three dimensional sound space to feed information to the user as to relative position, relative speed, etc. on a time based model.
One or more of these author other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.
According to one aspect, a set of wireless earpieces includes a left wireless earpiece comprising an earpiece housing sized and shaped to fit into an external auditory canal of a user, a speaker disposed within the earpiece and positioned to transduce audio towards a tympanic membrane associated with the external auditory canal of the user and a right wireless earpiece comprising an earpiece housing sized and shaped to fit into an external auditory canal of a user, a speaker disposed within the earpiece and positioned to transduce audio towards a tympanic membrane associated with the external auditory canal of the user. The left earpiece and the right earpiece are adapted to process sound in order to alter perception of the sound to match a pre-determined point of view for the user. At least one of the left wireless earpiece and the right wireless earpiece may further include a sensor to provide sensed data and wherein the sensed data is used to provide the pre-determined point of view for the user. The sensor may be an inertial sensor such as an accelerometer or a physiological sensor such as a pulse oximeter. Sound may be processed in various ways such as by inserting delays, altering amplitude or volume of sound signals, and/or adding reverberation and other effects. Sound may be altered such that it is perceived as emanating from a particular direction relative to the user such as behind the user, in front of the user, the left side of the user, to the right side of the user, above the user, or below the user, or moving relative to the user.
According to another aspect a method is provided. The method includes providing a left earpiece and a right earpiece, selecting a point of view for a user within a sound field, processing the sound field based on the point of view for the user to produce a left sound signal for the left earpiece and a right sound signal for the right earpiece, and reproducing the left sound signal at the left earpiece and the right sound signal at the right earpiece. The step of selecting the point of view for the user within the sound field may be based in part on sensor data collected from one or more sensors in the left earpiece or the right earpiece. The one or more sensors may include an inertial sensor such as an accelerometer or a physiological sensor such as a pulse oximeter. The processing may be performed on a computing device separate from the left earpiece and the right earpiece such as a mobile device such as a mobile phone.
A spectrometer 16 is also shown. The spectrometer 16 may be an infrared (IR) through ultraviolet (UV) spectrometer although it is contemplated that any number of wavelengths in the infrared, visible, or ultraviolet spectrums may be detected. The spectrometer 16 is preferably adapted to measure environmental wavelengths for analysis and recommendations and thus preferably is located on or at the external facing side of the device.
A gesture control interface 36 is also operatively connected to the processor 30. The gesture control interface 36 may include one or more emitters 82 and one or more detectors 84 for sensing user gestures. The emitters may be of any number of types including infrared LEDs. The device may include a transceiver 35 which may allow for induction transmissions such as through near field magnetic induction. A short range transceiver 34 using Bluetooth, BLE, UWB, or other means of radio communication may also be present. In operation, the processor 30 may be configured to convey different information using one or more of the LED(s) 20 based on context or mode of operation of the device. The various sensors 32, the processor 30, and other electronic components may be located on the printed circuit beard of the device. One or more speakers 73 may also be operatively connected to the processor 30. A magnetic induction electric conduction electromagnetic (E/M) field transceiver 37 or other type of electromagnetic field receiver or magnetic induction transceiver is also operatively connected to the processor 30 to link the processor 30 to the electromagnetic field of the user. The use of the E/M transceiver 37 allows the device to link electromagnetically into a personal area network or body area network or other device.
Although the earpiece shown includes numerous different types of sensors and features, it is to be understood that each earpiece need only include a basic subset of this functionality. It is further contemplated that sensed data may be used in various ways depending upon the type of data being sensed and the particular application(s) of the earpieces.
The position within the sound sphere may be oriented using the head movement of the user. The head movement may be determined using one or more inertial sensors. Thus, for example, sound may be produced which takes into account head movement or position.
