3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness

Information

  • Patent Grant
  • 10365030
  • Patent Number
    10,365,030
  • Date Filed
    Wednesday, December 13, 2017
    6 years ago
  • Date Issued
    Tuesday, July 30, 2019
    4 years ago
Abstract
A three-dimensional (3D) vacuum insulation panel (VIP) and a folding approach to create the 3D VIP from a two-dimensional (2D) VIP of non-uniform thickness for a refrigerator, a refrigerator freezer or a non-appliance, are disclosed. The folding approach includes placing a VIP main panel and a plurality of VIP wall panels on an outer film, where one or more panels are of a greater thickness than other VIP panels; placing an inner film on top of the VIP main and wall panels and sealing the films together. The inner film is longer than the outer film and this allows the films and the VIP wall panels to be folded into a finished panel, wherein the longer inner film allows for folding without causing tears or micro-cracks in the film that would adversely affect the insulation properties of the three-dimensional (3D) VIP.
Description
FIELD OF THE DISCLOSURE

This application relates to a panel or cabinet for refrigeration or non-appliance use, including, but not limited to, an insulated cooler. In particular, the present disclosure relates to a 3D vacuum panel and creating a 3D vacuum panel from a 2D vacuum panel of non-uniform thickness.


BACKGROUND

Various types of insulated cabinet and door insulated structures have been developed for refrigerators, freezers, and other such appliances. Insulated appliance door and cabinet structures may include polyurethane foam, polystyrene or other insulating material that is positioned between an outer door skin or wrapper and an inner door liner. However, known insulated appliance structures may suffer from various drawbacks.


In the related art, vacuum-in-place (VIP) insulation panels are manufactured in a flat 2D shape and are then folded. However, there are drawbacks to this approach. Manufacturing VIP panels in a flat 2D shape limits their application to flat walls and makes it difficult to use as insulation on a surface that is not flat. In some cases, it will be advantageous to have a shape that has some walls that are thicker than others. One solution is to make a 3D core and seal the 3D core in a film having a gas barrier. A drawback to this approach is that it may result in high mechanical stresses in the film that may create tears or holes in the gas barrier which allow air or water vapor to enter the vacuum panel, which can result in air infiltration that defeats the insulation. Thus, there exists a need to overcome these drawbacks in the related art and provide a foldable vacuum insulation panel having sections of different thicknesses.


SUMMARY

An aspect of the present disclosure provides a foldable vacuum insulation panel which consists of sections of different thicknesses. This allows a three-dimensional shape to have walls of different thicknesses after the walls are folded into final form. For example, a French door bottom mount (FDBM) freezer door could be constructed using this method, as could a refrigerator cabinet or a non-appliance. The front wall could be one thickness while the sides could be thicker to match the external metal panel thickness or to include the door dike section. The top piece of the barrier film may be longer than the bottom piece of barrier film in order for it to match the profile of the panel. This would reduce the amount of stretching of the film that would be required to confirm the difference in panel height. Another application of this solution is that the pre-shaped boards are not only different thicknesses, but could also have some three-dimensional features. This would allow, for example, a thicker section to be incorporated to include the door dike or other features that exist in today's polyurethane (PU) foamed doors but would not be possible to incorporate by folding a two-dimensional shape. By having VIP insulation panels that are of different thickness, the VIP insulation panels can replace the PU foamed doors, which is an advantage since the VIP insulation performs better than the PU or polystyrene that would otherwise be used.


An aspect of the present disclosure is generally directed toward a method of manufacturing a 3D VIP insulated door panel from a 2D flat panel of non-uniform thickness, the method including the steps of providing an outer film; providing a flat vacuum-in-place (VIP) main wall on the outer film; providing a VIP top wall on the outer film adjacent to and at an edge of the main wall; providing a VIP bottom wall on the outer film adjacent to the main wall and opposite to the top wall; providing a VIP left wall on the outer film and adjacent to and at an edge of the main wall; providing a VIP right wall on the outer film and adjacent to the main wall and opposite to the left wall, wherein one or more of the VIP top wall, the VIP bottom wall, the VIP left wall and the VIP right wall are thicker than the main wall; providing an inner film on top of the main wall and each of the VIP top wall, VIP bottom wall, VIP left wall and VIP right wall; wherein the inner film is longer than the outer film, sealing the inner and outer films, and providing the inner film in a length wherein folding the VIP top wall, VIP bottom wall, VIP left wall and VIP right wall onto the main wall produces a 3D VIP insulated door panel of non-uniform thickness.


Another aspect of the present disclosure provides a 3D VIP insulated door panel manufactured from a 2D flat panel of non-uniform thickness, 3D VIP insulated door panel including an outer film; a flat vacuum-in-place (VIP) main wall on the outer film; a VIP top wall on the outer film adjacent to and at an edge of the main wall; a VIP bottom wall on the outer film adjacent to the main wall and opposite to the top wall; a VIP left wall on the outer film and adjacent to and at an edge of the main wall; a VIP right wall on the outer film and adjacent to the main wall and opposite to the left wall, wherein one or more of the VIP top wall, the VIP bottom wall, the VIP left wall and the VIP right wall have a different thickness than the main wall; an inner film on top of the main wall and each of the VIP top wall, VIP bottom wall, VIP left wall and VIP right wall; wherein the inner film is longer than the outer film, wherein the inner and outer films are sealed, and the inner film is configured to be of a length wherein folding the VIP top wall, VIP bottom wall, VIP left wall and VIP right wall onto the main wall produces a 3D VIP insulated door panel of non-uniform thickness.


Yet another aspect of the present disclosure provides a refrigerator freezer door assembly, the refrigerator freezer door assembly including a door panel including a door flange on opposite sides of the panel; a top end cap mounted to the top of the door panel between the door flanges; a bottom end cap opposite the top end cap; a folded 3D VIP insulation panel inside the door panel having walls of non-uniform thickness; an inner door liner inside the folded VIP door panel; a gasket surrounding a periphery of the inner door liner; and left and right brackets secured to the inside of the inner door liner.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessary to scale. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.



FIG. 1A is a perspective view of an unfolded 3D VIP insulation panel according to an exemplary embodiment;



FIG. 1B is a perspective view of the bottom of the unfolded 3D VIP insulation panel of FIG. 1A;



FIG. 1C is a perspective view of the folded 3D VIP insulation panel of FIG. 1A;



FIG. 2 is a cross-sectional view of FIG. 1A, taken along the lines 2-2 of FIG. 1A;



FIG. 3A is a perspective view of an unfolded 3D VIP insulation panel of another exemplary embodiment;



FIG. 3B is a perspective view of the bottom of the unfolded 3D VIP insulation panel of FIG. 3A;



FIG. 3C is a perspective view of the folded 3D VIP insulation panel of FIG. 3A;



FIG. 4 is a cross sectional view taken along line A-A of FIG. 5 of a folded 3D VIP insulation panel with non-uniform thicknesses according to another exemplary embodiment;



FIG. 5 is an unfolded view of a 2D VIP insulation panel having non-uniform thicknesses;



FIG. 6 is a cross sectional view of a refrigerator freezer door having a folded 3D VIP insulation panel according to another exemplary;



FIG. 7 is a cross sectional view of a refrigerator freezer door having a 3D folded VIP insulation panel according to an exemplary embodiment;



FIG. 8 is a cross sectional view of a refrigerator freezer door having a 3D VIP insulation panel according to another exemplary embodiment;



FIG. 9 is a cross sectional view of a refrigerator freezer door having a 3D VIP insulation panel according to another exemplary embodiment;



FIG. 10 is a perspective view of a refrigerator freezer door assembly according to an exemplary embodiment;



FIG. 11 is a rear perspective view of the refrigerator freezer door assembly of FIG. 10; and



FIG. 12 is an exploded view of the refrigerator freezer door of FIG. 11.





