4-amino-2-(2-pyridyl)pyrimidines as microbicidal active substances

Information

  • Patent Application
  • 20030092718
  • Publication Number
    20030092718
  • Date Filed
    April 17, 2002
    22 years ago
  • Date Published
    May 15, 2003
    21 years ago
Abstract
There are described compounds of formula 1
Description


[0001] The present invention relates to substituted 4-amino-2-(2-pyridyl)pyrimidines, to the pre-paration of such compounds, and to their use for the antimicrobial treatment of surfaces, as antimicrobial active substances against gram-positive and gram-negative bacteria, yeasts and fungi and also in the preservation of cosmetics, household products, textiles and plastics and for use in disinfectants.


[0002] The substituted 4-amino-2-(2-pyridyl)pyrimidines according to the invention correspond to formula
2


[0003] wherein


[0004] R1 and R2 are each independently of the other hydrogen; unsubstituted or mono- or poly-halo-substituted C1-C20alkyl, C1-C20alkoxy, C2-C20alkenyl, C2-C20alkynyl, C3-C18cycloalkyl, C3-C7cycloalkyl-C1-C20alkyl; hydroxy; C1-C6alkoxy-C1-C20alkyl; carboxy; C1-C6alkyl-oxycarbonyl; cyano; mono- or di-C1-C20alkylamino; C1-C6alkylamino-C1-C20alkyl; halogen; phenyl; unsubstituted or C1-C5alkyl-, halo- or hydroxy-substituted phenyl-C1-C20alkyl, phenoxy or phenyl-C1-C20alkoxy; or R1 and R2 form a polymethylene chain of formula —(CH2)m— wherein m=2-12;


[0005] R3 is unsubstituted C7-C20alkyl; or amino-, hydroxy-, carboxy- or C1-C6alkyloxycarbonyl-substituted C2-C20alkyl, C8-C18cycloalkyl, C8-C20alkenyl, C8-C20alkynyl, C3-C7cycloalkyl-C8-C20alkyl, C1-C4alkoxy-C8-C20alkyl, R7R8N—C7-C20alkyl, phenyl, phenyl-C1-C4alkyl or phenyl-C1-C4alkoxy;


[0006] R4 is hydrogen; unsubstituted or C1-C5alkyl-, halo- or hydroxy-substituted C1-C20alkyl, C2-C20alkenyl, C2-C20alkynyl, C3-C20cycloalkyl, C3-C7cycloalkyl-C1-C20alkyl, C1-C20alkoxy-C1-C6alkyl or R7R8N—C1-C20alkyl, phenyl, phenyl-C1-C20alkyl or phenoxy-C1-C20alkyl;


[0007] R5 and R6 are each independently of the other hydrogen; C1-C20alkyl; C2-C20alkenyl; C2-C20-alkynyl; C3-C18cycloalkyl; C3-C7cycloalkyl-C1-C20alkyl; hydroxy; C2-C20alkoxy; C1-C6alkoxy-C1-C20alkyl; carboxy; C1-C6alkyloxycarbonyl; cyano; nitro; C1-C20alkylamino; C1-C20alkylaminoalkyl; C1-C20haloalkyl; C1-C20haloalkoxy; halogen; unsubstituted or C1-C5alkyl-, halo- or hydroxy-substituted phenyl, phenoxy or phenyl-C1-C20alkyl or phenyl-C1-C20alkoxy; or R5 and R6 together form a polymethylene chain of formula —(CH2)m— wherein m=2-12; and


[0008] R7 and R8 are each independently of the other hydrogen; C1-C20alkyl; C3-C20alkenyl; C3-C20-alkynyl; C3-C7cycloalkyl; C3-C20cycloalkyl-C1-C4alkyl; phenyl; or phenyl-C1-C4alkyl.


[0009] C1-C20Alkyl radicals are straight-chain or branched alkyl radicals, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, heptyl, octyl, isooctyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl or eicosyl.


[0010] C3-C18Cycloalkyl denotes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotetradecyl, cyclopenta-decyl, cyclohexadecyl, cycloheptadecyl, cyclooctadecyl or, especially, cyclohexyl.


[0011] Alkenyl includes, within the scope of the meanings given, inter alia, allyl, isopropenyl, 2-butenyl, 3-butenyl, isobutenyl, n-penta-2,4-dienyl, 3-methyl-but-2-enyl, n-oct-2-enyl, n-dodec-2-enyl, isododecenyl, n-dodec-2-enyl and n-octadec-4-enyl.


[0012] C1-C5Alkoxy radicals are straight-chain or branched radicals, for example methoxy, ethoxy, propoxy, butoxy or pentyloxy.


[0013] Alkynyl includes, for example, ethynyl, propargyl, 2-butynyl, 1-pentynyl and 2-pentynyl.


[0014] Preference is given to compounds of formula (1) wherein


[0015] R5 and R6 are each independently of the other hydrogen or C1-C20alkyl, very especially hydrogen.


[0016] R1 and R2 in formula (1) are, each independently of the other, preferably hydrogen, unsubstituted or mono- or poly-halo-substituted C1-C20alkyl; or C1-C5alkoxy-C1-C5alkyl; especially hydrogen; unsubstituted or mono- or poly-halo-substituted C1-C5alkyl; or C1-C3alkoxy-C1-C5alkyl; and more especially hydrogen, methyl, ethyl, isopropyl, tert-butyl, CF3 or the radical —(CH2)m—O—CH3 wherein m is from 1 to 4.


[0017] R3 in formula (1) is preferably unsubstituted or amino-substituted C7-C20alkyl, C3-C7cycloalkyl-C8-C20alkyl, C1-C4alkoxy-C7-C20alkyl, R7R8N—C7-C20alkyl, phenyl-C1-C4alkyl or phenyl-C1-C6alkoxy, especially unsubstituted or amino-substituted C7-C20alkyl or R7R8N—C7-C20alkyl.


