This subject matter of this application relates generally to methods and apparatuses, including computer program products, for three-dimensional (3D) vision processing using an IP block (also called an IP core).
Vision processing has traditionally been done using a central processing unit (CPU), a graphics processing unit (GPU), or combination of both units as integrated into a computing device, such as a personal computer or server computing device. In some cases, a field-programmable gate array (FPGA) has been used in conjunction with the CPU and/or GPU to assist with the vision processing, especially when the processing is only needed for a short timeframe. A FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing. The FPGA configuration is generally specified using a hardware description language (HDL). Some specific processing functions such as red-eye removal or color correction processing have been made into a custom image processing unit but such units are typically limited to one or two specific functions.
In some cases, an intellectual property (IP) block is used as part of the circuit design. An IP block, also known as an IP core or a semiconductor IP core, is a reusable unit of logic, cell or integrated circuit layout design that is the intellectual property of one party. IP blocks can be licensed to another party for use in a circuit, or IP blocks can be owned and used by a single party alone. The term is derived from the licensing of the patent and/or source code copyright that exists in the circuit design. IP blocks can be used as building blocks within FPGA logic designs or application-specific integrated circuit (ASIC) designs. An ASIC is an integrated circuit (IC) customized for a particular use, rather than intended for general-purpose use. For example, a chip that is designed to handle Ethernet physical layer communication, is an ASIC.
Even both ASICs and FPGAs use hardware description languages, such as VHDL (Very High Speed Integrated Circuit Hardware Description Language), Verilog or System Verilog, to develop, there are still a lot of differences between these two.
A traditional solution is for a camera to capture image data and transmit the data to vision processing software (e.g., OpenCV) stored on a computing device (e.g., computer). The vision processing software performs certain vision processing algorithms (e.g., Canny edge detection algorithm) on the data through use of a CPU/GPU in the computer.
These traditional approaches have worked fairly well for two-dimensional (2D) processing. However, with new vision processing applications such as augmented reality, measurement, and gesture recognition that can work with popular 3D sensors, e.g., from PrimeSense or Leap Motion, there is a need for 3D processing in real-time—which has not been realized in a satisfactory manner by traditional platforms.
As an example, MICROSOFT® KINECT®, available from Microsoft Corp. of Redmond, Wash., or similar motion sensing input and image capture devices use a custom hardware chip, programmed with specific vision processing algorithms, in order to process 3D data in real-time. Without such silicon-based algorithm processing, it would not be possible to provide real-time 3D processing which can then be used in a large number of applications.
The problem becomes even more acute when trying to implement vision processing applications in mobile or embedded devices, such as smart phones, tablet computers, small Linux devices, and the like. Generally, these devices have limited battery life, processing capability, and memory capacity. Hence, it is not practical to expect mobile and embedded devices to be able to process 3D vision algorithms in any satisfactory manner when real-time processing is required.
For example, power consumption is high for vision processing because most vision processing algorithms and processing units are computing intensive and use a lot of megaflops for the algorithm processing. Also, a lot of memory is needed to store data for vision processing, especially if the data is coming directly from a camera and is getting stored in the system memory. Raw data stream from such camera(s) can be as much as 200 Mbits/sec when converted to 3D data points. Further, most of these devices have processor cores based on the ARM architecture (e.g., developed by ARM Holdings, plc of Cambridge, England)—or something similar—which have a fraction of the processing capability of, e.g., high-end processors available from Intel Corp. of Santa Clara, Calif. that are used in laptops and desktops. However, high-end CPU processors lead to high power consumption, and shorten the battery life in mobile or embedded devices.
Therefore, what is needed is an IP block hardware/logic design—typically implemented on an integrated circuit (e.g., semiconductor chip)—to be coupled between a camera and either a vision processing module executing on a computing device (e.g., a server) or a System on a Chip (SoC) (e.g., as used in mobile devices), where the IP block performs specific vision processing calculations and algorithms for the device to which the IP block is connected or embedded. As it is difficult to put all possible vision processing algorithms into a single IP block, the architecture and functionality of the IP block described herein includes selecting commonly-used computational equations that are used in vision processing and building those equations into the IP block as standard, programmed functions. The vision processing or other application software that interfaces with the IP block logic/hardware thus does not have to know the details of how the vision processing algorithms are implemented but can use the IP block to perform certain functions efficiently and rapidly. Exemplary computational capabilities of the IP block are described herein.