One manner in which sound localization may be affected is through modifying the perception of direction. Where two earpieces are used, there may be left/right, high/low, front/back qualities associated with sound where a sound is first perceived in one ear and then the other. Another method for altering this perception is through the relative volumes of sound, thus a sound coming from one direction would be perceived as slightly louder in the earpiece nearest the perceived sound source. Another method relates to modifying reverberation time in order to alter perception of how near or how far away a sound's source is. Thus, perception of sound can be modified in various ways including through adding delays in a sound signal or adjusting the amplitude of a sound signal, or otherwise. It is to be understood that sound signals may be altered or modified so that sound is perceived as coming from a particular direction or moving along a particular path.
In addition to sound localization in these examples, other examples may take into account the position of one or more speakers of each earpiece relative to the tympanic membrane of a user in order to shape sounds which provide the desired effect. Thus altering sound qualities allows for perception of pitch, loudness, phase, direction, distance, and timbre to be altered. In addition, the sound processing may take into account movement of the user through monitoring head position of the user by using one or more accelerometers or other inertial sensors in each earpiece.
Running Program
In this example one's progress is tracked while running or jogging. The user's progress may be gauged by where the user is in relation to preselected variables. One example of the preselected variables may be a desired pace or a previous run time. In this example, when the user is faster than the desired pace, a typical pace, or previously set pace, the user could perceive the sound of footsteps behind them with the volume of the sounds directly proportional to the distance or time that one is ahead of schedule. Thus, if the user decreases their pace the footsteps grow louder and if the user increases their pace the footsteps grow softer.
It is further contemplated that the desired pace need not be a fixed pace but may be variable. For example, where one or more of the earpieces includes a pulse oximeter, the desired pace may be associated with a pace necessary to maintain the pulse rate at a given rate and thus when the user has a pulse rate that is lower than the desired pulse rate the footsteps may grow louder to encourage the user to move faster so as to increase their pulse rate.
Orientation for Mapping or Location Services
In this example, the device is being used to provide directions to a user. For example, the user is in motion. Instead of merely giving conventional directions, e.g. turn left or right, go straight, the user could perceive sound as coming from the direction in which the user is to go. The sound may be directions such as “This way” or “Follow me” or other sound or may be the conventional direction such as “Turn Left”, “Turn Right”, “Go back, the destination is behind you”, “You are headed in the right direction”, “You are facing the right direction.” This may be particularly useful in situations where there are not clearly defined paths, for example while the user is swimming in a lake or ocean, when the user is attempting to find someone else within a crowd, or analogous situations. Note that the directions provided may take into account not just the location of the user relative to a destination or route, but also accelerometer data showing head position or movement or other information.
Orientation for Identifying Dangers
In this example, the device is being used to convey not merely the presence of a danger but to convey relative location of the danger. In this example, a warning message which may contain voice message or other sound is perceived as coming from the direction of where the actual danger is. Thus, a person may process this information more quickly and identify the danger more quickly. Although various examples of the use of spatially localized sound origins are provided, it is contemplated that numerous other examples are possible.
Change of Point of View for Performance
In this example, audio may be delivered to the left and right earpieces in order for the user to experience a concert, an athletic event, or other type of performance. In this example, a user may select the point of view from which the would like to experience the performance. For example, the audio may be associated with a particular venue such as a concert hall or a sports venue. The user may select as their point of view where in the venue they are seated. This selection process may occur in various ways such as through voice input into the earpieces or otherwise using a user interface of the earpieces. Alternatively, input may be received through a mobile device or other computing device in operative communication with the earpieces such as through Bluetooth and/or BLE or other wireless communications. Thus, for example, a user could select where they wish to sit through selection from a map of the venue or by providing a section, row, and seat number. It is also contemplated that in a performance the complexity of processing will be increased with the number of sound sources. Thus, for example, for a performance of a solo pianist a single sound source could be used (although if desired multiple sound sources associated with the piano could be used) and for an orchestra multiple sound sources could be used simultaneously which increases the complexity of processing.
Therefore, various examples of systems, devices, apparatus, and methods for 3D sound field manipulation using earpieces have been shown and described. Although various embodiments and examples have been set forth, the present invention contemplates numerous variations, options, and alternatives.