DETAILED DESCRIPTION OF THE PRESENT DISCLOSURE

Before the subject invention is described further, it is to be understood that the invention is not limited to the particular present disclosure described below, as many variations of the present disclosure may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing present disclosure, and is not intended to be limiting in any manner.


In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise. The present disclosure are generally directed toward a 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel having a non-uniform thickness.


For purposes of description herein, The terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” “top,” “bottom,” “left,” “right” and derivatives thereof shall relate to the disclosure as oriented in FIGS. 1A-1C. However, it is to be understood that the disclosure may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply present disclosure of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the present disclosure disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring to FIGS. 1A-1C, reference numeral 100 refers to an unfolded main wall and top walls of a vacuum insulation panel (VIP) used in a refrigerator freezer door, but are not limited thereto. The unfolded VIP panel 100 includes main wall 110, top wall 120, right wall 130, and bottom wall 140 which are located opposite to top wall 120, left wall 150 and bottom film 200. In this exemplary embodiment, each of the unfolded walls are adjacent to one another and rest on outer film 200. In addition, the walls, other than the flat main wall 110 are configured to be folded. One or more of the top, bottom, left side and right side VIP walls may be of different thicknesses from each other. Each of the main body 110, and the top, bottom, left and right walls 120-150 rests on a film 200.



FIG. 1B is a rear view of the 3D VIP of FIG. 1A, showing rear film 200 and walls 120, 130, 140 and 150. The main wall 110 is covered by film 200. The walls 110-150 are covered by outer film 200 in this figure.



FIG. 1C is a folded view of a finished 3D VIP. In this aspect of the present disclosure, an inner film 210 has been added on top of walls 110-150 and is sealed to outer film 200 in a conventional manner as would be understood by one of ordinary skill in the art. The walls 120-150 are then folded to form the finished 3D VIP I as shown in FIG. 1C.



FIG. 2 is a view which illustrates the inner film 210 placed over the walls 110-150 to be sealed to outer film 200 (only 110, 130 and 150 are shown). The walls 110-150 are then folded, as shown in FIG. 1C, to form the finished 3D VIP for use in a refrigerator freezer assembly. The inner film 210 may be longer than the outer film 200. This permits the walls 120-150 to be folded onto the main wall 110 in such a manner that the longer inner film 210 allows the film to stretch to a point of allowing the product to be finished without tearing or causing micro-cracks, etc., to the film. If there were tears or micro cracks in the film when the seals of the inner and outer films are folded, air could get into the VIP and adversely affect their insulative ability. By making the inner film longer than the outer film, this problem is avoided because the films are not overly stretched to a point of tearing or developing micro-cracks which can adversely affect the insulation properties of the VIP. By making the inner film longer than the outer film, a small gap may be created between the walls of the VIP, which reduces the chance of tears or micro-cracks, and is easier to manufacture. By having the top piece of film longer than the bottom piece of film, the amount of stretching of the film when folding the walls of the VIP is reduced, reducing the chance of tearing or the development of micro-cracks.



FIG. 3A is a perspective view of an alternate embodiment where the VIP may include sides that are not of uniform cross section and have stepped portions on the walls of the VIP. The stepped portions can be used to mark features of the door so that the door can be thinner in places, resulting in consumers obtaining more space. As shown in FIG. 3A, an unfolded VIP is illustrated. This VIP is similar to FIG. 1A with the exception that the top wall 125, bottom wall 145, left wall 155 and right wall 135 each include a stepped portion. Two stepped portions 138 and 148 are shown. The stepped portions for 125 and 155 are not shown but are the same as stepped portions 138 and 148. The purpose of these stepped portions is to fill a dyke portion of a refrigerator or the dyke portion of a refrigerator freezer.



FIG. 3B is a rear perspective view of FIG. 3A. This figure shows film 200 which is located on the underside of main wall 110 and the walls 125, 135, 145 and 155. This figure shows the walls and main wall attached at their undersides to film. Although the film for this exemplary embodiment is shown as being the same size as the film 200 of FIGS. 1A-1C, the size of the film is not limited thereto and may be sized to conform to the size of the main wall 110 and the walls 125, 135, 145 and 155, which are to be folded.



FIG. 3C shows a folded VIP. In this embodiment, main wall 110, top wall 125, bottom wall 145, left wall 155 and right wall 135 are all illustrated. In this exemplary embodiment, all of the stepped portions of the walls 125, 135, 145 and 155 are shown to be of the same size and have the same stepped portion. However, the invention is not limited thereto and the walls and stepped portions can be of different sizes and shapes.



FIGS. 4 and 5 show an exemplary embodiment having walls of different thicknesses. FIG. 4 is taken along lines 4-4 of FIG. 5. FIG. 4 shows a cutaway of a folded VIP 400. Illustrated is a main wall 460. Top wall 410 and right wall 420 are also shown. Bottom corner walls 430 and 440 are of a greater thickness than top wall 410, bottom wall 450, and right wall 420. Walls 430 and 440 are made thicker in the exemplary embodiment to provide an area of greater insulation to provide better insulation to a compressor, etc.



FIG. 5 is an unfolded blank of a VIP that is folded to make the VIP of FIG. 4. In this exemplary embodiment, thicker walls 430 and 440 are shown to be adjacent to main wall 460. In this exemplary embodiment, films 200 and 210 are not illustrated but may be the same type of films found in the embodiments of FIGS. 1A-1C, FIG. 2 and FIG. 3A-3C.