The architecture and implementation of the IP block described herein has several advantages over traditional approaches involving a CPU/GPU:
The invention, in one aspect, features a system for 3D vision processing. The system comprises a sensor device, a processor, a memory module, a network interface, and a vision processing module comprising an integrated circuit that performs one or more 3D vision processing algorithms and a plurality of controllers that couple the integrated circuit to each of: the sensor device, the processor, the memory module, and the network interface. The vision processing module receives image data from the sensor device, the image data corresponding to one or more images captured by the sensor device. The vision processing module executes one or more of the 3D vision processing algorithms using at least a portion of the image data as input. The vision processing module transmits an output from execution of one or more of the 3D vision processing algorithms to at least one of: the processor, the memory module, or the network interface.
The above aspect can include one or more of the following features. In some embodiments, the vision processing module comprises a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). In some embodiments, the 3D vision processing algorithms comprise simultaneous localization and mapping (SLAM) algorithms.
In some embodiments, the SLAM algorithms comprise a Build Pyramid function, a Key Point Detection function, and a Feature Calculation function. In some embodiments, for the Build Pyramid function, the vision processing module receives color and depth data and a timestamp associated with the color and depth data from the sensor device, generates a gray map comprising a plurality of levels, using the color and depth data and the timestamp, resizes the gray map, smooths a first level of the plurality of levels of the resized gray map, and determines whether to smooth all of the plurality of resized levels or to resize the smoothed first level. In some embodiments, for the Key Point Detection function, the vision processing module executes a features from accelerated segment test (FAST) corner detection algorithm with non-maxima suppression on the resized gray map to detect one or more key points in the resized gray map, and determines whether one or more key points have been detected in each of the plurality of levels in the resized gray map. In some embodiments, for the Feature Calculation function, the vision processing module performs moment calculation on each detected key point to generate M01 and M10 values for the key point, calculates a magnitude value for each key point using the corresponding M01 and M10 values, rotates trained pattern coordinates for each key point based upon the M01 and M10 values and the magnitude for the corresponding key point, and calculates final ORB values using the rotated trained pattern coordinates.
In some embodiments, the vision processing module transmits the final ORB value, the M01 value, the M10 value, and the magnitude value of each key point to the processor, and the processor generates an intensity angle for the corresponding key point based upon the magnitude value, the M01 value and the M10 value of the key point. In some embodiments, the vision processing module comprises one instance of each of the Build Pyramid function, the Key Point Detection function, and the Feature Calculation function. In some embodiments, the vision processing module comprises a plurality of instances of each of the Build Pyramid function, the Key Point Detection function, and the Feature Calculation function.
In some embodiments, the processor, the memory module, the sensor device and the vision processing module are embedded in a System-on-Chip (SoC). In some embodiments, the SoC is embedded in a mobile computing device. In some embodiments, the processor, the memory module, the sensor device and the vision processing module are coupled to each other via a system bus. In some embodiments, the network interface couples the vision processing module to a remote computing device. In some embodiments, at least a portion of one or more of the 3D vision processing algorithms is executed by the processor in coordination with the vision processing module. In some embodiments, the sensor device is a camera.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating the principles of the invention by way of example only.
The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Certain embodiments of the systems and methods described in this application utilize:
Each of the above-referenced patents and patent applications is incorporated by reference herein in its entirety. In addition, the methods and systems described herein can utilize the 3D vision processing core and related technology as described in U.S. Pat. No. 8,995,756, titled “3D Vision Processing” and incorporated herein by reference.