This application claims priority to U.S. Provisional Patent Application 62/244,154, filed on Oct. 20, 2015, and entitled 3D Sound Field Using Bilateral Earpieces System and Method, hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3934100 | Harada | Jan 1976 | A |
4150262 | Ono | Apr 1979 | A |
4334315 | Ono et al. | Jun 1982 | A |
4375016 | Harada | Feb 1983 | A |
4588867 | Konomi | May 1986 | A |
4654883 | Iwata | Mar 1987 | A |
4682180 | Gans | Jul 1987 | A |
4791673 | Schreiber | Dec 1988 | A |
4865044 | Wallace et al. | Sep 1989 | A |
5191602 | Regen et al. | Mar 1993 | A |
5201007 | Ward et al. | Apr 1993 | A |
5280524 | Norris | Jan 1994 | A |
5295193 | Ono | Mar 1994 | A |
5298692 | Ikeda et al. | Mar 1994 | A |
5343532 | Shugart | Aug 1994 | A |
5363444 | Norris | Nov 1994 | A |
5497339 | Bernard | Mar 1996 | A |
5606621 | Reiter et al. | Feb 1997 | A |
5613222 | Guenther | Mar 1997 | A |
5692059 | Kruger | Nov 1997 | A |
5721783 | Anderson | Feb 1998 | A |
5749072 | Mazurkiewicz et al. | May 1998 | A |
5771438 | Palermo et al. | Jun 1998 | A |
5802167 | Hong | Sep 1998 | A |
5929774 | Charlton | Jul 1999 | A |
5933506 | Aoki et al. | Aug 1999 | A |
5949896 | Nageno et al. | Sep 1999 | A |
5987146 | Pluvinage et al. | Nov 1999 | A |
6021207 | Puthuff et al. | Feb 2000 | A |
6054989 | Robertson et al. | Apr 2000 | A |
6081724 | Wilson | Jun 2000 | A |
6094492 | Boesen | Jul 2000 | A |
6111569 | Brusky et al. | Aug 2000 | A |
6112103 | Puthuff | Aug 2000 | A |
6157727 | Rueda | Dec 2000 | A |
6167039 | Karlsson et al. | Dec 2000 | A |
6181801 | Puthuff et al. | Jan 2001 | B1 |
6208372 | Barraclough | Mar 2001 | B1 |
6275789 | Moser et al. | Aug 2001 | B1 |
6339754 | Flanagan et al. | Jan 2002 | B1 |
6408081 | Boesen | Jun 2002 | B1 |
D464039 | Boesen | Oct 2002 | S |
6470893 | Boesen | Oct 2002 | B1 |
D468299 | Boesen | Jan 2003 | S |
D468300 | Boesen | Jan 2003 | S |
6542721 | Boesen | Apr 2003 | B2 |
6560468 | Boesen | May 2003 | B1 |
6654721 | Handelman | Nov 2003 | B2 |
6664713 | Boesen | Dec 2003 | B2 |
6694180 | Boesen | Feb 2004 | B1 |
6718043 | Boesen | Apr 2004 | B1 |
6738485 | Boesen | May 2004 | B1 |
6748095 | Goss | Jun 2004 | B1 |
6754358 | Boesen et al. | Jun 2004 | B1 |
6784873 | Boesen et al. | Aug 2004 | B1 |
6823195 | Boesen | Nov 2004 | B1 |
6852084 | Boesen | Feb 2005 | B1 |
6879698 | Boesen | Apr 2005 | B2 |
6892082 | Boesen | May 2005 | B2 |
6920229 | Boesen | Jul 2005 | B2 |
6952483 | Boesen et al. | Oct 2005 | B2 |
6987986 | Boesen | Jan 2006 | B2 |
7136282 | Rebeske | Nov 2006 | B1 |
7203331 | Boesen | Apr 2007 | B2 |
7209569 | Boesen | Apr 2007 | B2 |
7215790 | Boesen et al. | May 2007 | B2 |
7463902 | Boesen | Dec 2008 | B2 |
7508411 | Boesen | Mar 2009 | B2 |
7983628 | Boesen | Jul 2011 | B2 |
8140357 | Boesen | Mar 2012 | B1 |
8718930 | Tachibana | May 2014 | B2 |
9693137 | Qureshi | Jun 2017 | B1 |
20010005197 | Mishra et al. | Jun 2001 | A1 |
20010027121 | Boesen | Oct 2001 | A1 |
20010056350 | Calderone et al. | Dec 2001 | A1 |
20020002413 | Tokue | Jan 2002 | A1 |
20020007510 | Mann | Jan 2002 | A1 |
20020010590 | Lee | Jan 2002 | A1 |
20020030637 | Mann | Mar 2002 | A1 |
20020046035 | Kitahara et al. | Apr 2002 | A1 |
20020057810 | Boesen | May 2002 | A1 |
20020076073 | Taenzer et al. | Jun 2002 | A1 |
20020118852 | Boesen | Aug 2002 | A1 |
20030065504 | Kraemer et al. | Apr 2003 | A1 |
20030100331 | Dress et al. | May 2003 | A1 |
20030104806 | Ruef et al. | Jun 2003 | A1 |
20030115068 | Boesen | Jun 2003 | A1 |
20030125096 | Boesen | Jul 2003 | A1 |
20030218064 | Conner et al. | Nov 2003 | A1 |
