This application claims benefit of priority to EP 08 170 153.4-2108, filed on Nov. 27, 2008, which is incorporated herein by reference in its entirety.
The present invention primarily concerns certain 4-alkyl pyridines of the following formula (I), odiferous substance mixtures and aromatic substance mixtures containing these 4-alkyl pyridines, the respective uses thereof as an odiferous or aromatic substance (mixture) and corresponding perfumed products.
4-C8-C12-alkyl pyridines to be used according to the invention correspond to formula (I):
wherein
R is a branched or unbranched alkyl residue with 8 to 12 C-atoms.
R is preferably an unbranched alkyl residue with 8 to 12 C-atoms, i.e. according to the invention 4-n-C8-C12-alkyl pyridines are preferred.
In the perfume industry there is a general need for marine odiferous substances, since consumers are constantly demanding new and modern scents with watery-fresh fragrance notes. Odiferous substances with marine fragrance notes are used in large quantities and countless variations in perfumes, odiferous substance mixtures (perfume compositions) and scents for the most varied of application areas. Because of the increasing demand from consumers for new, modern fragrance notes, there is a constant need within the perfume industry for fragrances which bring about new effects in perfumes and in this way allow new fashion trends to be created. Compounds with watery-fresh fragrance notes have always been important and sought-after components in the fragrance industry. Consequently today marine odiferous substances are used in many perfume compositions.
The marine olfactory note of numerous perfume compositions is based on 7-methyl-2H-1,5-benzodioxepin-3(4H)-one (Calone 1951®). This classic marine odiferous substance is described in U.S. Pat. No. 3,517,031.
A further classic marine odiferous substance is 4-(4,8-dimethyl-3,7-nonadienyl)-pyridine (Maritima®) which is described in U.S. Pat. No. 3,669,908 and DE 2043585.
For the creation of novel modern perfume compositions there is a constant need for marine odiferous substances with special olfactory characteristics which are suitable for use as the basis for the composition of novel, modern perfumes with a complex marine character. Apart from the typical odor of the sea, the marine odiferous substances sought should exhibit further notes and aspects lending them an olfactory character and complexity.
The search for suitable marine odiferous substances, which led to the present invention, was hampered by the following issues:
The success of the search for suitable marine odiferous substances is therefore highly dependent upon the intuition of the person doing the searching.
The task for the present invention was therefore to find marine fragrances with novel olfactory characteristics, able to lend odiferous substance compositions particular olfactory notes and aspects.
It has now surprisingly been discovered that 4-C8-C12-alkyl pyridines, preferably the corresponding 4-n-alkyl pyridines, here in particular 4-decyl pyridine, are suitable for performing the task set.
Inter alia in U.S. Pat. No. 3,171,839—as an antibiotic—or Recueil des Travaux Chimiques des Pays-Bas et de la Belgique, 1953, 72, 513-521, the production of 4-decyl pyridine is described. Furthermore, 4-n-decyl pyridine is commercially available, e.g. under product number 1904 from the Parish Chemical Company, Orem, Utah, USA (www.parishchemical.com, see CAS Number 1815-99-2).
Concerning the olfactory characteristics of n-alkyl pyridines in Helv. Chim. Act. 2007, 90, 1245 it was commented that some of these substances “[ . . . ] can have a watery profile, but this family is more reminiscent of stagnant water, sometimes with a negative connotation of wet dog”.
A number of regioisomeric 3-n-alkyl pyridines with a chain length of up to eight carbon atoms have been described in U.S. Pat. No. 5,298,486 and EP 0 470 391 and in Perfumer & Flavorist, 1994, Vol. 19, March/April 19-27: thus the sensorial pro-file of 3-n-octyl pyridine has been described as “fruity, juicy, seafood”.
4-heptyl pyridine has been isolated as a component in orange oil (J. Agric. Food Chem. 1992, 40, 2236-2243), but nothing is said there about its olfactory characteristics.
In Annales de Chimie, 1944, 19, 487-521 on page 509 it is commented that starting with 4-tridecyl pyridine all higher homologues of 4-n-alkyl pyridine have a “pleasant odor”.
4-n-tetradecyl pyridine, 4-n-hexadecyl pyridine and 4-n-octadecyl pyridine are described in Eur. J. Org. Chem. 2004, 835-849 as “very unpleasant smelling” substances.
In summary, it can be said that the olfactory characteristics of 4-C8-C12-alkyl pyridines, in particular the 4-n-C8-C12-alkyl pyridines, particularly the 4-C10-alkyl pyridines, and here in turn especially 4-n-decyl pyridine, and the use and effects of these in odiferous substance mixtures have thus far been unknown.
Surprisingly, it now transpires that the 4-C8-C12-alkyl pyridines, here in particular the 4-n-C8-C12-alkyl pyridines, to be used according to the invention, have a very distinct olfactory profile, which is notably different from 7-methyl-2H-1,5-benzodioxepin-3(4H)-one (Calone 1951®) and 4-(4,8-dimethyl-3,7-nonadienyl)-pyridine (Maritima®).
The 4-C8-C12-alkyl pyridines to be used according to the invention, here in particular the 4-n-C8-C12-alkyl pyridines, according to the chain length, have a superior intensity and diffusivity (“olfactory perception across the room”), which in combination with the olfactory characteristics is completely unique.
The olfactory descriptions of the individual compounds are as follows:
very intensive marine (watery) odor with an ozone note. Slightly butyrate aspects and the impression of seaweed. The ozone notes in particular, in combination with the aldehyde and ozone characteristics also remain dominant in the after-odor.
distinctive odor of the sea; in all phases of the scent process, strong, impressive marine (watery) note, which alters its character very little. Reminiscent of the odor of algae, slight hazelnut aspects. Enormously powerful and diffusive.
of all the substances described here, 4-n-decyl pyridine is the strongest fragrance. It is characterised in particular by the valuable marine character prized and sought after by perfumists, which as the heart note dominates the focal point of the scent development. Further accompanying notes such as ozone, buttery diacetyl aspects and echoes of orange peel can be recorded.
marine character, combining an aldehyde-like note with slight echoes of mandarin. Very intensively watery and linear. Marine-floral scent with hints of ozone and fatty aldehydes.
Marine (watery) note, reminiscent of seaweed. Fresh, ozone-like, but not as intensive as, for example, 4-n-decyl pyridine. Citric aspects are combined with a nutty-dusty note.
In mixtures with other odiferous substances 4-n-alkyl pyridines and in particular the 4-n-decyl pyridine according to the invention are also able in small doses to strengthen the intensity of an odiferous substance mixture and to round off the general olfactory perception of the odiferous substance mixture and lend the mixture greater radiance and freshness as well as naturalness.
In summary therefore the following compounds and mixtures according to the invention have a surprising olfactory quality:
An aspect of the invention closely related to that discussed above concerns the use of 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, or an odiferous or aromatic substance mixture (as characterised above) containing 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, as a marine odiferous or aromatic substance or as a marine odiferous or aromatic substance mixture.
In a corresponding method according to the invention to convey, intensify or modify a marine odor, a sensorially active quantity of 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, or an odiferous or aromatic substance mixture containing 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, is brought into contact or mixed with a product.