In some embodiments described herein, the IP block is designed to implement Simultaneous Localization and Mapping (SLAM) processing algorithms. In traditional SLAM implementations, a CPU executes four major threads—Inertial Measurement Unit (IMU), Tracking, Mapping, and Loop closure. As shown in
Generally, the IP block 206 takes input from the sensor device 216, processes the input using one or more vision processing algorithms programmed or designed into the IP block, sends corresponding output to the Ethernet user 220, and reads to/writes from the external memory 218. In some embodiments, a portion of the functionality programmed into the IP block 206 can be implemented in a CPU or other processing module coupled to the SoC to increase the efficiency and speed of the vision processing. As a result, the IP block 206 can be configured to include different interfaces to handle all of these functions. Depending on the target device, the IP block 206 may need fewer or more interfaces. For example, in certain SoC designs, all external interfaces (e.g., interfaces 208, 210, 212) can be handled by a CPU or other processing module coupled to the SoC, and the IP block 206 can require just one interface to communicate with the CPU.
In a non-SoC design, the IP block 304 is configured with different interfaces 306, 308, 310, 312 to communicate with the sensor device, external memory, CPU, Ethernet port, and the like. Moreover, different FPGA vendors have different interfaces, such as AXI from Xilinx, Inc. and ASI (Asynchronous Serial Interface) from Intel Corp. In such embodiments, the IP block does not directly handle any specific interface. Instead, the IP block wrapper 302 is implemented to handle these interfaces depending on the target device. In these embodiments (such as the one shown in
In some embodiments, it may be necessary to partition certain SLAM functions—such that some SLAM functions are part of an IP block, while other SLAM functions are performed by a processor or other module that is outside the IP block. For example, compared to a CPU, FPGAs are typically not good at performing complicated algorithms, such as floating-point calculations, trigonometric functions, logarithm functions, and the like. This does not mean that a FPGA cannot perform them, but performing them is generally harder and more costly in FPGAs than in CPUs. Therefore, in some embodiments, an IP block can comprise the Build Pyramid, Key Point Detection and a portion of the Feature Calculation functions (see
For the embodiments that have Build Pyramid, Key Point Detection and a part of Feature Calculation in the IP block, the input of the IP block is the Gray Map (from the sensor device) and the output of the IP block is the Key Points, which contain row, column and score, and M01, M10 values of Key Points (which are for calculating intensity angles), and ORB values where each value contains 256-bit data. It should be appreciated that FPGAs do not need to stick with a fixed data width, such as 16 bits or 32 bits. Instead, FPGAs can have any data width, such as 9 bits or 17 bits. However, because FPGAs need to work with the CPU, the data width between the FPGA and the CPU has to be well defined. Internally, the FPGA can use any optimized data width based on the target device. For example, Xilinx 7 series has a built-in 25×18 multiplier and Intel Stratix 10 has a built-in 18×19 multiplier. It should be noted that generally 19×19 multiplication should not be used in either device.
For
For
The IP block in
The above-described techniques can be implemented in digital and/or analog electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The implementation can be as a computer program product, i.e., a computer program tangibly embodied in a machine-readable storage device, for execution by, or to control the operation of, a data processing apparatus, e.g., a programmable processor, a computer, and/or multiple computers. A computer program can be written in any form of computer or programming language, including source code, compiled code, interpreted code and/or machine code, and the computer program can be deployed in any form, including as a stand-alone program or as a subroutine, element, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one or more sites.
Method steps can be performed by one or more specialized processors executing a computer program to perform functions by operating on input data and/or generating output data. Method steps can also be performed by, and an apparatus can be implemented as, special purpose logic circuitry, e.g., a FPGA (field programmable gate array), a FPAA (field-programmable analog array), a CPLD (complex programmable logic device), a PSoC (Programmable System-on-Chip), ASIP (application-specific instruction-set processor), or an ASIC (application-specific integrated circuit), or the like. Subroutines can refer to portions of the stored computer program and/or the processor, and/or the special circuitry that implement one or more functions.
Processors suitable for the execution of a computer program include, by way of example, special purpose microprocessors. Generally, a processor receives instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and/or data. Memory devices, such as a cache, can be used to temporarily store data. Memory devices can also be used for long-term data storage. Generally, a computer also includes, or is operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. A computer can also be operatively coupled to a communications network in order to receive instructions and/or data from the network and/or to transfer instructions and/or data to the network. Computer-readable storage mediums suitable for embodying computer program instructions and data include all forms of volatile and non-volatile memory, including by way of example semiconductor memory devices, e.g., DRAM, SRAM, EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and optical disks, e.g., CD, DVD, HD-DVD, and Blu-ray disks. The processor and the memory can be supplemented by and/or incorporated in special purpose logic circuitry.