[0018] Especially preferred compounds of formula (1) are those wherein


[0019] R1 and R2 are each independently of the other hydrogen, methyl, ethyl, isopropyl, tert-butyl, CF3 or the radical —(CH2)m—O—CH3;


[0020] R3 is unsubstituted or amino-substituted C7-C20alkyl or R7R8N—C7-C20alkyl;


[0021] R4 is hydrogen or C1-C20alkyl;


[0022] R5, R6, R7 and R8 are each independently of the others hydrogen or C1-C20alkyl; and


[0023] m is from 1 to 4,


[0024] especially those wherein


[0025] R5, R6, R7 and R8 are hydrogen.


[0026] Special preference is given to compounds of formulae
3


[0027] n is from 7 to 20; and


[0028] R1, R2, R3, R5 and R6 are as defined for formula (1).


[0029] All those compounds may also be present in the form of their acid addition salts, suitable acids being: HF, HCl, HBr, H2SO4, H3PO4, mono- and di-functional carboxylic acids, for example lactic acid, tartaric acid, acetic acid, maleic acid, fumaric acid, citric acid and salicylic acid, or sulfonic acid.


[0030] Table 1 below lists further 4-amino-2-(2-pyridyl)pyrimidines according to the invention by way of example:
1TABLE 1General formula4CompoundofformulaR1R2R3 4—CH3—C2H5—NH—(CH2)7—NH2 5—CH3—C2H5—NH—(CH2)8—NH2 6—CH3—C2H5—NH—(CH2)9—NH2 7—CH3—C2H5—NH—(CH2)12—NH2 8—CH3—C2H5—NH—(CH2)6—CH3 9—CH3—C2H5—NH—(CH2)7—CH310—CH3—C2H5—NH—(CH2)8—CH311—CH3—C2H5—NH—(CH2)9—CH312—CH3—C2H5—NH—(CH2)11—CH313—CH3—C2H5—NH—(CH2)15—CH314—CH3—C2H5515—CH3—C2H5616—CH3—H—NH—(CH2)7—NH217—CH3—H—NH—(CH2)8—NH218—CH3—H—NH—(CH2)9—NH219—CH3—H—NH—(CH2)12—NH220—CH3—H—NH—(CH2)6—CH321—CH3—H—NH—(CH2)7—CH322—CH3—H—NH—(CH2)8—CH323—CH3—H—NH—(CH2)9—CH324—CH3—H—NH—(CH2)11—CH325—CH3—H—NH—(CH2)15—CH326—CH3—H727—CH3—H828—CF3—H—NH—(CH2)7—NH229—CF3—H—NH—(CH2)8—NH230—CF3—H—NH—(CH2)9—NH231—CF3—H—NH—(CH2)12—NH232—CF3—H—NH—(CH2)6—CH333—CF3—H—NH—(CH2)7—CH334—CF3—H—NH—(CH2)8—CH335—CF3—H—NH—(CH2)9—CH336—CF3—H—NH—(CH2)11—CH337—CF3—H—NH—(CH2)15—CH338—CF3—H939—CF3—H1040-isopropyl—H—NH—(CH2)7—NH241-isopropyl—H—NH—(CH2)8—NH242-isopropyl—H—NH—(CH2)9—NH243-isopropyl—H—NH—(CH2)12—NH244-isopropyl—H—NH—(CH2)6—CH345-isopropyl—H—NH—(CH2)7—CH346-isopropyl—H—NH—(CH2)8—CH347-isopropyl—H—NH—(CH2)9—CH348-isopropyl—H—NH—(CH2)11—CH349-isopropyl—H—NH—(CH2)15—CH350-isopropyl—H1151-isopropyl—H1252-tert-butyl—H—NH—(CH2)7—NH253-tert-butyl—H—NH—(CH2)8—NH254-tert-butyl—H—NH—(CH2)9—NH255-tert-butyl—H—NH—(CH2)12—NH256-tert-butyl—H—NH—(CH2)6—CH357-tert-bulyl—H—NH—(CH2)7—CH358-tert-butyl—H—NH—(CH2)8—CH359-tert-butyl—H—NH—(CH2)9—CH360-tert-butyl—H—NH—(CH2)11—CH361-tert-butyl—H—NH—(CH2)15—CH362-tert-butyl—H1363-tert-butyl—H1464—CH3-isopropyl—NH—(CH2)7—NH265—CH3-isopropyl—NH—(CH2)8—NH266—CH3-isopropyl—NH—(CH2)9—NH267—CH3-isopropyl—NH—(CH2)12—NH268—CH3-isopropyl—NH—(CH2)6—CH369—CH3-isopropyl—NH—(CH2)7—CH370—CH3-isopropyl—NH—(CH2)8—CH371—CH3-isopropyl—NH—(CH2)9—CH372—CH3-isopropyl—NH—(CH2)11—CH373—CH3-isopropyl—NH—(CH2)15—CH374—CH3-isopropyl1575—CH3-isopropyl1676—(CH2)2—O—CH3—H—NH—(CH2)7—NH277—(CH2)2—O—CH3—H—NH—(CH2)8—NH278—(CH2)2—O—CH3—H—NH—(CH2)9—NH279—(CH2)2—O—CH3—H—NH—(CH2)12—NH280—(CH2)2—O—CH3—H—NH—(CH2)6—CH381—(CH2)2—O—CH3—H—NH—(CH2)7—CH382—(CH2)2—O—CH3—H—NH—(CH2)8—CH383—(CH2)2—O—CH3—H—NH—(CH2)9—CH384—(CH2)2—O—CH3—H—NH—(CH2)11—CH385—(CH2)2—O—CH3—H—NH—(CH2)15—CH386—(CH2)2—O—CH3—H1787—(CH2)2—O—CH3—H1888—CH3—C2H51989—CH3—C2H5—NH—(CH2)10—CH390—CH3—C2H5—NH—(CH2)14—CH391—CH3—H2092—CH3—H—NH—(CH2)10—CH393—CH3—H—NH—(CH2)14—CH394—CF3—H2195—CF3—H—NH—(CH2)10—CH396—CF3—H—NH—(CH2)14—CH397-isopropyl—H2298-isopropyl—H—NH—(CH2)10—CH399-isopropyl—H—NH—(CH2)14—CH3