According to the invention, therefore, aromatic substance mixtures and odiferous substance mixtures (perfume oils) are provided, which contain one or more 4-C8-C12-alkyl pyridine(s) and one or more further odiferous or aromatic substance(s). Here the 4-C8-C12-alkyl pyridines are preferably 4-n-C8-C12-alkyl pyridines. Particular preference is for the 4-C8-C12-alkyl pyridines selected from the group comprising 4-n-octyl pyridine, 4-n-nonyl pyridine, 4-n-decyl pyridine, 4-n-undecyl pyridine, 4-n-dodecyl pyridine and mixtures of one or more of these substances. Particular preference as 4-C8-C12-alkyl pyridines are mixtures containing 4-n-decyl pyridine on its own or with one or more further 4-C8-C12-alkyl pyridine(s), preferably one or more further 4-n-C8-C12-alkyl pyridine(s). The aromatic and odiferous substance mixtures according to the invention allow the abovementioned advantages to be achieved and in particular mixtures with a valuable marine odor or watery character to be provided.
The 4-C8-C12-alkyl pyridines also bring about their advantageous effects in products containing these substances. According to the invention, therefore, aromatized or perfumed products are also provided, containing an aromatic or odiferous substance mixture (perfume oil) according to the invention, as described above. Expediently here at least one of the 4-C8-C12-alkyl pyridines is present in a sensorially sufficient quantity to generate the inventively advantageous olfactory impression of the respective substance. In particular, it is expedient if the one or more 4-C8-C12-alkyl pyridine(s) is (are) present in a sufficient quantity to bring about a watery odor.
A sensorially sufficient quantity to bring about an olfactory impression can easily be determined by a person skilled in the art in view of the other components of the product by a panel of eight testers free from anosmia in relation to the respective 4-C8-C12-alkyl pyridine, in which a corresponding specimen of the product with differing concentrations of 4-C8-C12-alkyl pyridines is tested three times by each member of the panel at ambient temperature for the presence of the desired sensorial characteristic in each case. The minimum concentration is arrived at when at least four members of the panel testify to the presence of the desired sensorial characteristic. Such panel tests will be familiar to perfumists and flavorists and are used in a routine and standard way.
The product to be provided according to the invention (in particular a perfumed product according to the invention) preferably contains at least one 4-n-C8-C12-alkyl pyridine and particularly preferably 4-n-decyl pyridine on its own or together with one or more further 4-C8-C12-alkyl pyridine(s), in particular 4-n-C8-C12-alkyl pyridines. Preferred concentrations and further odiferous substances are described in yet more detail below.
U.S. Pat. No. 3,171,839 describes the production of a number of 4-alkyl pyridines (expressly 4-C10- and 4-C11-alkyl pyridine) from 4-picoline (4-methylpyridine) and the hydrogenation of these 4-alkyl pyridines in ethanol to form the corresponding 4-alkyl piperidines. Such synthetic mixtures are not aromatic or odiferous substance mixtures in the sense of the present invention.
Aromatic or odiferous substance mixtures according to the invention containing (i) the 4-C8-C12-alkyl pyridines to be used according to the invention and (ii) 4-picoline are not preferred.
Aromatic or odiferous substance mixtures according to the invention containing (i) the 4-C8-C12-alkyl pyridines to be used according to the invention and (ii) the 4-alkyl piperidines obtainable by means of hydrogenation are likewise not preferred.
The theory according to the invention also covers the use of one or more 4-C8-C12-alkyl pyridine(s), in particular one or more 4-n-C8-C12-alkyl pyridines to
Particularly preferred for the stated purposes is 4-n-decyl pyridine and the aromatic and odiferous substance mixtures according to the invention described above containing 4-n-decyl pyridine.
Accordingly a method is also indicated according to the invention to
comprising the bringing into contact, preferably mixing of one or more 4-C8-C12-alkyl pyridine(s), preferably 4-n-C8-C12-alkyl pyridines, in a sensorially active quantity with a product.
Odiferous and aromatic substance compositions according to the invention, in particular perfume oils, contain preferably two, three, four, five, six, seven, eight, nine, ten or more odiferous substances, preferably selected from the substances mentioned below:
General substances as mentioned in Steffen Arctander, Perfume and Flavor Chemicals, published by the author, Montclair, N.J. 1969; H. Surburg, J. Panten, Common Fragrance and Flavor Materials, 5th Edition, Wiley-VCH, Weinheim 2006.
Odiferous substances that can be combined with 4-C8-C12-alkyl pyridines and in particular 4-n-C8-C12-alkyl pyridines are as follows:
extracts from natural raw materials such as essential oils, concretes, absolutes, resins, resinoids, balsams, tinctures such as for example ambergris tincture; amyris oil; angelica seed oil; angelica root oil; aniseed oil; valerian oil; basil oil; tree moss absolute; bay oil; armoise oil; benzoe resinoid; bergamot oil; beeswax absolute; birch tar oil; bitter almond oil; savory oil; buchu leaf oil; cabreuva oil; cade oil; calamus oil; camphor oil; cananga oil; cardamom oil; cascarilla oil; cassia oil; cassie absolute; castoreum absolute; cedar leaf oil; cedar wood oil; cistus oil; citronella oil; lemon oil; copaiba balsam; copaiba balsam oil; coriander oil; costus root oil; cumin oil; cypress oil; davana oil; dill weed oil; dill seed oil; eau de brouts absolute; oak moss absolute; elemi oil; estragon oil; eucalyptus citriodora oil; eucalyptus oil; fennel oil; fir needle oil; galbanum oil; galbanum resin; geranium oil; grapefruit oil; guaiacwood oil; gurjun balsam; gurjun balsam oil; helichrysum absolute; helichrysum oil; ginger oil; iris root absolute; iris root oil; jasmine absolute; calamus oil; blue camomile oil; Roman camomile oil; carrot seed oil; cascarilla oil; pine needle oil; spearmint oil; caraway oil; labdanum oil; labdanum