To provide for interaction with a user, the above described techniques can be implemented on a computer in communication with a display device, e.g., a CRT (cathode ray tube), plasma, or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse, a trackball, a touchpad, or a motion sensor, by which the user can provide input to the computer (e.g., interact with a user interface element). Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, and/or tactile input.
The above described techniques can be implemented in a distributed computing system that includes a back-end component. The back-end component can, for example, be a data server, a middleware component, and/or an application server. The above described techniques can be implemented in a distributed computing system that includes a front-end component. The front-end component can, for example, be a client computer having a graphical user interface, a Web browser through which a user can interact with an example implementation, and/or other graphical user interfaces for a transmitting device. The above described techniques can be implemented in a distributed computing system that includes any combination of such back-end, middleware, or front-end components.
The components of the computing system can be interconnected by transmission medium, which can include any form or medium of digital or analog data communication (e.g., a communication network). Transmission medium can include one or more packet-based networks and/or one or more circuit-based networks in any configuration. Packet-based networks can include, for example, the Internet, a carrier internet protocol (IP) network (e.g., local area network (LAN), wide area network (WAN), campus area network (CAN), metropolitan area network (MAN), home area network (HAN)), a private IP network, an IP private branch exchange (IPBX), a wireless network (e.g., radio access network (RAN), Bluetooth, Wi-Fi, WiMAX, general packet radio service (GPRS) network, HiperLAN), and/or other packet-based networks. Circuit-based networks can include, for example, the public switched telephone network (PSTN), a legacy private branch exchange (PBX), a wireless network (e.g., RAN, code-division multiple access (CDMA) network, time division multiple access (TDMA) network, global system for mobile communications (GSM) network), and/or other circuit-based networks.
Information transfer over transmission medium can be based on one or more communication protocols. Communication protocols can include, for example, Ethernet protocol, Internet Protocol (IP), Voice over IP (VOIP), a Peer-to-Peer (P2P) protocol, Hypertext Transfer Protocol (HTTP), Session Initiation Protocol (SIP), H.323, Media Gateway Control Protocol (MGCP), Signaling System #7 (SS7), a Global System for Mobile Communications (GSM) protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, Universal Mobile Telecommunications System (UMTS), 3GPP Long Term Evolution (LTE) and/or other communication protocols.
Devices of the computing system can include, for example, a computer, a computer with a browser device, a telephone, an IP phone, a mobile device (e.g., cellular phone, personal digital assistant (PDA) device, smart phone, tablet, laptop computer, electronic mail device), and/or other communication devices. The browser device includes, for example, a computer (e.g., desktop computer and/or laptop computer) with a World Wide Web browser (e.g., Chrome™ from Google, Inc., Microsoft® Internet Explorer® available from Microsoft Corporation, and/or Mozilla® Firefox available from Mozilla Corporation). Mobile computing device include, for example, a Blackberry® from Research in Motion, an iPhone® from Apple Corporation, and/or an Android™-based device. IP phones include, for example, a Cisco® Unified IP Phone 7985G and/or a Cisco® Unified Wireless Phone 7920 available from Cisco Systems, Inc.
Comprise, include, and/or plural forms of each are open ended and include the listed parts and can include additional parts that are not listed. And/or is open ended and includes one or more of the listed parts and combinations of the listed parts.
One skilled in the art will realize the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein.