FIG. 6 illustrates an exemplary embodiment of a refrigerator or refrigerator freezer door. In this exemplary embodiment, 620 is an area where a door bracket is attached. Area 620 may be unfilled (air), but may also be filled with an insulation material, including, but not limited to EPS or PU. Reference number 630 is part of a door liner. Reference number 640 is a folded VIP that extends across the door panel 600 and then turns upwardly. As shown, VIP 640 does not extend into the door dyke 650 and does not extend into area 670, which is usually filled with polyurethane (PU) or polystyrene. Gasket assembly 660 is shown in the area usually filled with PU or polystyrene. In this exemplary embodiment, the door dyke 650 may be left empty (air filled) or may be filled with PU or polystyrene, which provide rigidity. A door dyke is the part of the door that goes into the refrigerator and keeps air from getting to the gasket. It is important to keep the cold air away from the gaskets so as to minimize heat transfer through the gasket. FIG. 7 is an illustration of a door panel of a refrigerator or a refrigerator freezer. This exemplary embodiment is similar to the exemplary embodiment of FIG. 6. A difference is that in this exemplary embodiment, the VIP extends across the door liner and upwardly towards the door dyke, represented as 650 in FIG. 6. In this exemplary embodiment, the VIP additionally fills three areas. The first is that the VIP fills the area where a bracket assembly attaches to the inner liner, i.e., the area represented by 620 in FIG. 6. Secondly, the VIP fills the area of the door dyke that would, in the related art, be filled with PU, polystyrene or air. The door dyke is represented by 650 in FIG. 6. The third area is the area 710 where the area would, in the related art, be filled with PU or polystyrene or left empty, i.e., filled with air. A problem with leaving an area filled with air is that if pushed or squeezed, there is no support. During a manufacturing process, the area 710 may be formed similar to a wall 150 in FIG. 2 and folded into place. In this exemplary embodiment, a refrigerator or refrigerator freezer door is illustrated; however, the invention is not limited thereto and the VIP could be formed into the shape of all or part of a refrigerator appliance or a non-appliance, and used as an insulative component to build an entire refrigerator cabinet or a portion of a refrigerator cabinet or a non-appliance including, but limited to an insulated cooler.


Turning next to FIG. 8, portion 640 may be filled with a VIP. In this exemplary embodiment, the area of the door dyke 650 is not filled and the area 620 where the bracket assembly meets the inner liner is not filled with a VIP. Rather, these sections not filled with VIP may be filled with PU, polystyrene, or air, but is not limited thereto, as would be understood by one of ordinary skill in the art. In the manufacture of the exemplary embodiment of FIG. 8, the VIP 640 may be formed similar to the main wall 110 and left wall 150 of FIG. 2, and folded into place.


Turning next to FIG. 9, a flat VIP 910 is provided across the door assembly. 910 is a main wall and 920 is a side wall. The area of the door dyke 650 (FIG. 6) and the gasket assembly 660 are filled by VIP 920 and the area where the bracket meets the inner liner may be filled with a different VIP 930. However, area 930 may be filled with air, PU, EPS, etc., as would be understood by an artisan. This area is referred to by 620 in FIG. 6. In manufacturing the exemplary embodiment of FIG. 9, both VIP 910 and 920 may be formed of sections having an inner and/or outer envelope, or film, which are folded 180° into place, instead of being folded 90° into place, as in FIG. 1.


Turning to FIG. 10, this exemplary embodiment illustrates a perspective view of an assembled refrigerator freezer door assembly 1000. At the outside of the freezer door assembly is a door panel or outer liner 1050. The side edges of the door panel 1050 are labeled as 1010. Also shown in FIG. 10 is a top end cap 1020. A lower end cap is not seen in this figure. In addition, protruding from the back of the door panel 1050 is a pair of mounting brackets. Specifically, left mounting bracket is represented by 1030 and right mounting bracket 1040. The mounting brackets are mounted to the freezer by screws in a manner that would be understood by one of ordinary skill in the art, and will not be described herein.



FIG. 11 is a rear view of the perspective view of the refrigerator freezer door illustrated in FIG. 10. This figure illustrates a rear surface 1110 of an inner door liner 1270 (FIG. 12), as well as the left and right mounting brackets 1030 and 1040, respectively.



FIG. 12 is an exploded view of the refrigerator freezer door assembly 1000 of FIG. 11. This exemplary embodiment includes a door panel 1050 (FIG. 10) having an inner surface 1230. The side edges of the door panel 1230 are folded inwardly at 1010. Above the door panel is a seal 1220 and a top end cap 1020. At the bottom of the door panel 1050 is a bracket 1240 as well as a bottom end cap 1250. Inside the rear surface 1230 of the door panel assembly is a folded VIP I 100. In this illustration, the VIP may be the same or similar to the VIP insulation panel of FIG. 1C. Inside of the VIP is an inner door liner 1270 having a rear inner surface 1110. On the inside of the inner door liner 1270 is a (100) 660 which surrounds the perimeter of the inner door liner 1270. Mounted to the rear surface 1110 of the inner door liner 1270 is a left mounting bracket 1030 and a right mounting bracket 1040.


Although the above description has described and illustrated various present disclosure, the present disclosure is merely exemplary by nature and is not to be construed as limiting of the inventive concept. Rather, the inventive concept of the disclosed present disclosure is defined by the claimed subject matter.