absolute; labdanum resin; lavandin absolute; lavandin oil; lavender absolute; lavender oil; lemon-grass oil; lovage oil; lime oil distilled; lime oil expressed; linaloe oil; Litsea cubeba oil; laurel leaf oil; mace oil; marjoram oil; mandarin oil; massoi (bark) oil; mimosa absolute; ambrette seed oil; musk tincture; clary sage oil; nutmeg oil; myrrh absolute; myrrh oil; myrtle oil; clove leaf oil; clove bud oil; neroli oil; olibanum absolute; olibanum oil; opopanax oil; orange flower absolute; orange oil; origanum oil; palmarosa oil; patchouli oil; perilla oil; Peru balsam oil; parsley leaf oil; parsley seed oil; petitgrain oil; peppermint oil; pepper oil; pimento oil; pine oil; pennyroyal oil; rose absolute; rosewood oil; rose oil; rosemary oil; Dalmatian sage oil; Spanish sage oil; sandalwood oil; celery seed oil; spike-lavender oil; star anise oil; storax oil; tagetes oil; fir needle oil; tea tree oil; turpentine oil; thyme oil; Tolu balsam; tonka bean absolute; tuberose absolute; vanilla extract; violet leaf absolute; verbena oil; vetiver oil; juniperberry oil; wine lees oil; wormwood oil; wintergreen oil; ylang-ylang oil; hyssop oil; civet absolute; cinnamon leaf oil; cinnamon bark oil; and fractions thereof or ingredients isolated therefrom;
individual fragrances from the group comprising hydrocarbons, such as for example 3-carene; alpha-pinene; beta-pinene; alpha-terpinene; gamma-terpinene; p-cymene; bisabolene; camphene; caryophyllene; cedrene; farnesene; limonene; longifolene; myrcene; ocimene; valencene; (E,Z)-1,3,5-undecatriene;
from the group comprising aliphatic alcohols, such as for example hexanol; octanol; 3-octanol; 2,6-dimethylheptanol; 2-methylheptanol, 2-methyloctanol; (E)-2-hexenol; (E)-and (Z)-3-hexenol; 1-octen-3-ol; a mixture of 3,4,5,6,6-pentamethyl-3/4-hepten-2-ol and 3,5,6,6-tetramethyl-4-methyleneheptan-2-ol; (E,Z)-2,6-nonadienol; 3,7-dimethyl-7-methoxyoctan-2-ol; 9-decenol; 10-undecenol; 4-methyl-3-decen-5-ol;
from the group comprising aliphatic aldehydes and their acetals such as for example hexanal; heptanal; octanal; nonanal; decanal; undecanal; dodecanal; tridecanal; 2-methyloctanal; 2-methylnonanal; (E)-2-hexenal; (Z)-4-heptenal; 2,6-dimethyl-5-heptenal; 10-undecenal; (E)-4-decenal; 2-dodecenal; 2,6,10-trimethyl-5,9-undecadienal; heptanal-diethylacetal; 1,1-dimethoxy-2,2,5-trimethyl-4-hexene; citronellyl oxyace-aldehyde;
from the group comprising aliphatic ketones and oximes thereof, such as for example 2-heptanone; 2-octanone; 3-octanone; 2-nonanone; 5-methyl-3-heptanone; 5-methyl-3-heptanone oxime; 2,4,4,7-tetramethyl-6-octen-3-one;
from the group comprising aliphatic sulfur-containing compounds, such as for example 3-methylthiohexanol; 3-methylthiohexyl acetate; 3-mercaptohexanol; 3-mercaptohexyl acetate; 3-mercaptohexyl butyrate; 3-acetylthiohexyl acetate; 1-menthene-8-thiol;
from the group comprising aliphatic nitriles, such as for example 2-nonenenitrile; 2-tridecenenitrile; 2,12-tridecadienenitrile; 3,7-dimethyl-2,6-octadienenitrile; 3,7-dimethyl-6-octenenitrile;
from the group comprising aliphatic carboxylic acids and esters thereof, such as for example (E)-and (Z)-3-hexenylformate; ethyl acetoacetate; isoamyl acetate; hexyl acetate; 3,5,5-trimethylhexyl acetate; 3-methyl-2-butenyl acetate; (E)-2-hexenyl acetate; (E)- and (Z)-3-hexenyl acetate; octyl acetate; 3-octyl acetate; 1-octen-3-yl acetate; ethyl butyrate; butyl butyrate; isoamyl butyrate; hexyl butyrate; (E)-and (Z)-3-hexenyl isobutyrate; hexyl crotonate; ethyl isovalerate; ethyl-2-methyl pentanoate; ethyl hexanoate; allyl hexanoate; ethyl heptanoate; allyl heptanoate; ethyl octanoate; ethyl-(E,Z)-2,4-decadienoate; methyl-2-octinate; methyl-2-noninate; allyl-2-isoamyl oxyacetate; methyl-3,7-dimethyl-2,6-octadienoate;
from the group comprising acyclic terpene alcohols, such as, for example, citronellol; geraniol; nerol; linalool; lavandulol; nerolidol; farnesol; tetrahydrolinalool; tetrahydrogeraniol; 2,6-dimethyl-7-octen-2-ol; 2,6-dimethyloctan-2-ol; 2-methyl-6-methylene-7-octen-2-ol; 2,6-dimethyl-5,7-octadien-2-ol; 2,6-dimethyl-3,5-octadien-2-ol; 3,7-dimethyl-4,6-octadien-3-ol; 3,7-dimethyl-1,5,7-octatrien-3-ol 2,6-dimethyl-2,5,7-octatrien-1-ol; as well as formates, acetates, propionates, isobutyrates, butyrates, isovalerates, pentanoates, hexanoates, crotonates, tiglinates and 3-methyl-2-butenoates thereof;
from the group comprising acyclic terpene aldehydes and ketones, such as, for example, geranial; neral; citronellal; 7-hydroxy-3,7-dimethyloctanal; 7-methoxy-3,7-dimethyloctanal; 2,6,10-trimethyl-9-undecenal; geranylacetone; as well as the dimethyl and diethyl acetals of geranial, neral and 7-hydroxy-3,7-dimethyloctanal;
from the group comprising cyclic terpene alcohols, such as, for example, menthol; isopulegol; alpha-terpineol; terpinen-4; menthan-8-ol; menthan-1-ol; menthan-7-ol; borneol; isoborneol; linalool oxide; nopol; cedrol; ambrinol; vetiverol; guaiol; and the formates, acetates, propionates, isobutyrates, butyrates, isovalerates, pentanoates, hexanoates, crotonates, tiglinates and 3-methyl-2-butenoates thereof;
from the group comprising cyclic terpene aldehydes and ketones, such as, for example, menthone; isomenthone; 8-mercaptomenthan-3-one; carvone; camphor; fenchone; alpha-ionone; beta-ionone; alpha-n-methylionone; beta-n-methylionone; alpha-isomethylionone; beta-isomethylionone; alpha-irone; alpha-damascone; beta-damascone; beta-damascenone; gamma-damascone; delta-damascone; 1-(2,4,4-trimethyl-2-cyclohexen-1-yl)-2-buten-1-one; 1,3,4,6,7,8a-hexahydro-1,1,5,5-tetramethyl-2H-2,4-a-methanonaphthalen-8(5H)-one; nootkatone; dihydronootkatone; alpha-sinensal; beta-sinensal; acetylated cedarwood oil (methyl cedryl ketone);
from the group comprising cyclic alcohols, such as, for example, 4-tert.-butylcyclohexanol; 3,3,5-trimethylcyclohexanol; 3-isocamphylcyclohexanol; 2,6,9-trimethyl-(Z2,Z5,E9)-cyclododecatrien-1-ol; 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol;