This application claims priority to U.S. Provisional Patent Application No. 62/645,752, filed on Mar. 20, 2018, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6259815 | Anderson et al. | Jul 2001 | B1 |
6275235 | Morgan, III | Aug 2001 | B1 |
6525722 | Deering | Feb 2003 | B1 |
6525725 | Deering | Feb 2003 | B1 |
7248257 | Elber | Jul 2007 | B2 |
7420555 | Lee | Sep 2008 | B1 |
7657081 | Blais et al. | Feb 2010 | B2 |
8542233 | Brown | Sep 2013 | B2 |
8766979 | Lee et al. | Jul 2014 | B2 |
8995756 | Lee et al. | Mar 2015 | B2 |
9041711 | Hsu | May 2015 | B1 |
9171402 | Allen et al. | Oct 2015 | B1 |
9438879 | Newton | Sep 2016 | B2 |
9607388 | Lin et al. | May 2017 | B2 |
9710960 | Hou | Jul 2017 | B2 |
20050068317 | Amakai | Mar 2005 | A1 |
20050253924 | Mashitani | Nov 2005 | A1 |
20060050952 | Blais et al. | Mar 2006 | A1 |
20060170695 | Zhou et al. | Aug 2006 | A1 |
20070075997 | Rohaly et al. | Apr 2007 | A1 |
20080180448 | Anguelov et al. | Jul 2008 | A1 |
20100209013 | Minear et al. | Aug 2010 | A1 |
20100302247 | Perez et al. | Dec 2010 | A1 |
20110052043 | Hyung et al. | Mar 2011 | A1 |
20110074929 | Hebert et al. | Mar 2011 | A1 |
20120056800 | Williams et al. | Mar 2012 | A1 |
20120063672 | Gordon et al. | Mar 2012 | A1 |
20120098937 | Sajadi et al. | Apr 2012 | A1 |
20120130762 | Gale et al. | May 2012 | A1 |
20120194516 | Newcombe et al. | Aug 2012 | A1 |
20120306876 | Shotton et al. | Dec 2012 | A1 |
20130069940 | Sun et al. | Mar 2013 | A1 |
20130123801 | Umasuthan et al. | May 2013 | A1 |
20130156262 | Taguchi et al. | Jun 2013 | A1 |
20130208955 | Zhao et al. | Aug 2013 | A1 |
20140160115 | Keitler et al. | Jun 2014 | A1 |
20140176677 | Valkenburg et al. | Jun 2014 | A1 |
20140206443 | Sharp et al. | Jul 2014 | A1 |
20140241617 | Shotton et al. | Aug 2014 | A1 |
20140321702 | Schmalstieg | Oct 2014 | A1 |
20150009214 | Lee et al. | Jan 2015 | A1 |
20150142394 | Mehr et al. | May 2015 | A1 |
20150213572 | Loss | Jul 2015 | A1 |
20150262405 | Black et al. | Sep 2015 | A1 |
20150269715 | Jeong et al. | Sep 2015 | A1 |
20150279118 | Dou et al. | Oct 2015 | A1 |
20150325044 | Lebovitz | Nov 2015 | A1 |
20150371440 | Pirchheim et al. | Dec 2015 | A1 |
20160071318 | Lee et al. | Mar 2016 | A1 |
20160171765 | Mehr | Jun 2016 | A1 |
20160173842 | De La Cruz et al. | Jun 2016 | A1 |
20160239976 | Fathi | Aug 2016 | A1 |
20160358382 | Lee et al. | Dec 2016 | A1 |
20170053447 | Chen et al. | Feb 2017 | A1 |
20170054954 | Keitler et al. | Feb 2017 | A1 |
20170221263 | Wei et al. | Aug 2017 | A1 |
20170243397 | Hou et al. | Aug 2017 | A1 |
20170278293 | Hsu | Sep 2017 | A1 |
20170316597 | Ceylan et al. | Nov 2017 | A1 |
20170337726 | Bui et al. | Nov 2017 | A1 |
20180005015 | Hou et al. | Jan 2018 | A1 |
20180025529 | Wu et al. | Jan 2018 | A1 |
20180114363 | Rosenbaum | Apr 2018 | A1 |
20180144535 | Ford et al. | May 2018 | A1 |
20190068940 | Beardsley | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
1308902 | May 2003 | EP |
10-1054736 | Aug 2011 | KR |
10-2011-0116671 | Oct 2011 | KR |
2006027339 | Mar 2006 | WO |
Entry |
---|
Rossignac, J. et al., “3D Compression Made Simple: Edgebreaker on a Corner-Table,” Invited lecture at the Shape Modeling International Conference, Genoa, Italy (Jan. 30, 2001), pp. 1-6. |
Melax, S., “A Simple, Fast, and Effective Polygon Reduction Algorithm,” Game Developer, Nov. 1998, pp. 44-49. |
Myronenko, A. et al., “Point Set Registration: Coherent Point Drift,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, No. 12, Dec. 2010, pp. 2262-2275. |