[0031] The novel 4-amino-2-(2-pyridyl)pyrimidines are prepared by methods known per se (J. Org. Chem.; 1967. 32, 1591). For that purpose, 2-cyanopyridine is reacted, in a suitable solvent, for example methanol, ethanol, isopropanol, DMF, tetrahydrofuran etc., with ammonium acetate or ammonium chloride at a temperature of from −10° C. to 100° C. over a period of from 1 hour to 24 hours to form the corresponding 2-amidinopyridine. The 2-amidinopyridine is then condensed with an appropriate β-keto ester using an auxiliary base, for example sodium carbonate, potassium hydroxide, sodium ethanolate, sodium methanolate, potassium tert-butanolate etc., in a suitable solvent, for example methanol, ethanol, butanol, tert-butanol, THF, DMF, acetonitrile, toluene, xylene etc., over a period of from 1 to 24 hours at a temperature of from 40 to 120° C. The 4-hydroxy-2-(2-pyridyl)pyrimidine thereby obtained is then converted into the corresponding 4-chloro-2-(2-pyridyl)pyrimidine by conventional methods using phosphorus oxychloride. The substituted 4-amino-2-(2-pyridyl)pyrimidines are obtained by reacting the 4-chloro-2-(2-pyridyl)pyrimidine with primary or secondary amines in a suitable solvent, for example DMF, dioxane, toluene, xylene, ethanol, butanol, and an auxiliary base, for example triethylamine, DIEA, sodium carbonate, potassium hydroxide etc., or using an excess of amine at from 40 to 130° C. over a period of from 1 to 24 hours. Preparation of the compounds of formula (2), except for the reaction with polymer-bound diamines, is analogous to that of compound (1). The polymer-bound diamines are obtained by reacting an excess of from 2 to 10 equivalents of diamine in, for example, DMF, dichloromethane, THF or dioxane with trityl chloride polystyrene resin at a temperature of from 10 to 50° C. over a period of from 0.5 to 24 hours. From 2 to 10 equivalents of appropriately substituted 4-chloro-2-(2-pyridyl)pyrimidines are then reacted, in a suitable solvent, for example dichloromethane, DMF, THF or toluene, with the polymer-bound diamines at from 10 to 120° C. over a period of from 2 to 48 hours. After washing the resin to remove the excess, the target compounds are split off using from 1 to 30% trifluoroacetic acid in dichloromethane at 25° C. over a period of from 1 to 5 hours. For the purpose of further purification, the substances are freeze-dried from tBuOH/water 4:1 with from 1 to 10% HOAc and once from tBuOH/water 4:1.


[0032] The entire reaction proceeds according to the following scheme:
23


[0033] The compounds of formula (3) are prepared analogously to preparation of the compounds of formula (1) according to the following scheme:
24


[0034] The 4-amino-2-(2-pyridyl)pyrimidines used in accordance with the invention exhibit pronounced antimicrobial action, especially against pathogenic gram-positive and gram-negative bacteria and against bacteria of the skin flora, and also against yeasts and moulds. They are accordingly suitable especially for disinfection, deodorisation, and for general and anti-microbial treatment of the skin and mucosa and of integumentary appendages (hair), more especially for the disinfection of hands and wounds.


[0035] They are accordingly suitable as antimicrobial active substances and preservatives in personal care preparations, for example shampoos, bath additives, haircare preparations, liquid and solid soaps (based on synthetic surfactants and salts of saturated and/or unsaturated fatty acids), lotions and creams, deodorants, other aqueous or alcoholic solutions, e.g. cleansing solutions for the skin, moist cleaning cloths, oils or powders.


[0036] The invention accordingly relates also to a personal care preparation comprising at least one compound of formula (1) and cosmetically tolerable carriers or adjuvants.


[0037] The personal care preparation according to the invention contains from 0.01 to 15% by weight, preferably from 0.1 to 10% by weight, based on the total weight of the composition, of a compound of formula (1), and cosmetically tolerable adjuvants.


[0038] Depending upon the form of the personal care preparation, it comprises, in addition to the 4-amino-2-(2-pyridyl)pyrimidine of formula (1), further constituents, for example sequestering agents, colourings, perfume oils, thickening or solidifying agents (consistency regulators), emollients, UV-absorbers, skin protective agents, antioxidants, additives that improve the mechanical properties, such as dicarboxylic acids and/or aluminium, zinc, calcium or magnesium salts of C14-C22fatty acids, and, optionally, preservatives.


[0039] The personal care preparation according to the invention may be in the form of a water-in-oil or oil-in-water emulsion, an alcoholic or alcohol-containing formulation, a vesicular dispersion of an ionic or non-ionic amphiphilic lipid, a gel, a solid stick or an aerosol formulation.


[0040] As a water-in-oil or oil-in-water emulsion, the cosmetically tolerable adjuvant contains preferably from 5 to 50% of an oil phase, from 5 to 20% of an emulsifier and from 30 to 90% water. The oil phase may comprise any oil suitable for cosmetic formulations, for example one or more hydrocarbon oils, a wax, a natural oil, a silicone oil, a fatty acid ester or a fatty alcohol. Preferred mono- or poly-ols are ethanol, isopropanol, propylene glycol, hexylene glycol, glycerol and sorbitol.


[0041] Cosmetic formulations according to the invention are used in various fields. There come into consideration, for example, especially the following preparations:


[0042] skin-care preparations, e.g. skin-washing and cleansing preparations in the form of tablet-form or liquid soaps, synthetic detergents or washing pastes,


[0043] bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath preparations, e.g. bath cubes and bath salts;


[0044] skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils;


[0045] cosmetic personal care preparations, e.g. facial make-up in the form of day creams or powder creams, face powder (loose or pressed), rouge or cream make-up, eye-care preparations, e.g. eyeshadow preparations, mascaras, eyeliners, eye creams or eye-fix creams; lip-care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;


[0046] intimate hygiene preparations, e.g. intimate washing lotions or intimate sprays;


[0047] foot-care preparations, e.g. foot baths, foot powders, foot creams or foot balsams, special deodorants and antiperspirants or callus-removing preparations;