from the group comprising cycloaliphatic alcohols, such as, for example, alpha,3,3-trimethylcyclo-hexyl methanol; 2-methyl-4-(2,2,3-trimethyl-3-cyclopent-1-yl)butanol; 2-methyl-4-(2,2,3-trimethyl-3-cyclopent-1-yl)-2-buten-1-ol; 2-ethyl-4-(2,2,3-trimethyl-3-cyclopent-1-yl)-2-buten-1-ol; 3-methyl-5-(2,2,3-trimethyl-3-cyclopent-1-yl)-pentan-2-ol; 3-methyl-5-(2,2,3-trimethyl-3-cyclopent-1-yl)-4-penten-2-ol; 3,3-dimethyl-5-(2,2,3-trimethyl-3-cyclopent-1-yl)-4-penten-2-ol; 1-(2,2,6-trimethylcyclohexyl)pentan-3-ol; 1-(2,2,6-trimethylcyclohexyl)hexan-3-ol;
from the group comprising cyclic and cycloaliphatic ethers, such as, for example, cineole; cedryl methyl ether; cyclododecyl methyl ether; (ethoxymethoxy)cyclododecane; alpha-cedrene epoxide; 3a,6,6,9a-tetramethyldodecahydronaphtho[2,1-b]furan; 3a-ethyl-6,6,9a-trimethyl-dodecahydronaphtho[2,1-b]furan; 1,5,9-trimethyl-13-oxabicyclo[10.1.0]-trideca-4,8-diene; rose oxide; 2-(2,4-dimethyl-3-cyclohexen-1-yl)-5-methyl-5-(1-methylpropyl)-1,3-dioxane;
from the group comprising cyclic ketones, such as, for example, 4-tert.-butylcyclohexanone; 2,2,5-trimethyl-5-pentylcyclopentanone; 2-heptylcyclopentanone; 2-pentylcyclopentanone; 2-hydroxy-3-methyl-2-cyclopenten-1-one; 3-methyl-cis-2-penten-1-yl-2-cyclopenten-1-one; 3-methyl-2-pentyl-2-cyclopenten-1-one; 3-methyl-4-cyclopentadecenone; 3-methyl-5-cyclopentadecenone; 3-methylcyclopentadecanone; 4-(1-ethoxyvinyl)-3,3,5,5-tetramethylcyclo-hexanone; 4-tert.-pentylcyclohexanone; 5-cyclohexadecen-1-one; 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone; 9-cycloheptadecen-1-one; cyclopentadecanone; cyclohexadecanone;
from the group comprising cycloaliphatic aldehydes, such as, for example, 2,4-dimethyl-3-cyclohexene carbaldehyde; 2-methyl-4-(2,2,6-trimethyl-cyclohexen-1-yl)-2-butenal; 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene carbaldehyde; 4-(4-methyl-3-penten-1-yl)-3-cyclohexene carbaldehyde;
from the group comprising cycloaliphatic ketones, such as, for example, 1-(3,3-dimethylcyclohexyl)-4-penten-1-one; 1-(5,5-dimethyl-1-cyclohexen-1-yl)-4-penten-1-one; 2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-2-naphtalenyl methyl ketone; methyl-2,6,10-trimethyl-2,5,9-cyclododecatrienyl ketone; tert.-butyl-(2,4-dimethyl-3-cyclohexen-1-yl) ketone;
from the group comprising esters of cyclic alcohols, such as, for example, 2-tert.-butylcyclohexyl acetate; 4-tert.-butylcyclohexyl acetate; 2-tert.-pentylcyclohexyl acetate; 4-tert.-pentylcyclohexyl acetate; decahydro-2-naphthyl acetate; 3-pentyltetrahydro-2H-pyran-4-yl acetate; decahydro-2,5,5,8a-tetramethyl-2-naphthyl acetate; 4,7-methano-3a,4,5,6,7,7a-hexahydro-5- or -6-indenyl acetate; 4,7-methano-3a,4,5,6,7,7a-hexahydro-5- or -6-indenyl propionate; 4,7-methano-3a,4,5,6,7,7a-hexahydro-5- or -6-indenyl-isobutyrate; 4,7-methanooctahydro-5- or -6-indenyl acetate;
from the group comprising esters of cycloaliphatic carboxylic acids, such as, for example, allyl-3-cyclohexyl-propionate; allyl cyclohexyl oxyacetate; methyl dihydrojasmonate; methyl jasmonate; methyl-2-hexyl-3-oxycyclopentanecarboxylate; ethyl-2-ethyl-6,6-dimethyl-2-cyclohexenecarboxylate; ethyl 2,3,6,6-tetramethyl-2-cyclohexenecarboxylate; ethyl-2-methyl-1,3-dioxolane-2-acetate;
from the group comprising aromatic carbons such as for example styrene and diphenylmethane;
from the group comprising araliphatic alcohols, such as, for example, benzyl alcohol; 1-phenylethyl alcohol; 2-phenylethyl alcohol; 3-phenylpropanol; 2-phenylpropanol; 2-phenoxyethanol; 2,2-dimethyl-3-phenylpropanol; 2,2-dimethyl-3-(3-methylphenyl)propanol; 1,1-dimethyl-2-phenylethyl alcohol; 1,1-dimethyl-3-phenylpropanol; 1-ethyl-1-methyl-3-phenylpropanol; 2-methyl-5-phenylpentanol; 3-methyl-5-phenylpentanol; 3-phenyl-2-propen-1-ol; 4-methoxybenzyl alcohol; 1-(4-isopropylphenyl)ethanol;
from the group comprising esters of araliphatic alcohols and aliphatic carboxylic acids, such as, for example, benzyl acetate; benzyl propionate; benzyl isobutyrate; benzyl isovalerate; 2-phenylethyl acetate; 2-phenylethyl propionate; 2-phenylethyl isobutyrate; 2-phenylethyl isovalerate; 1-phenylethyl acetate; alpha-trichloromethylbenzyl acetate; alpha,alpha-dimethylphenylethyl acetate; alpha,alpha-dimethylphenylethyl butyrate; cinnamyl acetate; 2-phenoxyethyl isobutyrate; 4-methoxybenzyl acetate;
from the group comprising araliphatic ethers, such as for example 2-phenylethyl methyl ether; 2-phenylethyl isoamyl ether; 2-phenylethyl-1-ethoxyethyl ether; phenylacetaldehyde dimethyl acetal; phenylacetaldehyde diethyl acetal; hydratropaaldehyde dimethyl acetal; phenylacetaldehyde glycerol acetal; 2,4,6-trimethyl-4-phenyl-1,3-dioxane; 4,4a,5,9b-tetrahydroindeno[1,2-d]-m-dioxin; 4,4a,5,9b-tetrahydro-2,4-dimethylindeno[1,2-d]-m-dioxin;
from the group comprising aromatic and araliphatic aldehydes, such as, for example, benzaldehyde; phenylacetaldehyde; 3-phenylpropanal; hydratropaldehyde; 4-methyl benzaldehyde; 4-methyl phenylacetaldehyde; 3-(4-ethylphenyl)-2,2-dimethylpropanal; 2-methyl-3-(4-isopropylphenyl)propanal; 2-methyl-3-(4-tert.-butyl phenyl)propanal; 3-(4-tert.-butyl phenyl)propanal; cinnamaldehyde; alpha-butyl cinnamaldehyde; alpha-amylcinnamaldehyde; alpha-hexyl cinnamaldehyde; 3-methyl-5-phenylpentanal; 4-methoxybenz-aldehyde; 4-hydroxy-3-methoxybenzaldehyde; 4-hydroxy-3-ethoxybenzaldehyde; 3,4-methylene-dioxybenzaldehyde; 3,4-dimethoxybenzaldehyde; 2-methyl-3-(4-methoxyphenyl)propanal; 2-methyl-3-(4-methylendioxyphenyl)propanal;
from the group comprising aromatic and araliphatic ketones, such as, for example, acetophenone; 4-methylacetophenone; 4-methoxyacetophenone; 4-tert.-butyl-2,6-dimethylacetophenone; 4-phenyl-2-butanone; 4-(4-hydroxyphenyl)-2-butanone; 1-(2-naphthalenyl)ethanone; benzophenone; 1,1,2,3,3,6-hexamethyl-5-indanyl methyl ketone; 6-tert.-butyl-1,1-dimethyl-4-indanyl methyl ketone; 1-[2,3-dihydro-1,1,2,6-tetramethyl-3-(1-methyl-ethyl)-1H-5-indenyl]ethanone; 5′,6′,7′,8′-tetrahydro-3′,5′,5′,6′,8′,8′-hexa-methyl-2-acetonaphthone;
from the group comprising aromatic and araliphatic carboxylic acids and esters thereof, such as, for example, benzoic acid; phenylacetic acid; methyl benzoate; ethyl benzoate; hexyl benzoate; benzyl benzoate; methyl phenylacetate; ethyl phenylacetate; geranyl phenylacetate; phenylethyl phenylacetate; methyl cinnamate; ethyl cinnamate; benzyl cinnamate; phenylethyl cinnamate; cinnamyl cinnamate; allyl phenoxyacetate; methyl salicylate; isoamyl salicylate; hexyl salicylate; cyclohexyl salicylate; cis-3-hexenyl salicylate; benzyl salicylate; phenylethyl salicylate; methyl-2,4-dihydroxy-3,6-dimethyl benzoate; ethyl-3-phenylglycidate; ethyl-3-methyl-3-phenylglycidate;