Claims
  • 1. A method of manufacturing a three-dimensional vacuum insulation panel from a flat panel of non-uniform thickness, the method comprising steps of: providing an outer film;providing a flat main wall on the outer film;providing a top wall on the outer film adjacent to and at an outer edge of the main wall;providing a bottom wall on the outer film adjacent to the main wall and opposite to the top wall;providing a left wall on the outer film and adjacent to and at the outer edge of the main wall;providing a right wall on the outer film and adjacent to the main wall and opposite to the left wall, wherein at least one of the top, bottom, left and right walls is thicker than the main wall;providing an inner film on top of the main wall and each of the top, bottom, left and right walls, wherein the inner film is longer than the outer film;sealing the inner and outer films; andfolding the top, bottom, left and right walls onto the main wall to produce a vacuum insulated panel of non-uniform thickness.
  • 2. The method of claim 1, wherein the step of folding the top, bottom, left and right walls onto the main wall to produce the vacuum insulated panel includes providing excess material in a film structure defined by the inner and outer films, wherein the excess material of the film structure provides for an at least partial overlap of the film structure at areas of non-uniform thickness that prevents at least one of tears and micro-cracks in the film structure.
  • 3. The method of claim 1, wherein the inner film being longer than the outer film provides for manipulation of the inner film in response to the top, bottom, left and right walls being folded without one of tearing and creating micro cracks in a film structure defined by the inner and outer films that are sealed together.
  • 4. The method of claim 1, further including the step of providing two additional walls of greater thickness than the main, top, bottom, left and right walls, wherein the two additional walls are adjacent to the right wall, wherein the step of folding the top, bottom, left and right walls places the two additional walls at right angles with one another.
  • 5. The method of claim 4, wherein the two additional walls of greater thickness than the main, top, bottom, left and right walls are disposed proximate a compressor of an appliance.
  • 6. The method of claim 1, wherein the vacuum insulated panel is disposed proximate an interior space defined by an appliance.
  • 7. The method of claim 1, wherein the vacuum insulated panel is disposed within a door panel of an appliance.
  • 8. The method of claim 7, wherein the top, bottom, left and right walls define side edges of the door panel.
  • 9. A method of manufacturing a three-dimensional vacuum insulation panel: disposing a main wall on an outer film;disposing a top wall and a bottom wall on the outer film and adjacent to the main wall, the top wall located opposite to the bottom wall; disposing a left wall and a right wall on the outer film and adjacent to the main wall, the left wall located opposite to the right wall, wherein at least one of the top, bottom, left and right walls is thicker than the main wall;disposing an inner film on top of the main wall, the top wall, the bottom wall, the left wall and the right wall;sealing the inner and outer films; andfolding the top wall, bottom wall, left wall and right wall onto the main wall to produce a vacuum insulated panel of non-uniform thickness.
  • 10. The method of claim 9, further comprising steps of: disposing the vacuum insulated panel of non-uniform thickness between an inner liner and an outer wrapper; anddisposing a gasket proximate a periphery of the inner liner.
  • 11. The method of claim 10, wherein a door dyke is positioned proximate the gasket, wherein the door dyke defines a thermal barrier between the inner liner and the gasket.
  • 12. The method of claim 11, wherein the vacuum insulated panel at least partially occupies the door dyke.
  • 13. The method of claim 9, wherein the step of folding the top wall, bottom wall, left wall and right wall onto the main wall to produce a vacuum insulated panel includes providing excess material in a film structure defined by the inner and outer films, wherein the excess material of the film structure provides for an at least partial overlap of the film structure at areas of non-uniform thickness that prevents at least one of tears and micro-cracks in the film structure.
  • 14. The method of claim 9, wherein the inner film is larger than the outer film and provides for manipulation of the inner film in response to the top wall, bottom wall, left wall and right wall being folded without one of tearing and creating micro cracks in a film structure defined by the inner and outer films that are sealed together.
  • 15. The method of claim 9, further including the step of providing two additional walls of greater thickness than the main, top, bottom, left and right walls, wherein the two additional walls are adjacent to the right wall, wherein the step of folding the top, bottom, left and right walls places the two additional walls at right angles with one another.
  • 16. The method of claim 15, wherein the two additional walls of greater thickness than the main, top, bottom, left and right walls are disposed proximate a compressor of an appliance.