[0048] light-protective preparations, such as sun milks, lotions, creams or oils, sun-blocks or tropicals, pre-tanning preparations or after-sun preparations;


[0049] skin-tanning preparations, e.g. self-tanning creams;


[0050] depigmenting preparations, e.g. preparations for bleaching the skin or skin-lightening preparations;


[0051] insect-repellents, e.g. insect-repellent oils, lotions, sprays or sticks;


[0052] deodorants, such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons;


[0053] antiperspirants, e.g. antiperspirant sticks, creams or roll-ons;


[0054] preparations for cleansing and caring for blemished skin, e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks;


[0055] hair-removal preparations in chemical form (depilation), e.g. hair-removing powders, liquid hair-removing preparations, cream or paste-form hair-removing preparations, hair-removing preparations in gel form or aerosol foams;


[0056] shaving preparations, e.g. shaving soap, foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or aftershave lotions;


[0057] fragrance preparations, e.g. fragrances (eau de Cologne, eau de toilette, eau de parfum, parfum de toilette, perfume), perfume oils or perfume creams;


[0058] dental care, denture-care and mouth-care preparations, e.g. toothpastes, gel toothpastes, tooth powders, mouthwash concentrates, anti-plaque mouthwashes, denture cleaners or denture fixatives;


[0059] cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g. hair-waving preparations for permanent waves (hot wave, mild wave, cold wave), hair-straightening preparations, liquid hair-setting preparations, hair foams, hairsprays, bleaching preparations, e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders, bleaching pastes or oils, temporary, semi-permanent or permanent hair colorants, preparations containing self-oxidising dyes, or natural hair colorants, such as henna or camomile.


[0060] An antimicrobial soap has, for example, the following composition:


[0061] 0.01 to 5% by weight of a compound of formula (1)


[0062] 0.3 to 1% by weight titanium dioxide,


[0063] 1 to 10% by weight stearic acid,


[0064] soap base ad 100%, e.g. a sodium salt of tallow fatty acid or coconut fatty acid, or glycerol.


[0065] A shampoo has, for example, the following composition:


[0066] 0.01 to 5% by weight of a compound of formula (1),


[0067] 12.0% by weight sodium laureth-2-sulfate,


[0068] 4.0% by weight cocamidopropyl betaine,


[0069] 3.0% by weight NaCl and


[0070] water ad 100%.


[0071] A deodorant has, for example, the following composition:


[0072] 0.01 to 5% by weight of a compound of formula (1),


[0073] 60% by weight ethanol,


[0074] 0.3% by weight perfume oil, and


[0075] water ad 100%.


[0076] The invention relates also to an oral composition containing from 0.01 to 15% by weight, based on the total weight of the composition, of a compound of formula (1), and orally tolerable adjuvants.


[0077] Example of an Oral Composition:


[0078] 10% by weight sorbitol,


[0079] 10% by weight glycerol,


[0080] 15% by weight ethanol,


[0081] 15% by weight propylene glycol,


[0082] 0.5% by weight sodium lauryl sulfate,


[0083] 0.25% by weight sodium methylcocyl taurate,


[0084] 0.25% by weight polyoxypropylene/polyoxyethylene block copolymer,


[0085] 0.10% by weight peppermint flavouring,


[0086] 0.1 to 0.5% by weight of a compound of formula (1), and


[0087] 48.6% by weight water.


[0088] The oral composition according to the invention may be, for example, in the form of a gel, a paste, a cream or an aqueous preparation (mouthwash).


[0089] The oral composition according to the invention may also comprise compounds that release fluoride ions which are effective against the formation of caries, for example inorganic fluoride salts, e.g. sodium, potassium, ammonium or calcium fluoride, or organic fluoride salts, e.g. amine fluorides, which are known under the trade name Olafluor.


[0090] The 4-amino-2-(2-pyridyl)pyrimidines of formula (1) used in accordance with the invention are also suitable for treating, especially preserving, textile fibre materials. Such materials are undyed and dyed or printed fibre materials, e.g. of silk, wool, polyamide or polyurethanes, and especially cellulosic fibre materials of all kinds. Such fibre materials are, for example, natural cellulose fibres, such as cotton, linen, jute and hemp, as well as cellulose and regenerated cellulose. Preferred suitable textile fibre materials are made of cotton.


[0091] The 4-amino-2-(2-pyridyl)pyrimidines according to the invention are suitable also for treating, especially imparting antimicrobial properties to or preserving, plastics, e.g. polyethylene, polypropylene, polyurethane, polyester, polyamide, polycarbonate, latex etc. Fields of use therefor are, for example, floor coverings, plastics coatings, plastics containers and packaging materials; kitchen and bathroom utensils (e.g. brushes, shower curtains, sponges, bathmats), latex, filter materials (air and water filters), plastics articles used in the field of medicine, e.g. dressing materials, syringes, catheters etc., so-called “medical devices”, gloves and mattresses.


[0092] Paper, for example papers used for hygiene purposes, may also be provided with antimicrobial properties using the 4-amino-2-(2-pyridyl)pyrimidines according to the invention.


[0093] It is also possible for nonwovens, e.g. nappies/diapers, sanitary towels, panty liners, and cloths for hygiene and household uses, to be provided with antimicrobial properties in accordance with the invention.


[0094] The 4-amino-2-(2-pyridyl)pyrimidines of formula (1) are also used in washing and cleaning formulations, e.g. in liquid or powder washing agents or softeners.


[0095] The 4-amino-2-(2-pyridyl)pyrimidines of formula (1) can also be used especially in household and general-purpose cleaners for cleaning and disinfecting hard surfaces.


[0096] A cleaning preparation has, for example the following composition:


[0097] 0.01 to 5% by weight of a compound of formula (1)


[0098] 3.0% by weight octyl alcohol 4EO


[0099] 1.3% by weight fatty alcohol C8-C10polyglucoside


[0100] 3.0% by weight isopropanol


[0101] water ad 100%.


[0102] In addition to preserving cosmetic and household products, the preservation of technical products, the provision of technical products with antimicrobial properties and use as a biocide in technical processes are also possible, for example in paper treatment, especially in paper treatment liquors, printing thickeners of starch or cellulose derivatives, surface-coatings and paints.