from the group comprising nitrogen-containing aromatic compounds, such as, for example, 2,4,6-trinitro-1,3-dimethyl-5-tert.-butylbenzene; 3,5-dinitro-2,6-dimethyl-4-tert.-butylacetophenone; cinnamonitrile; 5-phenyl-3-methyl-2-pentenonitrile; 5-phenyl-3-methylpentanonitrile; methyl anthranilate; methyl-N-methylanthranilate; Schiff's bases of methyl anthranilate with 7-hydroxy-3,7-dimethyloctanal, 2-methyl-3-(4-tert.-butylphenyl)propanal or 2,4-dimethyl-3-cyclohexene carbaldehyde; 6-isopropylquinoline; 6-isobutylquinoline; 6-sec.-butylquinoline; indole; skatole; 2-methoxy-3-isopropylpyrazine; 2-isobutyl-3-methoxypyrazine; 4-(4,8-dimethyl-3,7-nonadienyl)-pyridine;
from the group comprising phenols, phenyl ethers and phenyl esters, such as, for example, estragole; anethole; eugenol; eugenyl methyl ether; isoeugenol; isoeugenol methyl ether; thymol; carvacrol; diphenyl ether; beta-naphthyl methyl ether; beta-naphthyl ethyl ether; beta-naphthyl isobutyl ether; 1,4-dimethoxybenzene; eugenyl acetate; 2-methoxy-4-methylphenol; 2-ethoxy-5-(1-propenyl)phenol; p-cresyl phenylacetate;
from the group comprising heterocyclic compounds, such as, for example, 2,5-dimethyl-4-hydroxy-2H-furan-3-one; 2-ethyl-4-hydroxy-5-methyl-2H-furan-3-one; 3-hydroxy-2-methyl-4H-pyran-4-one; 2-ethyl-3-hydroxy-4H-pyran-4-one;
from the group comprising lactones, such as, for example, 1,4-octanolide; 3-methyl-1,4-octanolide; 1,4-nonanolide; 1,4-decanolide; 8-decen-1,4-olide; 1,4-undecanolide; 1,4-dodecanolide; 1,5-decanolide; 1,15-pentadecanolide; cis- and trans-11-pentadecen-1,15-olide; cis- and trans-12-pentadecen-1,15-olide; 1,16-hexadecanolide; 9-hexadecen-1,16-olide; 10-oxa-1,16-hexadecanolide; 11-oxa-1,16-hexadecanolide; 12-oxa-1,16-hexadecanolide; ethylene-1,12-dodecanedioate; ethylene-1,13-tridecanedioate; coumarin; 2,3-dihydrocoumarin; octahydrocoumarin.
The perfume oils containing the 4-C8-C12-alkyl pyridines to be used according to the invention, preferably 4-n-C8-C12-alkyl pyridines, can be used in liquid form, undiluted or diluted with a solvent for perfuming purposes. Suitable solvents for this are in particular ethanol, isopropanol, diethylene glycol monoethyl ether, glycerine, propylene glycol, 1,2-butylene glycol, dipropylene glycol, diethyl phthalate, triethyl citrate and isopropyl myristate. These solvents are adjuvants in perfuming and should not be seen as odiferous substances (in the sense of the invention).
Mixtures or solutions of certain 4-alkyl pyridines are known, for example of 4-n-decyl pyridine in ethanol (Langmuir 2001, 1054-1059) or methanol (U.S. Pat. No. 4,555,520 and Journal of Solid State Chemistry 1987, 69, 145-152).
If these solvents, in particular ethanol or methanol, are nevertheless seen as aromatic and/or odiferous substances, an aromatic and/or odiferous substance mixture according to the invention contains in addition to these solvents one or more 4-C8-C12-alkyl pyridine(s) plus one or more further odiferous or aromatic substance(s).
In odiferous substance and aromatic substance mixtures, in particular in perfume oil compositions, the total quantity used of 4-C8-C12-alkyl pyridines, preferably of 4-n-C8-C12-alkyl pyridines, is normally in the range 0.000001 to 5 Wt %, preferably 0.00001 to 2 Wt % and particularly preferably 0.0001 to 1 Wt %, in each case with reference to the odiferous substance- or aromatic substance mixture as a whole.
In small doses according to a further aspect of the invention it was found that the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, are particularly suited, in the low concentrations mentioned in the following, for modifying and/or intensifying an odor or taste, i.e. that they are able to function as so-called boosters or enhancers.
Where the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, are mainly used in order to lend an odiferous substance mixture and aromatic substance mixture, in particular a perfume oil composition, greater intensity, freshness, radiance and/or rounding and/or to intensify certain notes (other odiferous or aromatic substances contained in the odiferous substance and aromatic substance mixture), in particular notes in the flowery, fruity, marine or mossy directions, the total proportion of 4-n-C8-C12-alkyl pyridines is preferably quite low and is preferably in the range 0.00001 to 1 Wt %, preferably in the range 0.0001 to 0.1 Wt % and particularly preferably in the range 0.001 to 0.01 Wt %, in each case with reference to the total quantity of odiferous substance or aromatic substance mixture.
Where within the preferred concentration ranges a comparatively low concentration is selected, depending on the further components in the respective composition, in some cases the characteristic fragrance notes mentioned above are still not conveyed.
In view of this aspect of the present invention it has already been stated that the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, can be used as boosters for odiferous or aromatic substances. A corresponding method to modify and/or intensify (boost) an odor and/or taste with one, a plurality or all of the flowery, fruity, marine and/or mossy notes, comprises the following step:
With other marine odiferous substances, by mixing with the 4-C8-C12-alkyl pyridines to be used according to the invention, preferably 4-n-C8-C12-alkyl pyridines, further combinations and effects of olfactory interest can be obtained, in particular in combination with Calone 1951® or Maritima® multifaceted sea notes can be achieved.
The olfactory intensification of flowery odiferous or aromatic substances by the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, is observed in particular in odiferous or aromatic substances with a flowery odor or taste in the directions of jasmine, rose, lily of the valley, violet, geranium, magnolia, iris, narcissus, freesia, boronia, tuberose, Cape jasmine and hyacinth.