  • 17. A method of manufacturing a door panel having a three-dimensional vacuum insulation panel: disposing a main wall, top wall, bottom wall, left wall and right wall between inner and outer films, wherein the top, bottom, right and left walls are positioned at respective sides of the main wall;sealing the inner and outer films together, wherein at least one of the top, bottom, right and left walls is thicker than the main wall;folding the top, bottom, left and right walls onto the main wall to produce a vacuum insulated panel of non-uniform thickness;disposing the vacuum insulated panel of non-uniform thickness within an insulating cavity defined between an inner liner and an outer wrapper, wherein a door dyke is defined within the insulating cavity proximate the inner liner and the vacuum insulated panel.
  • 18. The method of claim 17, wherein a gasket is disposed proximate a periphery of the inner liner and proximate the door dyke.
  • 19. The method of claim 18, wherein the door dyke defines a thermal barrier between the inner liner and the gasket.
  • 20. The method of claim 17, wherein the vacuum insulated panel at least partially occupies the door dyke.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 15/276,104, filed Sep. 26, 2016, entitled 3D VACUUM PANEL AND A FOLDING APPROACH TO CREATE THE 3D VACUUM PANEL FROM A 2D VACUUM PANEL OF NON-UNIFORM THICKNESS, which is divisional of U.S. patent application Ser. No. 14/634,946 filed Mar. 2, 2015, entitled 3D VACUUM PANEL AND A FOLDING APPROACH TO CREATE THE 3D VACUUM PANEL FROM A 2D VACUUM PANEL OF NON-UNIFORM THICKNESS, now U.S. Pat. No. 9,476,633, the entire disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (467)
Number Name Date Kind
948541 Coleman Feb 1910 A
1275511 Welch Aug 1918 A
1849369 Frost Mar 1932 A
1921576 Muffly Aug 1933 A
2108212 Schellens Feb 1938 A
2128336 Torstensson Aug 1938 A
2164143 Munters Jun 1939 A
2191659 Hintze Feb 1940 A
2318744 Brown May 1943 A
2356827 Coss et al. Aug 1944 A
2432042 Richard Dec 1947 A
2439602 Heritage Apr 1948 A
2439603 Heritage Apr 1948 A
2451884 Stelzer Oct 1948 A
2538780 Hazard Jan 1951 A
2559356 Hedges Jul 1951 A
2729863 Kurtz Jan 1956 A
2768046 Evans Oct 1956 A
2817123 Jacobs Dec 1957 A
2942438 Schmeling Jun 1960 A
2985075 Knutsson-Hall May 1961 A
3086830 Malia Apr 1963 A
3125388 Constantini et al. Mar 1964 A
3137900 Carbary Jun 1964 A
3218111 Steiner Nov 1965 A
3258883 Companaro et al. Jul 1966 A
3290893 Haldopoulos Dec 1966 A
3338451 Kesling Aug 1967 A
3353301 Heilweil et al. Nov 1967 A
3353321 Heilweil et al. Nov 1967 A
3358059 Snyder Dec 1967 A
3379481 Fisher Apr 1968 A
3408316 Mueller et al. Oct 1968 A
3471416 Fijal Oct 1969 A
3597850 Jenkins Aug 1971 A
3607169 Coxe Sep 1971 A
3632012 Kitson Jan 1972 A
3633783 Aue Jan 1972 A
3634971 Kesling Jan 1972 A
3635536 Lackey et al. Jan 1972 A
3670521 Dodge, III et al. Jun 1972 A
3688384 Mizushima et al. Sep 1972 A
3769770 Deschamps et al. Nov 1973 A
3862880 Feldman Jan 1975 A
3868829 Mann et al. Mar 1975 A
3875683 Waters Apr 1975 A
3910658 Lindenschmidt Oct 1975 A
3933398 Haag Jan 1976 A
3935787 Fisher Feb 1976 A
4005919 Hoge et al. Feb 1977 A
4006947 Haag et al. Feb 1977 A
4043624 Lindenschmidt Aug 1977 A
4050145 Benford Sep 1977 A
4067628 Sherburn Jan 1978 A
4114065 Horvay Sep 1978 A
4170391 Bottger Oct 1979 A
4242241 Rosen et al. Dec 1980 A
4260876 Hochheiser Apr 1981 A
4303730 Torobin Dec 1981 A
4303732 Torobin Dec 1981 A
4325734 Burrage et al. Apr 1982 A
4330310 Tate, Jr. et al. May 1982 A
4332429 Frick et al. Jun 1982 A
4396362 Thompson et al. Aug 1983 A
4417382 Schilf Nov 1983 A
4492368 DeLeeuw et al. Jan 1985 A
4529368 Makansi Jul 1985 A
4548196 Torobin Oct 1985 A
4583796 Nakajima et al. Apr 1986 A
4660271 Lenhardt Apr 1987 A
4671909 Torobin Jun 1987 A
4671985 Rodrigues et al. Jun 1987 A
4681788 Barito et al. Jul 1987 A
4745015 Cheng et al. May 1988 A
4777154 Torobin Oct 1988 A
4781968 Kellerman Nov 1988 A
4805293 Buchser Feb 1989 A
4865875 Kellerman Sep 1989 A
4870735 Jahr et al. Oct 1989 A
4914341 Weaver et al. Apr 1990 A
4917841 Jenkins Apr 1990 A
5007226 Nelson Apr 1991 A
5018328 Cur et al. May 1991 A
5033636 Jenkins Jul 1991 A
5066437 Barito et al. Nov 1991 A
5082335 Cur et al. Jan 1992 A
5084320 Barito et al. Jan 1992 A
5094899 Rusek, Jr. Mar 1992 A
5118174 Benford et al. Jun 1992 A
5121593 Forslund Jun 1992 A
5157893 Benson et al. Oct 1992 A
5168674 Molthen Dec 1992 A
5171346 Hallett Dec 1992 A
5175975 Benson et al. Jan 1993 A
5212143 Torobin May 1993 A
5221136 Hauck et al. Jun 1993 A
5227245 Brands et al. Jul 1993 A
5231811 Andrepont et al. Aug 1993 A
5248196 Lynn et al. Sep 1993 A
5251455 Cur et al. Oct 1993 A
5252408 Bridges et al. Oct 1993 A
5263773 Gable et al. Nov 1993 A
5273801 Barry et al. Dec 1993 A
5318108 Benson et al. Jun 1994 A
5340208 Hauck et al. Aug 1994 A
5353868 Abbott Oct 1994 A
5359795 Mawby et al. Nov 1994 A
5375428 LeClear et al. Dec 1994 A
5397759 Torobin Mar 1995 A
5418055 Chen et al. May 1995 A
5433056 Benson et al. Jul 1995 A
5477676 Benson et al. Dec 1995 A
5500287 Henderson Mar 1996 A
5500305 Bridges et al. Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507999 Copsey et al. Apr 1996 A
5509248 Dellby et al. Apr 1996 A
5512345 Tsutsumi et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5533311 Tirrell et al. Jul 1996 A
5562154 Benson et al. Oct 1996 A
5586680 Dellby et al. Dec 1996 A
5599081 Revlett et al. Feb 1997 A
5600966 Valence et al. Feb 1997 A
5632543 McGrath et al. May 1997 A
5640828 Reeves et al. Jun 1997 A
5643485 Potter et al. Jul 1997 A
5652039 Tremain et al. Jul 1997 A
5716581 Tirrell et al. Feb 1998 A
5768837 Sjoholm Jun 1998 A
5792801 Tsuda et al. Aug 1998 A
5813454 Potter Sep 1998 A
5826780 Neeser et al. Oct 1998 A
5827385 Meyer et al. Oct 1998 A
5834126 Sheu Nov 1998 A
5843353 DeVos et al. Dec 1998 A
5866228 Awata Feb 1999 A