[0103] The 4-amino-2-(2-pyridyl)pyrimidines of formula (1) are also suitable for the antimicrobial treatment of wood and for the antimicrobial treatment of leather, the preserving of leather and the provision of leather with antimicrobial properties.


[0104] The compounds according to the invention are also suitable for the protection of cosmetic products and household products from microbial damage.


[0105] The following Examples illustrate, but do not limit, the present invention.






PREPARATION EXAMPLES


Example 1

[0106] Synthesis of Substituted 4-amino-2-(2-pyridyl)pyrimidines


[0107] 1a: Preparation of 2-(2-pyridyl)pyrimidines
25


[0108] Sodium (1.44 g; 63 mmol) is dissolved, under nitrogen, in absolute ethanol (28.8 ml) at 45° C. A solution of 2-amidinopyridine hydrochloride (9.8 g; 63 mmol) in abs. ethanol (35 ml) is added and the mixture is heated at reflux for 1 hour. Portions, each of 8 ml, of the suspension are transferred to 8 flasks each containing a β-keto ester (7.88 mmol) in abs. ethanol (5 ml) (see Table 2 for amounts used). The suspensions are heated at reflux for 5 hours. After cooling to 25° C., the reaction mixture is evaporated to dryness and directly used in chlorination.
2TABLE 2β-Keto esters usedAmountβ-Keto esterR1R2Rused2-ethylacetoacetic acid ethyl ester—CH3—C2H5—C2H51.27 gacetoacetic acid ethyl ester—CH3H—C2H51.04 gtrifluoroacetoacetic acid methyl ester—CF3H—CH31.36 g4-methyl-3-oxopentanoic acid methyl-isopropyl—CF3—CH31.27 gester4,4-dimethyl-3-oxopentanoic acid-tert-butylH—CH31.27 gmethyl ester2-isopropylacetoacetic acid ethyl ester—CH3—C2H51.38 gisopropyl5-methoxy-3-oxopentanoic acid methylH3C—O—CH2—CH2H—CH31.28 gesterbenzoylacetic acid ethyl esterphenylH—C2H51.54 gb: Synthesis of 4-chloro-2-(2-pyridyl)pyrimidines 2627


[0109] The crude products from a) are taken up in phosphorus oxychloride (5 ml, 54 mmol, in each case) and heated at 110° C. for 3 hours. After cooling to 25° C., the reaction mixtures are poured into 10 ml of ice-water and slowly adjusted to pH 8-9 using aqueous sodium hydroxide solution. The crude products obtained are extracted with dichloromethane (5×10 ml) and the organic extracts are washed with water (2×10 ml) and with saturated NaCl solution. After drying over MgSO4, the product is filtered off and evaporated to dryness. Because of the good purity of most of the products (see Table 3), further processing is carried out without further purification.
3TABLE 3HPLC purity of crude products (detection at 214 nm)No.R1R2HPLC purity [%]1—CH3-Et>992—CH3—H>993—CF3—H>994-isopropyl—H>995-tert-butyl—H 936—CH3-iPr 837—CH2CH2—O—CH3—H 988-phenyl—H <5c: Loading of trityl chloride-polystyrene resin (TCP) with diamines 28


[0110] In each case, 1 g of TCP resin (resin loading: 1.44 mmol/g) was shaken in abs. dichloromethane (5 ml) with a diamine (see Tab. 4; 5 equiv.; 7.2 mmol) for 24 hours at 25° C. The resin is washed with dichloromethane (5×), 1% HOAc/DCM, DMF and diethyl ether and dried in vacuo.
4TABLE 4Diamines used and weights thereofdiamineamount usedn = 7 938 mgn = 81039 mgn = 91140 mgn = 121443 mgd: Reaction of the diamine-TCP resins with 4-chloro-2-(2-pyridyl)pyrimidines 293031


[0111] Diamine-TCP resins (50 mg; 72 μmol of diamine, in each case) are shaken in abs. dichloromethane (1 ml, in each case) with 4-chloro-2-(2-pyridyl)pyrimidines (3 equiv.; 216 μmol, in each case) and DIPEA (5 equiv.; 360 μmol) for 48 hours at 25° C. The resin is then filtered off, washed (DMF 5×, MeOH 5×, DCM 5×, diethyl ether 5×) and dried in vacuo. Cleaving is then carried out using 5% TFA/DCM (1.5 mL, in each case) for 1 hour at 25° C. The cleavage solutions are evaporated to dryness and the crude products are freeze-dried from tBuOH/water 4:1 with 10% HOAc and once from tBuOH/water 4:1.


[0112] e: Reaction of 4-chloro-2-(2-pyridyl)pyrimidines with Monoamines
32


[0113] 4-Chloro-2-(2pyridyl)pyrimidines (72 μmol, in each case) are heated with monoamines (3 equiv.; 216 μmol, in each case) in abs. dioxane (0.5 ml) for 24 hours at 90° C. After cooling to 25° C., in order to remove the excess of amine, a scavenger resin (polystyrene aldehyde resin; resin loading 1.28 mmol/g; 3 equiv; 216 mmol; 170 mg) and also trimethyl orthoformate (2 equiv.; 144 μmol; 15 mg; 16 μl) and additional abs. THF (2 ml) are added. The reaction mixture is shaken for 24 hours at 25° C. After filtering, the filtrate is evaporated to dryness and the crude product is freeze-dried from tBuOH/water 4:1 with 10% HOAc and once from tBuOH/water 4:1.
5TABLE 5Amines and amounts usedAmineAmount (216 μmol)AmineAmount (216 μmol)H2N-(CH2)6-CH325 mg; 32 μLH2N-(CH2)10-CH337 mg; 46 μLH2N-(CH2)7-CH328 mg; 36 μLH2N-(CH2)14-CH349 mgH2N-(CH2)8-CH331 mg; 40 μLbenzylamine23 mg; 24 μLH2N-(CH2)9-CH334 mg; 43 μLcyclohexylamine21 mg; 25 μLH2N-(CH2)11-CH340 mg; 50 μLphenylethylamine26 mg; 29 μLH2N-(CH2)15-CH352 mg