Flowery odiferous or aromatic substances, with which the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, can be advantageously combined, are preferably selected from the group comprising: hydroxycitronellal, methoxycitronellal, cyclamen aldehyde [2-Methyl-3-(4-isopropylphenyl)propanal], 1-(4-isopropyl-cyclohexyl)ethanol (Mugetanol®), 4-tert-butyl-α-methyl dihydrocinnamaldehyde (Lilial®), cishexahydrocuminyl alcohol (Mayol®), 3-[4-(1,1-dimethylethyl)phenyl]propanal (Bourgeonal®), 2,2-dimethyl-3-(3-methylphenyl)propanol (Majantol®), 3-methyl-3-(3-methylbenzyl)-butan-2-ol, 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol (Florosa®), 2-methyl-3-(3,4-methylenedioxyphenyl)propanal (Heliofolal®), 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene carbaldehyde)(Lyral®), 4-(octahydro-4,7-methano-5H-inden-5-ylidene-butanal (Dupical®), vernaldehyde, 4-(4-methyl-3-penten-1-yl)-3-cyclohexene carbaldehyde (Vertomugal®), octahydro-5-(4-methoxybutylidene)-4,7-methano-1H-indene (Mugoflor®), 2,6-dimethyl-2-heptanol (Freesiol®), 1-ethyl-1-methyl-3-phenylpropanol (Phemec®), 2,2-Dimethyl-3-phenyl-1-propanol (Muguet alcohol), profarnesol, dihydrofarnesol, farnesol, neriolidol, hydroxycitronellal dimethyl acetal, hexyl benzoate, geraniol, nerol, linalool, tetrahydrogeraniol, tetrahydrolinalool, ethyl linalool, geranyl tiglinate, phenylethyl alcohol (2-phenylethyl alcohol), citronellol, rose oxide, 2-methyl-5-phenylpentanol (Rosaphen), 3-methyl-5-phenylpentanol (Phenoxanol), methyl dihydrojasmonate (Hedion®, Hedione® high cis), 2-heptyl cyclopentanone (Projasmon P), cis-jasmone, dihydrojasmonate, cinnamic alcohol (3-phenyl-2-propen-1-ol), dihydrocinnamic alcohol (3-phenylpropanol), 2-methyl-4-phenyl-1,3-dioxolane (Jacinthaflor®), dihydromyrcenol (2,6-dimethyl-7-octen-2-ol).
The olfactory intensification of fruity odiferous or aromatic substances by the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, is in particular observed in odiferous or aromatic substances with a fruity odor or taste in the directions of apple, pineapples, raspberries, strawberries, bananas, blueberries, pears, grapefruit, melons, apricots, cherries, vanilla, orange, lemon, bergamot, lime, caramel and coconut.
Fruity odiferous or aromatic substances, with which the 4-C8-C12-alkyl pyridines to be used according to the invention, in particular the 4-n-C8-C12-alkyl pyridines, can advantageously be combined are preferably selected from the group comprising: 2-methyl-butyric acid ethyl ester, 4-(p-hydroxyphenyl)-2-butanone, ethyl-3-methyl-3-phenyl glycidate, butyric acid isoamyl ester, acetic acid isoamyl ester, acetic acid-n-butyl ester, butyric acid ethyl ester, 3-methyl-butyric acid ethyl ester, n-hexanoic acid ethyl ester, n-hexanoic acid allyl ester, ethyl-2-trans-4-cis-decadienoate, 1,1-dimethoxy-2,2,5-trimethyl-4-hexane, 2,6-dimethyl-5-hepten-1-al, gamma-undecalactone, gamma-nonalactone, hexanal, 3Z-hexenal, n-decanal, n-dodecanal, citral, limonene, vanillin, ethyl vanillin, maltol, ethyl maltol and mixtures thereof.
For some applications it is advantageous to use the perfume oils containing 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, adsorbed on a carrier, which ensures both a fine distribution of the odiferous substances in the product and a controlled release in use. Such carriers can be porous inorganic materials such as light sulfate, silica gel, zeolites, gypsum, clays, clay granulates, gas concrete and so on or organic materials such as woods, cellulose-based materials, sugar or plastics such as PVC, polyvinyl acetate or polyurethane.
For other applications it is advantageous for the perfume oils containing 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, to be used in microencapsulated, spray-dried form as an inclusion complex or extrusion product and added in this form to the (primary) product to be perfumed.
The characteristics of such modified perfume oils are in some cases further optimized by so-called coating with suitable materials with a view to a more directed scent release, for which preferably waxy synthetic materials such as polyvinyl alcohol are used.
Microencapsulation of the perfume oils can take place, for example, using the so-called coacervation process with the help of capsule materials in, for example, polyurethane-like materials or soft gelatine. Spray-dried perfume oils can, for example, be produced by spray-drying an emulsion or dispersion containing the perfume oil, wherein as the carrier material modified starches, proteins, dextrin and vegetable gums can be used. Inclusion complexes can, for example, be produced by introducing dispersions of the perfume oil and cyclodextrins or urea derivatives into a suitable solvent, e.g. water. Extrusion products can be obtained by melting the perfume oils with a suitable waxy substance and by extrusion followed by solidification, if necessary in a suitable solvent such as isopropanol.
The perfume oils containing 4-C8-C12-alkyl pyridines, preferably 4-n-C8-C12-alkyl pyridines, according to the invention, can be used in concentrated form, in solutions or in another modified form for the production of for example perfume extracts, eau de perfumes, eau de toilettes, aftershaves, eau de colognes, pre-shave products, splash colognes and perfumed freshening wipes and for perfuming acid, alkaline and neutral cleaning agents such as, for example, floor cleaners, window cleaners, washing-up liquids, bath and sanitary equipment cleaners, scouring agents, solid and liquid WC cleaners, carpet cleaners in powder and foam form, liquid detergents, powder detergents, laundry pre-treatment agents such as bleaching agents, softeners and stain removers, fabric conditioners, laundry soaps, laundry tablets, disinfectants, surface disinfectants and air fresheners in liquid or gel form or applied to a solid support, aerosol sprays, waxes and polishes such as furniture polishes, floor waxes, cream shoe polishes and personal hygiene agents such as, for example, solid and liquid soaps, shower gels, shampoos, shaving soaps, shaving foams, bath oils, cosmetic emulsions of the oil-in-water, of the water-in-oil and of the water-in-oil-in-water type such as, for example, skin creams and lotions, face creams and lotions, sun protection creams and lotions, after-sun creams and lotions, hand creams and lotions, foot creams and lotions, depilatory creams and lotions, after-shave creams and lotions, bronzing creams and lotions, hair care products such as, for example, hair sprays, hair gels, hair lotions, hair rinses, permanent and semi-permanent hair dyes, hair shaping agents such as cold permanent waves and hair smoothing agents, hair tonics, hair creams and lotions, deodorants and antiperspirants such as, for example, under-arm sprays, roll-ons, deodorant sticks, deodorant creams or decorative cosmetic products.
The abovementioned perfumed products preferably have a content of perfume oils according to the invention, containing the 4-C8-C12-alkyl pyridines to be used according to the invention, preferably the 4-n-C8-C12-alkyl pyridines, in the range 0.1 to 6 Wt %, preferably in the range 0.2 to 4 Wt %, preferably in the range 0.3 to 3 Wt %, in each case with reference to the total weight of the perfumed product.
Preferred substances, with which the 4-C8-C12-alkyl pyridines to be used according to the invention, preferably the 4-n-C8-C12-alkyl pyridines, or the odiferous or aromatic substance mixtures according to the invention can be combined are:
preservatives, abrasives, antiacne agents, agents against ageing of the skin, antibacterial agents, anticellulitis agents, antidandruff agents, antiinflammatory agents, irritation-preventing agents, irritation-inhibiting agents, antimicrobial agents, antioxidants, astringents, perspiration-inhibiting agents, antiseptic agents, antistatics, binders, buffers, carrier materials, chelating agents, cell stimulants, cleansing agents, care agents, depilatory agents, surface-active substances, deodorizing agents, antiperspirants, softeners, emulsifiers, enzymes, essential oils, fibres, film-forming agents, fixatives, foam-forming agents, foam stabilizers, substances for preventing foaming, foam boosters, fungicides, gelling agents, gel-forming agents, hair care agents, hair setting agents, hair straightening agents, moisture-donating agents, moisturizing substances, moisture-retaining substances, bleaching agents, strengthening agents, stain-removing agents, optically brightening agents, impregnating agents, dirt-repellent agents, friction-reducing agents, lubricants, moisturizing creams, ointments, opacifying agents, plasticizing agents, covering agents, polish, gloss agents, polymers, powders, proteins, re-oiling agents, abrading agents, silicones, skin soothing agents, skin cleansing agents, skin care agents, skin healing agents, skin lightening agents, skin protecting agents, skin softening agents, cooling agents, skin cooling agents, warming agents, skin warming agents, stabilizers, UV-absorbing agents, UV filters, detergents, fabric conditioners, suspending agents, skin tanning agents, thickeners, vitamins, oils, waxes, fats, phospholipids, saturated fatty acids, mono- or polyunsaturated fatty acids, α-hydroxy acids, polyhydroxy-fatty acids, liquefiers, dyestuffs, colour-protecting agents, pigments, anticorrosives, aromas, flavoring substances, odoriferous substances, polyols, surfactants, electrolytes, organic solvents or silicone derivatives.