5866247 Klatt et al. Feb 1999 A
5868890 Fredrick Feb 1999 A
5900299 Wynne May 1999 A
5918478 Bostic et al. Jul 1999 A
5924295 Park Jul 1999 A
5950395 Takemasa et al. Sep 1999 A
5952404 Simpson et al. Sep 1999 A
5966963 Kovalaske Oct 1999 A
5985189 Lynn et al. Nov 1999 A
6013700 Asano et al. Jan 2000 A
6063471 Dietrich et al. May 2000 A
6094922 Ziegler Aug 2000 A
6109712 Haworth et al. Aug 2000 A
6128914 Tamaoki et al. Oct 2000 A
6132837 Boes et al. Oct 2000 A
6158233 Cohen et al. Dec 2000 A
6163976 Tada et al. Dec 2000 A
6164030 Dietrich Dec 2000 A
6164739 Schulz et al. Dec 2000 A
6187256 Aslan et al. Feb 2001 B1
6209342 Banicevic et al. Apr 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6221456 Pogorski et al. Apr 2001 B1
6224179 Wenning et al. May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6260377 Tamaoki et al. Jul 2001 B1
6266970 Nam et al. Jul 2001 B1
6294595 Tyagi et al. Sep 2001 B1
6305768 Nishimoto Oct 2001 B1
6485122 Wolf et al. Jan 2002 B2
6390378 Briscoe, Jr. et al. May 2002 B1
6406449 Moore et al. Jun 2002 B1
6408841 Hirath et al. Jun 2002 B1
6415623 Jennings et al. Jul 2002 B1
6428130 Banicevic et al. Aug 2002 B1
6430780 Kim et al. Aug 2002 B1
6460955 Vaughan et al. Oct 2002 B1
6519919 Takenouchi et al. Feb 2003 B1
6623413 Wynne Sep 2003 B1
6629429 Kawamura et al. Oct 2003 B1
6651444 Morimoto et al. Nov 2003 B2
6655766 Hodges Dec 2003 B2
6689840 Eustace et al. Feb 2004 B1
6716501 Kovalchuk et al. Apr 2004 B2
6736472 Banicevic May 2004 B2
6749780 Tobias Jun 2004 B2
6773082 Lee Aug 2004 B2
6858280 Allen et al. Feb 2005 B2
6860082 Yamamoto et al. Mar 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
6997530 Avendano et al. Feb 2006 B2
7008032 Chekal et al. Mar 2006 B2
7026054 Ikegawa et al. Apr 2006 B2
7197792 Moon Apr 2007 B2
7197888 LeClear et al. Apr 2007 B2
7207181 Murray et al. Apr 2007 B2
7210308 Tanimoto et al. May 2007 B2
7234247 Maguire Jun 2007 B2
7263744 Kim et al. Sep 2007 B2
7278279 Hirai et al. Oct 2007 B2
7284390 Van Meter et al. Oct 2007 B2
7296432 Muller et al. Nov 2007 B2
7316125 Uekado et al. Jan 2008 B2
7343757 Egan et al. Mar 2008 B2
7360371 Feinauer et al. Apr 2008 B2
7386992 Adamski et al. Jun 2008 B2
7449227 Echigoya et al. Nov 2008 B2
7475562 Jackovin Jan 2009 B2
7517031 Laible Apr 2009 B2
7517576 Echigoya et al. Apr 2009 B2
7537817 Tsunetsugu et al. May 2009 B2
7614244 Venkatakrishnan et al. Nov 2009 B2
7625622 Teckoe et al. Dec 2009 B2
7641298 Hirath et al. Jan 2010 B2
7665326 LeClear et al. Feb 2010 B2
7703217 Tada et al. Apr 2010 B2
7703824 Kittelson et al. Apr 2010 B2
7757511 LeClear et al. Jul 2010 B2
7762634 Tenra et al. Jul 2010 B2
7794805 Aumaugher et al. Sep 2010 B2
7815269 Wenning et al. Oct 2010 B2
7842269 Schachtely et al. Nov 2010 B2
7845745 Gorz et al. Dec 2010 B2
7861538 Welle et al. Jan 2011 B2
7886559 Hell et al. Feb 2011 B2
7893123 Luisi Feb 2011 B2
7905614 Aoki Mar 2011 B2
7908873 Cur et al. Mar 2011 B1
7930892 Vonderhaar Apr 2011 B1
7938148 Carlier et al. May 2011 B2
7992257 Kim Aug 2011 B2
8049518 Wern et al. Nov 2011 B2
8074469 Hamel et al. Dec 2011 B2
8079652 Laible et al. Dec 2011 B2
8083985 Luisi et al. Dec 2011 B2
8108972 Bae et al. Feb 2012 B2
8113604 Olson et al. Feb 2012 B2
8117865 Allard et al. Feb 2012 B2
8157338 Seo et al. Apr 2012 B2
8162415 Hagele et al. Apr 2012 B2
8163080 Meyer et al. Apr 2012 B2
8176746 Allard et al. May 2012 B2
8182051 Laible et al. May 2012 B2
8197019 Kim Jun 2012 B2
8202599 Henn Jun 2012 B2
8211523 Fujimori et al. Jul 2012 B2
8266923 Bauer et al. Sep 2012 B2
8281558 Hiemeyer et al. Oct 2012 B2
8299545 Chen et al. Oct 2012 B2
8299656 Allard et al. Oct 2012 B2
8343395 Hu et al. Jan 2013 B2
8353177 Adamski et al. Jan 2013 B2
8382219 Hottmann et al. Feb 2013 B2
8434317 Besore May 2013 B2
8439460 Laible et al. May 2013 B2
8453476 Kendall et al. Jun 2013 B2
8456040 Allard et al. Jun 2013 B2
8491070 Davis et al. Jul 2013 B2
8516845 Wuesthoff et al. Aug 2013 B2
8522563 Allard et al. Sep 2013 B2
8528284 Aspenson et al. Sep 2013 B2
8590992 Lim et al. Nov 2013 B2
8717029 Chae et al. May 2014 B2
8726690 Cur et al. May 2014 B2
8733123 Adamski et al. May 2014 B2
8739567 Junge Jun 2014 B2
8739568 Allard et al. Jun 2014 B2
8752918 Kang Jun 2014 B2
8752921 Gorz et al. Jun 2014 B2
8756952 Adamski et al. Jun 2014 B2
8763847 Mortarotti Jul 2014 B2
8764133 Park et al. Jul 2014 B2
8770682 Lee et al. Jul 2014 B2
8776390 Hanaoka et al. Jul 2014 B2
8790477 Tenra et al. Jul 2014 B2
8840204 Bauer et al. Sep 2014 B2
8852708 Kim et al. Oct 2014 B2
8871323 Kim et al. Oct 2014 B2
8881398 Hanley et al. Oct 2014 B2
8899068 Jung et al. Dec 2014 B2
8905503 Sahasrabudhe et al. Dec 2014 B2
8927084 Jeon et al. Jan 2015 B2
8943770 Sanders et al. Feb 2015 B2
8944541 Allard et al. Feb 2015 B2
8986483 Cur et al. Mar 2015 B2
9009969 Choi et al. Apr 2015 B2
RE45501 Maguire May 2015 E
9056952 Eilbracht et al. Jun 2015 B2
9074811 Korkmaz Jul 2015 B2
9080808 Choi et al. Jul 2015 B2
9102076 Doshi et al. Aug 2015 B2
9103482 Fujimori et al. Aug 2015 B2
9125546 Kleemann et al. Sep 2015 B2
9140480 Kuehl et al. Sep 2015 B2
9140481 Cur et al. Sep 2015 B2
9170045 Oh et al. Oct 2015 B2
9170046 Jung et al. Oct 2015 B2
9188382 Kim et al. Nov 2015 B2
8955352 Lee et al. Dec 2015 B2
9221210 Wu et al. Dec 2015 B2
9228386 Thielmann et al. Jan 2016 B2
9252570 Allard et al. Feb 2016 B2
9267727 Lim et al. Feb 2016 B2
9303915 Kim et al. Apr 2016 B2
9328951 Shin et al. May 2016 B2
9353984 Kim et al. May 2016 B2
9410732 Choi et al. Aug 2016 B2
9423171 Betto et al. Aug 2016 B2
9429356 Kim et al. Aug 2016 B2
9448004 Kim et al. Sep 2016 B2
9463917 Wu et al. Oct 2016 B2