[0114] All compounds prepared by the methods described above are listed in Tab. 1 and were characterised by means of HPLC and MS (Table 7, Purities). Some of the compounds were analysed using 1H-NMR spectroscopy (Table 6):
6TABLE 6Comp.1H-NMR 250 MHz (CD3OD), δ [ppm]:of f.Structureδ [ppm]MultiplicityAssignment(35)330.80-1.75 3.64 6.87 7.78 8.26 8.63 8.76m, 19 H t, 2 H ( J = 7 Hz) s, 1 H m, 1 H m, 1 H m, 1 H m, 1 H—NH—CH—CH2H arom. H arom. H arom. H arom. H arom. H arom.(36)340.80-1.75 3.63 6.87 7.73 8.21 8.62 8.77m, 23 H t, 2 H (J = 7 Hz) s, 1 H m, 1 H m, 1 H m, 1 H m, 1 H—NH—CH—CH2H arom. H arom. H arom. H arom. H arom. H arom.(37)350.80-1.73 3.63 6.85 7.68 8.15 8.59 8.73m, 31 H t, 2 H (J = 7 Hz) s, 1 H m, 1 H m, 1 H m, 1 H m, 1 H—NH—CH—CH2H arom. H arom. H arom. H arom. H arom. H arom.(44)360.80-1.80 3.72 6.61 7.73 8.13 8.58 8.87m, 20 H t, 2 H (J = 7 Hz) s, 1 H m, 1 H m, 1 H m, 1 H m, 1 H—NH—CH—CH2H arom. H arom. H arom. H arom. H arom. H arom.(47)370.70-1.70 3.56 6.44 7.57 7.96 8.40 8.69m, 26 H t, 2 H (J = 7 Hz) s, 1 H m, 1 H m, 1 H m, 1 H m, 1 H—NH—CH—CH2H arom. H arom. H arom. H arom. H arom. H arom.



Example 2

[0115] Determination of the Minimum Inhibitory Concentration (MIC Value) in Microtitre Plates


[0116] Nutrient Medium:


[0117] Casein-soybean flour-peptone broth for preparation of pre-cultures of test bacteria and yeast.


[0118] Mycological slant agar for the pre-culture of moulds


[0119] Examples of Test Organisms:
7Bacteria:Staphylococcus hominis DMS 20328 (= SH)Escherichia coli NCTC 8196 (= EC)


[0120] Procedure:


[0121] The test substances are pre-dissolved in dimethyl sulfoxide (DMSO) and tested in a dilution series of 1:2.


[0122] Bacteria and yeast are cultured overnight in CASO broth, the mould is cultured overnight on mycological slant agar, and washed off using 10 ml of 0.85% sodium chloride solution (+0.1% Triton X-100).


[0123] All the test organisms are adjusted to an organism count of 1-5×106 CFU/ml using 0.85% sodium chloride solution.


[0124] The test substances are pre-pipetted into microtitre plates in amounts of 8 μl per well.


[0125] Pre-diluted organism suspensions are diluted 1:100 in CASO broth (bacteria and yeast) or Sabouraud 2% glucose broth (mould) and are added in amounts of 192 μl per well to the test substances.


[0126] The test batches are incubated for 48 hours at 37° C. (bacteria and yeast) or for 5 days at 28° C. (mould).


[0127] After incubation, the growth is determined on the basis of the turbidity of the test batches (optical density) at 620 nm in a microplate reader.


[0128] The minimum inhibitory concentration (MIC value) is the concentration of substance at which there is found (compared to the growth of the control) an appreciable inhibition of growth (≦20% growth) of the test organisms.


[0129] One microtitre plate is used for each test organism and substance concentration. All the substances are tested in duplicate.


[0130] The results are compiled in Table 7:
8TABLE 7Minimum inhibitory concentration (MIC) of compounds tested [μg]Comp.ofS. hominisE. coliS. hominisE. coliformulaPurity [%][μg/mL][μg/mL]No.Purity [%][μg/mL][μg/mL]469>120>120539280>80563>120>120549930120663n. d.n. d.55667.56076012012056893.75>120898n. d.n. d.57883.75>1209747.5>12058883.75>12010795>805996n. d.n. d.11783.75>12060943.7512012987.51206171>120>1201395120>1206290n. d.n. d.1495120>12063903.75>120156560>120648030>1201695>120>1206591301201791>80>8066873.75301894120>12067825201993156068837.5>12020957.512069933.7512021953.756070743.75>12022953.7512071715>8023953.75>120727715>12024932.5807367120>120259015>120748560>120269560>120755330>120279660>120769540>802898>80>8077923012029>99>80>80786415603099120120796910203198520807130>12032993.75>120818715>12033992.5>8082707.512034993.75>12083657.5>12035993.75>120845615120369860>12085731201203790>120>1208675120>120389960>120876230120399930>12088901201204075120>12089913.75>1204194120>120908730120429930120918030>12043917.56092843.75>12044973.75>12093837.5>12045973.75>1209483>120>12046973.75>1209579120>12047975>80968812012048803.751209790151204990>120>12098813.75>120509415>120998015>120519530>1205280n. d.n. d.n. d. = not determined Purity [%] = HPLC area percentages at a detection wavelength of 214 nm


[0131]