The 4-C8-C12-alkyl pyridines, preferably the 4-n-C8-C12-alkyl pyridines, are furthermore characterised by a high (inherent) bonding, a very low olfactory threshold, a high diffusivity, good substantivity and very good fixation characteristics. Compared with Calone 1951® or Maritima® the 4-C8-C12-alkyl pyridines to be used according to the invention, particularly the 4-n-C8-C12-alkyl pyridines, have a good stability with regard to oxidative reagents (such as for example in bleaching solutions) and an extremely low threshold value and extraordinary diffusivity. The 4-C8-C12-alkyl pyridines, in particular the 4-n-C8-C12-alkyl pyridines, here in particular 4-n-decyl pyridine, are therefore particularly suited to use in air-fresheners, shampoos, bleaching agents and detergents and fabric conditioners.
In order to illustrate the characteristics described above, in the following way the diffusivity and threshold value in air of Maritima® and 4-decyl pyridine were compared:
0.5 g of the odiferous substances to be tested are each weighed in a Petri dish and sealed with the lid. The Petri dish is placed 50 cm in front of the test subject (the distance is marked on the table before the test commences).
The lid is then removed from the Petri dish and a stopwatch is simultaneously started by the test subject. The test subject stops the time immediately he perceives the odor. The test subject assesses the intensity of the sample on a scale of 1=odorless to 9=very strong. The stop time and the intensity are noted on the test sheet.
Each sample is evaluated by the test subject three times. In order to be certain that the result is not distorted, all windows and doors must be shut. The room is at normal temperature (20-25° C.). The test subjects do not suffer from anosmia in respect of the samples to be tested. As a rule a minimum of 8 participants evaluate the sample.
The odiferous substance to be tested is evaporated in a defined sampling system and then assessed sensorially with regard to the perception threshold. The sampling system comprises the sample bag and a gas stream outlet. A defined quantity of the desired odiferous substance is squirted into the bag. The equilibrium time after filling with the sample is approximately 18 hours at ambient temperature; then the content of the bag is presented to the test subject by means of a constant gas stream. At the first discernable olfactory impression a response button is pressed. The odor threshold concentration is achieved when in the next dilution stage the olfactory impression is confirmed by repeated pressing of the response button. The concentration of the sample is increased between the previous and the next samples by a factor of 2.
The assessment of the threshold value in air is measured against a standard and as a rule 8 test subjects take part in the sensorial evaluation. The participants have no anosmia in respect of the samples to be investigated.
The (inherent) bonding, also referred to as the attachment capacity, refers to the capacity of a compound to bond to a substrate. Diffusivity means the speed at which the transmission of the odiferous substances through the room is perceived. Substantivity means the capacity to be absorbed from a usually aqueous phase by a substrate or also following a washing or rinsing process to remain on a substrate. This effect manifests itself in particular on substrates such as skin, hair and textile fibres (e.g. cotton, wool, linen, synthetic fibres). The feature of being able to work as a fixator (fixation characteristic) means that the corresponding compound generates adhesive strength in other odiferous substances. This can take place, for example, by vapor pressure depression or olfactory intensification (e.g. lowering the threshold value).
The described effects of the 4-C8-C12-alkyl pyridines, preferably the 4-n-C8-C12-alkyl pyridines, and the mixtures according to the invention on odiferous substance compositions are particularly evident in a comparison of the olfactory change over time in use.
The following examples explain the invention. Unless otherwise stated all data, in particular quantities and percentages, relate to the weight.
The following abbreviations are used: BA=benzyl alcohol, BB=benzyl benzoate; DEP=diethyl phthalate; DPG=dipropylene glycol, IPM=isopropyl myristate, CRIST.=crystalline, TEC=triethyl citrate
160 g of 4-picoline are droppered into a solution of 1,000 ml lithium diisopropylamide (1.8 M) in 1,600 ml tetrahydrofuran at −50° C. and within 20 minutes. Then the formulation is stirred for one hour at −20° C. A solution of 330 g of nonyl bromide in 400 ml of tetrahydrofuran is droppered in within two hours at −50° C., further stirred for an hour and the formulation then left to revert to room temperature. 600 ml of water are added, the phases separated and the organic phase distilled.
181 g of 4-n-decyl pyridine with a purity of 99.3% are isolated. This corresponds to a theoretical yield of 51%.
1H-NMR (400 MHz, CDCl3): δ=0.88 (t, J=6.9 Hz, 3H), 1.22-1.36 (m, 10H), 1.57-1.67 (m, 2H), 2.59 (m, 2H), 7.10 (m, 2H), 8.48 (dd, J=1.6 Hz, J=4.4 Hz, 2H) ppm.
13C-NMR (100 MHz, CDCl3): δ=14.09 (CH3), 22.65 (CH2), 29.19 (2×CH2), 29.37 (CH2), 30.31 (CH2), 31.84 (CH2), 35.26 (CH2), 123.91 (2×CH), 149.62 (2×CH), 151.77 (C) ppm.
MS: m/z (%)=191 (8) [M+], 162 (4), 148 (6), 134 (4), 120 (6), 106 (82), 93 (100), 65 (9).
1H-NMR (400 MHz, CDCl3): δ=0.88 (t, J=6.8 Hz, 3H), 1.21-1.36 (m, 12H), 1.56-1.68 (m, 2H), 2.59 (m, 2H), 7.10 (m, 2H), 8.48 (dd, J=4.4 Hz, J=1.6 Hz, 2H) ppm.
13C-NMR (100 MHz, CDCl3): δ=14.11 (CH3), 22.67 (CH2), 29.19 (CH2), 29.29 (CH2), 29.41 (CH2), 29.49 (CH2), 30.32 (CH2), 31.88 (CH2), 35.26 (CH2), 123.92 (2×CH), 149.62 (2×CH), 151.78 (C) ppm.
MS: m/z (%)=205 (8) [M+], 190 (2), 176 (3), 162 (7), 148 (4), 134 (2), 120 (6), 106 (100), 93 (65), 65 (7).
1H-NMR (400 MHz, CDCl3): δ=0.88 (t, J=6.8 Hz, 3H), 1.22-1.35 (m, 14H), 1.57-1.67 (m, 2H), 2.59 (m, 2H), 7.10 (m, 2H), 8.47 (dd, J=4.4 Hz, J=1.6 Hz, 2H) ppm.
13C-NMR (100 MHz, CDCl3): δ=14.11 (CH3), 22.69 (CH2), 29.19 (CH2), 29.31 (CH2), 29.41 (CH2), 29.53 (CH2), 29.58 (CH2), 30.31 (CH2), 31.90 (CH2), 35.26 (CH2), 123.92 (2×CH), 149.61 (2×CH), 151.79 (C) ppm.