20040070564 | Dawson et al. | Apr 2004 | A1 |
20040160511 | Boesen | Aug 2004 | A1 |
20050043056 | Boesen | Feb 2005 | A1 |
20050125320 | Boesen | Jun 2005 | A1 |
20050148883 | Boesen | Jul 2005 | A1 |
20050165663 | Razumov | Jul 2005 | A1 |
20050196009 | Boesen | Sep 2005 | A1 |
20050251455 | Boesen | Nov 2005 | A1 |
20050266876 | Boesen | Dec 2005 | A1 |
20060029246 | Boesen | Feb 2006 | A1 |
20060074671 | Farmaner et al. | Apr 2006 | A1 |
20060074808 | Boesen | Apr 2006 | A1 |
20060147068 | Aarts | Jul 2006 | A1 |
20080254780 | Kuhl et al. | Oct 2008 | A1 |
20090010456 | Goldstein | Jan 2009 | A1 |
20100074460 | Marzetta | Mar 2010 | A1 |
20100290636 | Mao et al. | Nov 2010 | A1 |
20110299707 | Meyer | Dec 2011 | A1 |
20130083173 | Geisner | Apr 2013 | A1 |
20140058662 | Tachibana | Feb 2014 | A1 |
20150110285 | Censo et al. | Apr 2015 | A1 |
20160324478 | Goldstein | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1017252 | Jul 2000 | EP |
2690407 | Jan 2014 | EP |
2819437 | Dec 2014 | EP |
2074817 | Apr 1981 | GB |
06292195 | Oct 1998 | JP |
2014043179 | Mar 2014 | WO |
2015110577 | Jul 2015 | WO |
2015110587 | Jul 2015 | WO |
Entry |
---|
International Search Report & Written Opinion, PCT/EP16/75120 (dated Feb. 9, 2017). |
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014). |
BRAGI is on Facebook (2014). |
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014). |
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015). |
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014). |
BRAGI Update—Let's Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014). |
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014). |
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014). |
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014). |
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014). |
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014). |
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014). |
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014). |
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015). |
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015). |
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014). |
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015). |
BRAGI Update—Alpha 5 and Back to China, Backer Day, On Track(May 16, 2015). |
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015). |
BRAGI Update—Certifications, Production, Ramping Up (Nov. 13, 2015). |
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015). |
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015). |
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015). |
BRAGI Update—Getting Close(Aug. 6, 2014). |
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015). |
BRAGI Update—On Track, On Track and Gems Overview (Jun. 24, 2015). |
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015). |
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015). |
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014). |
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014). |
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000. |
Stretchgoal—It's Your Dash (Feb. 14, 2014). |
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014). |
Stretchgoal—Windows Phone Support (Feb. 17, 2014). |
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014). |
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014). |
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014). |
Number | Date | Country | |
---|---|---|---|
20170111740 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62244154 | Oct 2015 | US |