9482463 Choi et al. Nov 2016 B2
9506689 Carbajal et al. Nov 2016 B2
9518777 Lee et al. Dec 2016 B2
9568238 Kim et al. Feb 2017 B2
D781641 Incukur Mar 2017 S
D781642 Incukur Mar 2017 S
9605891 Lee et al. Mar 2017 B2
9696085 Seo et al. Jul 2017 B2
9702621 Cho et al. Jul 2017 B2
9759479 Ramm et al. Sep 2017 B2
9777958 Choi et al. Oct 2017 B2
9791204 Kim et al. Oct 2017 B2
9833942 Wu et al. Dec 2017 B2
20020004111 Matsubara et al. Jan 2002 A1
20020114937 Albert et al. Aug 2002 A1
20020144482 Henson et al. Oct 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030008100 Horn Jan 2003 A1
20030041612 Piloni et al. Mar 2003 A1
20030056334 Finkelstein Mar 2003 A1
20030157284 Tanimoto et al. Aug 2003 A1
20030167789 Tanimoto et al. Sep 2003 A1
20030173883 Koons Sep 2003 A1
20040144130 Jung Jul 2004 A1
20040178707 Avendano Sep 2004 A1
20040180176 Rusek Sep 2004 A1
20040226141 Yates et al. Nov 2004 A1
20040253406 Hayashi et al. Dec 2004 A1
20050042247 Gomoll et al. Feb 2005 A1
20050229614 Ansted Oct 2005 A1
20050235682 Hirai et al. Oct 2005 A1
20060064846 Espindola et al. Mar 2006 A1
20060076863 Echigoya et al. Apr 2006 A1
20060088685 Echigoya Apr 2006 A1
20060201189 Adamski et al. Sep 2006 A1
20060261718 Miseki et al. Nov 2006 A1
20060263571 Tsunetsugu et al. Nov 2006 A1
20060266075 Itsuki et al. Nov 2006 A1
20070001563 Park et al. Jan 2007 A1
20070099502 Ferinauer May 2007 A1
20070176526 Gomoll et al. Aug 2007 A1
20070266654 Noale Nov 2007 A1
20080044488 Zimmer et al. Feb 2008 A1
20080048540 Kim Feb 2008 A1
20080138458 Ozasa et al. Jun 2008 A1
20080196441 Ferreira Aug 2008 A1
20080300356 Meyer et al. Dec 2008 A1
20080309210 Luisi et al. Dec 2008 A1
20090032541 Rogala et al. Feb 2009 A1
20090056367 Neumann Mar 2009 A1
20090058244 Cho et al. Mar 2009 A1
20090113925 Korkmaz May 2009 A1
20090131571 Fraser et al. May 2009 A1
20090179541 Smith et al. Jul 2009 A1
20090205357 Lim et al. Aug 2009 A1
20090302728 Rotter et al. Dec 2009 A1
20090322470 Yoo et al. Dec 2009 A1
20090324871 Henn Dec 2009 A1
20100206464 Heo et al. Aug 2010 A1
20100218543 Duchame Sep 2010 A1
20100231109 Matzke et al. Sep 2010 A1
20100287843 Oh Nov 2010 A1
20100287974 Cur et al. Nov 2010 A1
20100293984 Adamski et al. Nov 2010 A1
20100295435 Kendall et al. Nov 2010 A1
20110011119 Kuehl et al. Jan 2011 A1
20110023527 Kwon et al. Feb 2011 A1
20110030894 Tenra et al. Feb 2011 A1
20110095669 Moon et al. Apr 2011 A1
20110146325 Lee Jun 2011 A1
20110146335 Jung et al. Jun 2011 A1
20110165367 Kojima et al. Jul 2011 A1
20110215694 Fink et al. Sep 2011 A1
20110220662 Kim et al. Sep 2011 A1
20110241513 Nomura et al. Oct 2011 A1
20110241514 Nomura et al. Oct 2011 A1
20110260351 Corradi et al. Oct 2011 A1
20110290808 Bai et al. Dec 2011 A1
20110309732 Horil et al. Dec 2011 A1
20110315693 Cur et al. Dec 2011 A1
20120000234 Adamski et al. Jan 2012 A1
20120011879 Gu Jan 2012 A1
20120060544 Lee et al. Mar 2012 A1
20120099255 Lee et al. Apr 2012 A1
20120103006 Jung et al. May 2012 A1
20120104923 Jung et al. May 2012 A1
20120118002 Kim et al. May 2012 A1
20120137501 Allard et al. Jun 2012 A1
20120152151 Meyer et al. Jun 2012 A1
20120196059 Fujimori et al. Aug 2012 A1
20120231204 Jeon et al. Sep 2012 A1
20120237715 McCracken Sep 2012 A1
20120240612 Wusthoff et al. Sep 2012 A1
20120273111 Nomura et al. Nov 2012 A1
20120279247 Katu et al. Nov 2012 A1
20120280608 Park et al. Nov 2012 A1
20120285971 Junge et al. Nov 2012 A1
20120297813 Hanley et al. Nov 2012 A1
20120324937 Adamski et al. Dec 2012 A1
20130026900 Oh et al. Jan 2013 A1
20130033163 Kang Feb 2013 A1
20130043780 Ootsuka et al. Feb 2013 A1
20130068990 Eilbracht et al. Mar 2013 A1
20130111941 Yu et al. May 2013 A1
20130221819 Wing Aug 2013 A1
20130256318 Kuehl et al. Oct 2013 A1
20130256319 Kuehl et al. Oct 2013 A1
20130257256 Allard et al. Oct 2013 A1
20130257257 Cur et al. Oct 2013 A1
20130270732 Wu et al. Oct 2013 A1
20130285527 Choi et al. Oct 2013 A1
20130293080 Kim et al. Nov 2013 A1
20130305535 Cur et al. Nov 2013 A1
20130328472 Shim et al. Dec 2013 A1
20140009055 Cho et al. Jan 2014 A1
20140097733 Seo et al. Apr 2014 A1
20140132144 Kim et al. May 2014 A1
20140166926 Lee et al. Jun 2014 A1
20140171578 Meyer et al. Jun 2014 A1
20140190978 Bowman et al. Jul 2014 A1
20140196305 Smith Jul 2014 A1
20140216706 Melton et al. Aug 2014 A1
20140232250 Kim et al. Aug 2014 A1
20140260332 Wu Sep 2014 A1
20140346942 Kim et al. Nov 2014 A1
20140364527 Matthias et al. Dec 2014 A1
20150011668 Kolb et al. Jan 2015 A1
20150015133 Carbajal et al. Jan 2015 A1
20150017386 Kolb et al. Jan 2015 A1
20150027628 Cravens et al. Jan 2015 A1
20150059399 Hwang et al. Mar 2015 A1
20150115790 Ogg Apr 2015 A1
20150147514 Shinohara et al. May 2015 A1
20150159936 Oh et al. Jun 2015 A1
20150168050 Cur et al. Jun 2015 A1
20150176888 Cur et al. Jun 2015 A1
20150184923 Jeon Jul 2015 A1
20150190840 Muto et al. Jul 2015 A1
20150224685 Amstutz Aug 2015 A1
20150241115 Strauss et al. Aug 2015 A1
20150241118 Wu Aug 2015 A1
20150285551 Aiken et al. Oct 2015 A1
20160084567 Fernandez et al. Mar 2016 A1
20160116100 Thiery et al. Apr 2016 A1
20160123055 Ueyama May 2016 A1
20160161175 Benold et al. Jun 2016 A1
20160178267 Hao et al. Jun 2016 A1
20160178269 Hiemeyer et al. Jun 2016 A1
20160235201 Soot Aug 2016 A1
20160240839 Umeyama et al. Aug 2016 A1
20160258671 Allard et al. Sep 2016 A1
20160290702 Sexton et al. Oct 2016 A1
20160348957 Hitzelberger et al. Dec 2016 A1
20170038126 Lee et al. Feb 2017 A1
20170157809 Deka et al. Jun 2017 A1
20170176086 Kang Jun 2017 A1
20170184339 Liu et al. Jun 2017 A1
20170191746 Seo Jul 2017 A1
Foreign Referenced Citations (221)
Number Date Country