Bookstein, F., “Principal Warps: Thin-Plate Splines and the Decomposition of Deformations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, No. 6, Jun. 1989, pp. 567-585. |
Izadi, S. et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera,” UIST '11, Oct. 16-19, 2011, 10 pages. |
Papazov, C. et al., “An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes,” presented at Computer Vision—ACCV 2010—10th Asian Conference on Computer Vision, Queenstown, New Zealand, Nov. 8-12, 2010, 14 pages. |
Biegelbauer, Georg et al., “Model-based 3D object detection—Efficient approach using superquadrics,” Machine Vision and Applications, Jun. 2010, vol. 21, Issue 4, pp. 497-516. |
Kanezaki, Asako et al., “High-speed 3D Object Recognition Using Additive Features in a Linear Subspace,” 2010 IEEE International Conference on Robotics and Automation, Anchorage Convention District, May 3-8, 2010, pp. 3128-3134. |
International Search Report and Written Opinion from PCT patent application No. PCT/US13/062292, dated Jan. 28, 2014, 10 pages. |
International Search Report and Written Opinion from PCT patent application No. PCT/US14/045591, dated Nov. 5, 2014, 9 pages. |
Sumner, R. et al., “Embedded Deformation for Shape Manipulation,” Applied Geometry Group, ETH Zurich, SIGGRAPH 2007, 7 pages. |
Rosten, Edward, et al., “Faster and better: a machine learning approach to corner detection,” arXiv:08102.2434v1 [cs.CV], Oct. 14, 2008, available at https://arxiv.org/pdf/0810.2434.pdf, 35 pages. |
Kim, Young Min, et al., “Guided Real-Time Scanning of Indoor Objects,” Computer Graphics Forum, vol. 32, No. 7 (2013), 10 pages. |
Rusinkewicz, Szymon, et al., “Real-time 3D model acquisition,” ACM Transactions on Graphics (TOG) 21.3 (2002), pp. 438-446. |
European Search Report from European patent application No. EP 15839160, dated Feb. 19, 2018, 8 pages. |
Liu Song, et al. “Creating Simplified 3D Models with High Quality Textures,” arXiv:1602.06645v1 [cs.GR], Feb. 22, 2016, 9 pages. |
Stoll, C., et al., “Template Deformation for Point Cloud Filtering,” Eurographics Symposium on Point-Based Graphics (2006), 9 pages. |
Allen, Brett, et al., “The space of human body shapes: reconstruction and parameterization from range scans,” ACM Transactions on Graphics (TOG), vol. 22, Issue 3, Jul. 2003, pp. 587-594. |
International Search Report and Written Opinion from PCT patent application No. PCT/US15/49175, dated Feb. 19, 2016, 14 pages. |
Harris, Chris & Mike Stephens, “A Combined Corner and Edge Detector,” Plessey Research Rake Manor, U.K. (1988), pp. 147-151. |
Bay, Herbert, et al., “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding 110 (2008), pp. 346-359. |
Rublee, Ethan, et al., “ORB: an efficient alternative to SIFT or SURF,” Willow Garage, Menlo Park, CA (2011), available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.4395&rep=rep1&type=pdf, 8 pages. |
Lowe, David G., “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, Issue 2, Nov. 2004, pp. 91-110. |
Kaess, Michael, et al., “iSAM: Incremental Smoothing and Mapping,” IEEE Transactions on Robotics, Manuscript, Sep. 7, 2008, 14 pages. |
Kummerle, Rainer, et al., “g2o: A General Framework for Graph Optimization,” 2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai, China, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20190294903 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62645752 | Mar 2018 | US |