9





TABLE 8










Minimum inhibitory concentrations (MIC in [μg/mL]) of selected compounds with


respect to further microorganisms









Compound of formula


















Microorganism
37
44
68
45
46
70
23
47
63
71
32







Staphylococcus aureus
ATCC 9144

 15*
15
15
7.5
30
7.5
7.5
7.5
15
7.5
15




S. epidermidis
ATCC 12228

7.5
15
15
7.5
30
7.5
7.5
3.75
30
7.5
7.5




Micrococcus luteus
ATCC 9341

1.0
1.0
3.75
3.75
3.75
1.0
<0.5
<0.5
7.5
1.9
>0.5




Enterococcus hirae
ATCC 10541

30
15
7.5
3.75
30
3.75
3.75
3.75
30
7.5
7.5




E. coli
NCTC 8196

>30
>30
>30
>30
>60
>60
>60
>60
*60
>60
>60




Epidermophyton floccosum
DSM 10709

>60
60
 60*
>60
60
*7.5
*15
*60
*15
60
*60




Trichophyton mentagrophytes
ATCC 9533

>60
>60
>60
>60
>60
15
15
60
*60
*30
>60












Compound of formula


















Microorganism
56
9
33
57
10
34
58
11
35
43
83







Staphylococcus aureus
ATCC 9144

3.75
15
15
1.9
15
>60
*1.9
7.5
*7.5
30
*15




S. epidermidis
ATCC 12228

3.75
*15
3.75
1.9
15
*60
1.9
7.5
7.5
*15
15




Micrococcus luteus
ATCC 9341

<0.5
3.75
<0.5
<0.5
<0.5
>0.5
<0.5
1.9
<0.5
3.75
3.75




Enterococcus hirae
ATCC 10541

1.9
30
15
1.0
30
60
7.5
7.5
7.5
30
30




E. coli
NCTC 8196

>60
>60
>60
>60
>60
>60
>60
>60
>60
>60
>60




Epidermophyton floccosum
DSM 10709

*30
*15
>60
60
60
>60
>60
>60
>60
>60
>60




Trichophyton mentagrophytes
ATCC 9533

*30
*30
>60
*60
60
>60
>60
>60
>60
>60
>60












Compound of formula

















Microorganism
12
60
21
69
77
22
30
54
78
7







Staphylococcus aureus
ATCC 9144

15
15
120
7.5
>60
7.5
>60
*60
*60
>60




S. epidermidis
ATCC 12228

*7.5
*7.5
120
7.5
>60
<3.75
>60
>60
*60
>60




Micrococcus luteus
ATCC 9341

<3.75
<3.75
120
<3.75
>60
<3.75
60
15
>60
>60




Enterococcus hirae
ATCC 10541

7.5
7.5
120
3.75
>60
<3.75
>60
>60
>60
>60




E. coli
NCTC 8196

>60
>60
120
>60
>60
>60
>60
>60
>60
>60




Klebsiella pneumonia
ATCC 4352

>60
>60
120
*60
>60
>60
>60
>60
>60
>60




Salmonella choleraesuis
ATCC 10708

>60
>60
>120
>60
>60
>60
>60
>60
>60
>60




Pseudomonas aeruginosa
CIP A-22

>60
>60
>120
>60
>60
>60
>60
>60
>60
>60




Candida albicans
ATCC 10231

*60
>60
120
60
>60
15
>60
>60
>60
>60




Aspergillus niger
ATCC 6275

>60
60
>60
*60
>60
60
>60
>60
>60
>30




Epidermophyton floccosum
DSM 10709

*30
>60
>60
15
>60
*7.5
>60
>60
>60
>30




Trichophyton mentagrophytes
ATCC 9533

60
>60
>60
*15
>60
15
>60
>60
>60
>30












Compound of formula















Microorganism
79
24
48
65
18
42
66
19







Staphylococcus aureus
ATCC 9144

*60
<3.75
<3.75
>60
>60
60
60
60




S. epidermidis
ATCC 12228

30
3.75
<3.75
>60
>60
60
60
60




Micrococcus luteus
ATCC 9341

60
<3.75
<3.75
>60
>60
*15
*30
7.5




Enterococcus hirae
ATCC 10541

>60
*15
<3.75
>60
>60
>60
>60
60




E. coli
NCTC 8196

60
>60
>60
>60
>60
>60
>60
>60




Klebsiella pneumonia
ATCC 4352

>60
>60
>60
>60
>60
>60
>60
>60




Salmonella choleraesuis
ATCC 10708

>60
>60
>60
>60
>60
>60
>60
>60




Pseudomonas aeruginosa
CIP A-22

>60
>60
>60
>60
>60
>60
>60
>60












Compound of formula















Microorganism
79
24
48
65
18
42
66
19







Candida albicans
ATCC 10231

*30
30
*15
>60
>60
>60
>60
7.5




Aspergillus niger
ATCC 6275

>60
>60
>60
>60
>60
>60
>60
>60




Epidermophyton floccosum
DSM 10709

>60
60
*60
>60
>60
>60
>60
>60




Trichophyton mentagrophytes
ATCC 9533

>60
>60
*60
>60
>60
>60
>60
>60









Compound of formula













Microorganism
92
93
89
90
98
99







Staphylococcus aureus
ATCC 9144

3.75
15
7.5
*30
1.9
7.5




S. epidermidis
ATCC 12228

*1.9
7.5
7.5
*30
1.9
3.75




Micrococcus luteus
ATCC 9341

<0.5
1.9
1.9
15
<0.5
1.0




Enterococcus hirae
ATCC 10541

3.75
15
7.5
30
1.9
3.75




E. coli
NCTC 8196

>120
>120
>60
>60
120
>60




Klebsiella pneumonia
ATCC 4352

120
>120
60
>60
120
>60




Salmonella choleraesuis
ATCC 10708

>120
>120
>60
>60
>120
>60




Pseudomonas aeruginosa
CIP A-22

>120
>120
>60
>60
>120
>60




Candida albicans
ATCC 10231

15
*120
15
*60
30
>60




Aspergillus niger
ATCC 6275

*60
>60
30
>120
>60
>60




Epidermophyton floccosum
DSM 10709

15
>60
15
60
15
*60




Trichophyton mentagrophytes
ATCC 9533

15
>60
*7.5
>120
>60
>60






*significant inhibition of growth, but not complete inhibition









Example 3

[0132] Determination of the Bactericidal Activity of Selected Compounds


[0133] Test Method:


[0134] Nutrient Medium:


[0135] Casein-soybean flour-peptone broth for preparation of pre-cultures of test bacteria


[0136] Examples of test Organisms:


[0137]

Staphylococcus aureus
ATCC 6538


[0138]

Escherichia coli
ATCC 10536


[0139]

Salmonella choleraesuis
ATCC 10708


[0140] Procedure:


[0141] The test substances are dissolved in dimethyl sulfoxide (DMSO) and tested in a concentration of 120 μg/ml.