626838 May 1961 CA
1320631 Jul 1993 CA
2259665 Jan 1998 CA
2640006 Aug 2007 CA
1158509 Jul 2004 CN
1970185 May 2007 CN
100359272 Jan 2008 CN
101437756 May 2009 CN
201680116 Dec 2010 CN
201748744 Feb 2011 CN
102296714 May 2012 CN
102452522 May 2012 CN
102717578 Oct 2012 CN
102720277 Oct 2012 CN
103072321 May 2013 CN
202973713 Jun 2013 CN
203331442 Dec 2013 CN
104816478 Aug 2015 CN
105115221 Dec 2015 CN
2014963379 Jan 2016 CN
1150190 Jun 1963 DE
4110292 Oct 1992 DE
4409091 Sep 1995 DE
19818890 Nov 1999 DE
19914105 Sep 2000 DE
19915311 Oct 2000 DE
102008026528 Dec 2009 DE
102009046810 May 2011 DE
102010024951 Dec 2011 DE
102011051178 Dec 2012 DE
102012223536 Jun 2014 DE
102012223541 Jun 2014 DE
0260699 Mar 1988 EP
0480451 Apr 1992 EP
0645576 Mar 1995 EP
0691518 Jan 1996 EP
0860669 Aug 1998 EP
1087186 Mar 2001 EP
1200785 May 2002 EP
1243880 Sep 2002 EP
1496322 Jan 2005 EP
1505359 Feb 2005 EP
1602425 Dec 2005 EP
1624263 Aug 2006 EP
1484563 Oct 2008 EP
2342511 Aug 2012 EP
2543942 Jan 2013 EP
2543942 Jan 2013 EP
2607073 Jun 2013 EP
2789951 Oct 2014 EP
2878427 Jun 2015 EP
2980963 Apr 2013 FR
2991698 Dec 2013 FR
837929 Jun 1960 GB
1214548 Jun 1960 GB
4828353 Aug 1973 JP
51057777 May 1976 JP
59191588 Dec 1984 JP
03013779 Jan 1991 JP
404165197 Jun 1992 JP
04165197 Oct 1992 JP
04309778 Nov 1992 JP
06159922 Jun 1994 JP
7001479 Jan 1995 JP
H07167377 Jul 1995 JP
08300052 Nov 1996 JP
H08303686 Nov 1996 JP
H09166271 Jun 1997 JP
10113983 May 1998 JP
11159693 Jun 1999 JP
11311395 Nov 1999 JP
11336990 Dec 1999 JP
2000097390 Apr 2000 JP
2000117334 Apr 2000 JP
2000320958 Nov 2000 JP
2000320958 Nov 2000 JP
2001038188 Feb 2001 JP
2001116437 Apr 2001 JP
2001336691 Dec 2001 JP
2001343176 Dec 2001 JP
2002068853 Mar 2002 JP
3438948 Aug 2003 JP
03478771 Dec 2003 JP
2004303695 Oct 2004 JP
2005069596 Mar 2005 JP
2005098637 Apr 2005 JP
2005114015 Apr 2005 JP
2005164193 Jun 2005 JP
2005256849 Sep 2005 JP
2006077792 Mar 2006 JP
2006161834 Jun 2006 JP
2006161945 Jun 2006 JP
03792801 Jul 2006 JP
2006200685 Aug 2006 JP
2007263186 Oct 2007 JP
4111096 Jul 2008 JP
2008157431 Jul 2008 JP
2008190815 Aug 2008 JP
2009063064 Mar 2009 JP
2009162402 Jul 2009 JP
2009524570 Jul 2009 JP
2010017437 Jan 2010 JP
2010071565 Apr 2010 JP
2010108199 May 2010 JP
2010145002 Jul 2010 JP
04545126 Sep 2010 JP
2010236770 Oct 2010 JP
2010276309 Dec 2010 JP
2011002033 Jan 2011 JP
2011069612 Apr 2011 JP
04779684 Sep 2011 JP
2011196644 Oct 2011 JP
2012026493 Feb 2012 JP
04897473 Mar 2012 JP
2012063029 Mar 2012 JP
2012087993 May 2012 JP
2012163258 Aug 2012 JP
2012189114 Oct 2012 JP
2012242075 Dec 2012 JP
2013002484 Jan 2013 JP
2013050242 Mar 2013 JP
2013050267 Mar 2013 JP
2013050267 Mar 2013 JP
2013076471 Apr 2013 JP
2013076471 Apr 2013 JP
2013088036 May 2013 JP
2013195009 Sep 2013 JP
20020057547 Jul 2002 KR
20020080938 Oct 2002 KR
20030083812 Nov 2003 KR
20040000126 Jan 2004 KR
20050095357 Sep 2005 KR
100620025 Sep 2006 KR
20070044024 Apr 2007 KR
1020070065743 Jun 2007 KR
1020080103845 Nov 2008 KR
20090026045 Mar 2009 KR
1017776 Feb 2011 KR
20120007241 Jan 2012 KR
2012046621 May 2012 KR
2012051305 May 2012 KR
20150089495 Aug 2015 KR
547614 May 1977 RU
2061925 Jun 1996 RU
2077411 Apr 1997 RU
2081858 Jun 1997 RU
2132522 Jun 1999 RU
2162576 Jan 2001 RU
2166158 Apr 2001 RU
2187433 Aug 2002 RU
2234645 Aug 2004 RU
2252377 May 2005 RU
2253792 Jun 2005 RU
2253792 Jun 2005 RU
2349618 Mar 2009 RU
2414288 Mar 2011 RU
2422598 Jun 2011 RU
142892 Jul 2014 RU
2529525 Sep 2014 RU
2571031 Dec 2015 RU
203707 Dec 1967 SU
00476407 Jul 1975 SU
648780 Feb 1979 SU
01307186 Apr 1987 SU
9614207 May 1996 WO
9721767 Jun 1997 WO
1998049506 Nov 1998 WO
02060576 Apr 1999 WO
9614207 Apr 1999 WO
9920961 Apr 1999 WO
9920964 Apr 1999 WO
199920964 Apr 1999 WO
200160598 Aug 2001 WO
200202987 Jan 2002 WO
2002052208 Apr 2002 WO
02060576 Aug 2002 WO
03072684 Sep 2003 WO
03089729 Oct 2003 WO
2004010042 Jan 2004 WO
2006045694 May 2006 WO
2006073540 Jul 2006 WO
2007033836 Mar 2007 WO
2007085511 Aug 2007 WO
2007106067 Sep 2007 WO
2008065453 Jun 2008 WO
2008077741 Jul 2008 WO
2008118536 Oct 2008 WO
2008122483 Oct 2008 WO
2009013106 Jan 2009 WO
2009112433 Sep 2009 WO
2009147106 Dec 2009 WO
2010007783 Jan 2010 WO
2010029730 Mar 2010 WO
2010043009 Apr 2010 WO
2010092627 Aug 2010 WO
2010127947 Nov 2010 WO
2010127947 Nov 2010 WO
2011003711 Jan 2011 WO
2011058678 May 2011 WO
2011058678 May 2011 WO
2011081498 Jul 2011 WO
2010007783 Jan 2012 WO
2012023705 Feb 2012 WO
2012026715 Mar 2012 WO
2012031885 Mar 2012 WO
2012044001 Apr 2012 WO
2012043990 May 2012 WO
2012085212 Jun 2012 WO
2012119892 Sep 2012 WO
2012152646 Nov 2012 WO
2013116103 Aug 2013 WO
2013116302 Aug 2013 WO
2014038150 Mar 2014 WO
2014038150 Mar 2014 WO
2014095542 Jun 2014 WO
2014121893 Aug 2014 WO
2014184393 Nov 2014 WO
2014184393 Nov 2014 WO
2013140816 Aug 2015 WO
2016082907 Jun 2016 WO
2017029782 Feb 2017 WO
Non-Patent Literature Citations (6)
Entry
Kitchen Aid, “Refrigerator User Instructions,” 120 pages, published Sep. 5, 2015.
Cai et al., “Generation of Metal Nanoparticles by Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636.
Raszewski et al., “Methods for Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages.
BASF, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015.
BASF, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015.
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer--Balindur+The+new+VIP+fixation+technology-English.pdf, Dec. 21, 2014.
Related Publications (1)
Number Date Country
20180100684 A1 Apr 2018 US
Divisions (2)
Number Date Country
Parent 15276104 Sep 2016 US
Child 15840710 US
Parent 14634946 Mar 2015 US
Child 15276104 US