MS: m/z (%)=219 (6) [M+], 204 (4), 190 (5), 176 (7), 162 (7), 148 (5), 134 (2), 120 (8), 106 (100), 93 (47), 77 (3).
1H-NMR (400 MHz, CDCl3): δ=0.88 (t, J=6.7 Hz, 3H), 1.22-1.35 (m, 16H), 1.57-1.66 (m, 2H), 2.59 (m, 2H), 7.10 (m, 2H), 8.47 (dd, J=1.6 Hz, J=6.0 Hz, 2H) ppm.
13C-NMR (100 MHz, CDCl3): δ=14.12 (CH3), 22.70 (CH2), 29.20 (CH2), 29.34 (CH2), 29.41 (CH2), 29.53 (CH2), 29.62 (CH2), 29.63 (CH2), 30.31 (CH2), 31.92 (CH2), 35.26 (CH2), 123.92 (2×CH), 149.62 (2×CH), 151.78 (C) ppm.
MS: m/z (%)=233 (11) [M+], 218 (4), 204 (5), 190 (6), 176 (3), 162 (6), 148 (4), 134 (2), 120 (6), 106 (100), 93 (41), 65 (5).
Perfume Oils for this Washing Powder:
When 0.3% of the perfume oil P1 or P2 is dosed into a washing powder (powder detergent) the following result is obtained: the proportion of 0.01% 4-n-decyl pyridine in perfume oil P2 brings about an intensification of the lily of the valley and the fruity notes to a quite exceptional extent (booster effect). The composition with 4-n-decyl pyridine also has a fresher radiance overall.
Perfume Oils for this Soap
When 1.2% of the respective perfume oil C1 or C2 is dosed into soap the effect is highly conclusive: the proportion of 0.07% 4-decyl pyridine in the perfume oil C2 brings about an enormous intensification of the fresh characteristic and gives the composition overall more radiance and power. Furthermore, the base odor of the soap is masked significantly better by the perfume oil C2.
Perfume Oils for this All-Purpose Cleaner:
When 0.3% of the perfume oil is dosed into an all-purpose cleaner the following result is obtained: a proportion of 0.005% of 4-n-decyl pyridine brings about an extreme intensification of the marine-mossy note coupled with a distinct intensification of the fresh head note. The diffusivity is also increased.
Perfume Oils for this Pearl-Luster Shampoo:
The proportion of 0.05% 4-decyl pyridine in the perfume oil S2 intensifies (at a dosing of 0.5% of the perfume oil in the shampoo) the fruity peach/apricot character and also lends the overall composition a further exotic tropical fruitiness. Furthermore, the composition as a whole appears to be more harmonious and rounded.
Perfume Oils for this Shower Gel
The proportion of 0.02% 4-decyl pyridine in the perfume oil D2 (at a dosing of 0.5% of the perfume oil in the shower gel) boosts (intensifies) the watery-fresh head note of the perfume oil composition and also lends the aromatic, woody, masculine scent greater power and fullness.
The proportion of 0.001% 4-decyl pyridine in perfume oil F2 (at a dosing of 12% of the perfume oil in ethanol) intensifies the transparent fresh head note and lends this masculine fragrance a greater radiance.
Perfume Oils for this Fabric Conditioner:
At a dosing of 0.6% of the perfume oil W2 in the fabric conditioner the proportion of 1.0% 4-decyl pyridine contained therein brings about a harmonization of the fresh-flowery composition and also greatly increases the sought-after violet character.
The mixture obtained after mixing together the components indicated in each case was filled into an aerosol container with a propane-butane mixture (2:7) in a ratio by weight of 2:3.
Part A: Dissolve the Lara Care A-200 in the other components while stirring.
Part B: Weigh in all the raw materials (except the Pemulen) and dissolve the crystalline substances by heating. Disperse the Pemulen. Add part B to part A and homogenize for 1 minute.
Parts C-E: add and homogenize for a further 1-2 minutes with the Ultra Turrax.
Part A: Heat to approximately 85° C.
Part B: Heat to approximately 85° C. (excluding zinc oxide; disperse the zinc oxide with the Ultra Turrax).
Add B to A. Allow to cool while stirring.
Part C: add and then homogenize.
Part A: Heat to approximately 85° C.
Part B: Heat to approximately 85° C. Add B to A. Allow to cool while stirring.
Part C: Add and then homogenize.
Specific embodiment one comprises an aroma- and/or odiferous substance mixture, containing one or more 4-C8-C12-alkyl pyridine(s) and one or more further odiferous or aromatic substance(s), wherein preferably the 4-C8-C12-alkyl pyridines are 4-n-C8-C12-alkyl pyridines and with particular preference are selected from the group comprising 4-n-octyl pyridine, 4-n-nonyl pyridine, 4-n-decyl pyridine, 4-n-undecyl pyridine, 4-n-dodecyl pyridine and mixtures of one or more of these substances.
Specific embodiment two comprises the mixture as in specific embodiment one, containing as 4-C8-C12-alkyl pyridines 4-n-decyl pyridine, optionally with one or more further 4-C8-C12-alkyl pyridine(s), preferably one or more further 4-n-C8-C12-alkyl pyridine(s).
Specific embodiment three comprises the mixture as in one of the preceding specific embodiments, containing the 4-C8-C12-alkyl pyridine(s) in a sensorially active mixture to
Specific embodiment four comprises the mixture as in one of the preceding specific embodiments, containing the 4-C8-C12-alkyl pyridine(s) in a total quantity of 0.000001 to 5 Wt %, preferably 0.00001 to 2 Wt % and particularly preferably 0.0001 to 1 Wt %, in each case with reference to the aromatic or odiferous substance mixture as a whole.
Specific embodiment five comprises a perfumed or aromatized product, containing a mixture according to one of the above specific embodiments, preferably a mixture containing 4-n-decyl pyridine.
Specific embodiment six comprises the product as in specific embodiment five, containing the mixture in a sensorially active quantity to
Specific embodiment seven comprises the product as in specific embodiment five or six, wherein the product is selected from among cosmetic products and household products, preferably shampoos, fabric conditioners and/or washing powders.
Specific embodiment eight comprises a use of one or more 4-C8-C12-alkyl pyridine(s), in particular one or more 4-n-C8-C12-alkyl pyridine(s) to
Specific embodiment nine comprises the use as in specific embodiment eight of 4-n-octyl pyridine to
Specific embodiment ten comprises the use as in specific embodiment eight of 4-n-nonyl pyridine to
Specific embodiment eleven comprises the use as in specific embodiment eight of 4-n-decyl pyridine to:
Specific embodiment twelve comprises the use as in specific embodiment eight of 4-n-undecyl pyridine to
Specific embodiment thirteen comprises the use as in specific embodiment eight of 4-n-dodecyl pyridine to
Specific embodiment fourteen comprises a method to
comprising the bringing into contact, preferably blending, of one or more 4-C8-C12-alkyl pyridine(s), preferably 4-n-C8-C12-alkyl pyridines, in a sensorially active quantity with a product.
Specific embodiment fifteen comprises the method as in specific embodiment fourteen, wherein the 4-C8-C12-alkyl pyridine(s) is (are) or contains (contain) 4-n-decyl pyridine.
Number | Date | Country | Kind |
---|---|---|---|
08 170 153.4-2108 | Nov 2008 | EP | regional |