[0142] Bacteria are incubated overnight in CASO broth and adjusted to an organism count of 1-5×105 CFU/ml using 0.85% sodium chloride solution.


[0143] The test substances are pre-pipetted into microtitre plates in amounts of 8 μl per well.


[0144] The adjusted test organism suspensions are added in amounts of 192 μl per well to the test substances and mixed. After defined contact times, the test batches are mixed, an aliquot is withdrawn and diluted in several steps in a dilution series of 1:10 in a suitable inactivation medium.


[0145] The test plates are incubated for 24 hours at 37° C.


[0146] After incubation, the growth is determined on the basis of the turbidity of the test batches (optical density) at 620 nm in a microplate reader.


[0147] On the basis of the number of growth-exhibiting steps in the dilution series, the reduction in the test organism concentration is determined in powers of ten (log value).


[0148] One microtitre plate is used for each test organism.


[0149] All the substances are tested in duplicate.
10TABLE 9Logarithmic reduction in organism count after contact for 30minutes at a substance concentration of 120 μg/mLMicroorganismS. choleraesuisE. coliS. aureusCompound of formulaATCC 10708NCTC 8196ATCC 6538(12)<1<11-2(37)<1<11-2(44)<1<11-2(60)<1<1<1(68)<1<1≦1(21)<1<11-2(45)<1<11-2(69)≦1<11-2(77)<1<1>3(22)<1<11-2(30)≦1<1≦1(46)<1<1≦1(54)≦1≦12-3(70)<1≦1≦1(78)<1≦1>3 (7)<1≦12(23)<1<13(47)<1<11(63)<1≦1<1(71)<1<12(24)<1≦12(32)≦1<1<1(48)<1<11(57)<1<11 (9)<1<1<1(33)<1<1<1(57)<1<1<1(65)<1<13(10)<1<11-2(18)<1<11(34)<1<1<1(42)<1≦12(58)≦1≦11(11)<1≦11-2(19)<1≦12-3(35)<1<1<1(43)<1<13(83)<1≦12(92)≦1<1>3(93)<1≦12(89)≦1≦12(90)<1<12(98)2-31-21(99)<1≦12


Claims
  • 1. A compound of formula
  • 2. A compound according to claim 1, wherein R5 and R6 are each independently of the other hydrogen or C1-C20alkyl.
  • 3. A compound according to claim 1, wherein R5 and R6 are hydrogen.
  • 4. A compound according to 3, wherein R1 and R2 are each independently of the other hydrogen, unsubstituted or mono- or poly-halo-substituted C1-C20alkyl; or C1-C5alkoxy-C1-C5alkyl.
  • 5. A compound according to claim 4, wherein R1 and R2 are each independently of the other hydrogen, unsubstituted or mono- or poly-halo-substituted C1-C5alkyl; or C1-C3alkoxy-C1-C5alkyl.
  • 6. A compound according claim 5, wherein R1 and R2 are each independently of the other hydrogen, methyl, ethyl, isopropyl, tert-butyl, CF3or the radical —(CH2)m—O—CH3, and m is from 1to 4.
  • 7. A compound according to claim 1, wherein R3 is unsubstituted or amino-substituted C7-C20alkyl, C3-C7cycloalkyl-C8-C20alkyl, C1-C4alkoxy-C7-C20alkyl, R7R8N—C7C20alkyl, phenyl-C1-C4alkyl or phenyl-C1-C6alkoxy; and R1, R2, R4, R5, R6, R7 and R8 are as defined in claim 1.
  • 8. A compound according to claim 7, wherein R3 is unsubstituted or amino-substituted C7-C20alkyl or R7R8N—C7-C20alkyl.
  • 9. A compound according to claim 7, wherein R3 is phenyl-C1-C3alkyl.
  • 10. A compound according to claim 1, wherein R1 and R2 are each independently of the other hydrogen, methyl, ethyl, isopropyl, tert-butyl, CF3or the radical —(CH2)m—O—CH3; R3 is unsubstituted or amino-substituted C7-C20alkyl or R7R8N—C7-C20alkyl; R4 is hydrogen; or C1-C20alkyl; R5, R6, R7 and R8 are each independently of the others hydrogen or C1-C20alkyl; and m is from 1 to 4.
  • 11. A compound according to claim 10, wherein R5, R6, R7 and R8 are hydrogen.
  • 12. A compound according to claim 1, which corresponds to formula
  • 13. A compound according to claim 1, which corresponds to formula
  • 14. A process for the preparation of a compound of formula
  • 15. A process for the preparation of a compound of formula
  • 16. An antimicrobial method for the treatment of surfaces, which comprises contacting a substrate with an antimicrobially effective amount of a compound of formula (1) according to claim 1.
  • 17. A method according to claim 16 for the antimicrobial treatment, deodorisation and disinfection of the skin, mucosa and hair, which comprises applying an antimicrobially effective amount of a compound of the formula (1) according to claim 1 thereto.
  • 18. A method according to claim 16, wherein the compound of formula (1) is used for disinfection and deodorisation.
  • 19. A method according to claim 16 for the antimicrobial treatment of textile fibre materials, which comprises applying an antimicrobially effective amount of the compound of formula (1) according to claim 1 thereto.
  • 20. A method according to claim 16, wherein the compound of formula (1) is used for preservation.
  • 21. A method according to claim 16 which comprises applying an antimicrobially effective amount of formula (1) in washing and cleaning formulations.
  • 22. A method according to claim 16 which comprises the incorporation of an effective amount of a compound of formula (1) according to claim 1 into materials selected from plastics, paper, nonwovens, wood or leather for the antimicrobial finishing of said materials.
  • 23. A personal care preparation comprising from 0.01 to 15% by weight, based on the total weight of the composition, of a compound of formula (1), and cosmetically tolerable adjuvants.
  • 24. An oral composition comprising from 0.01 to 15% by weight, based on the total weight of the composition, of a compound of formula (1), and orally tolerable adjuvants.
Priority Claims (1)
Number Date Country Kind
01810387.9 Apr 2001 EP