4-AZAINDOLE INHIBITORS OF CRAC

Information

  • Patent Application
  • 20130158066
  • Publication Number
    20130158066
  • Date Filed
    December 13, 2012
    12 years ago
  • Date Published
    June 20, 2013
    11 years ago
Abstract
Disclosed are compounds of Formula (I):
Description
FIELD OF THE INVENTION

This invention pertains to compounds useful for treatment of autoimmune and inflammatory diseases associated with IL-2 inhibition via modulation of calcium release-activated calcium channels.


BACKGROUND OF THE INVENTION

The cytokine interleukin 2 (IL-2) is a T-cell mitogen important for T-cell proliferation and as a B cell growth factor. Because of its effects on T cells and B cells, IL-2 is recognized as an important regulator of immune responses. IL-2 is involved in inflammation, tumor progression and hematopoiesis, and IL-2 affects the production of other cytokines such as TNA alpha, TNF beta, IFN gamma. Inhibition of IL-2 production thus is relevant to immunosuppression therapies and treatment of inflammatory and immune disorders.


T-cell antigen binding in inflammatory events leads to T-cell initiated calcium influx by calcium release-activated calcium channels (CRAC). IL-2 secretion by T-cells occurs in response to calcium ion influx. Modulation of CRAC thus provides a mechanism for control of production of IL-2 and other cytokines associated with inflammation. CRAC inhibition has been recognized as a potential route to therapies for rheumatoid arthritis, asthma, allergic reactions and other inflammatory conditions (see, e.g., Chang et al., Acta Pharmacologica Sinica (2006) Vol. 7, 813-820), and CRAC inhibitors have been shown to prevent antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models (Yoshino et al., Eur. J. Pharm. (2007) Vol. 560(2), 225-233). There is, accordingly, a need for CRAC inhibitors.


SUMMARY OF THE INVENTION

The invention provides a compound of Formula (I):




embedded image


wherein:


Ar is phenyl, unsubstituted or substituted with one, two or three substituents independently selected from halogen and alkoxy; and


Ar′ is phenyl, unsubstituted or substituted with one or two substituents independently selected from lower alkyl, —CF3, —SO2N(CH3)2, —CN and halogen, or heteroaryl, unsubstituted or substituted with one or two substituents independently selected from lower alkyl, —CF3 and halogen,


or a pharmaceutically acceptable salt thereof.


The invention also provides for pharmaceutical compositions comprising the compounds, methods of using the compounds, and methods of preparing the compounds.


All documents cited to or relied upon below are expressly incorporated herein by reference.







DETAILED DESCRIPTION OF THE INVENTION
Definitions

Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms “a”, “an,” and “the” include plural referents unless the context clearly dictates otherwise.


“Alkyl” means the monovalent linear or branched saturated hydrocarbon moiety, consisting solely of carbon and hydrogen atoms, having from one to twelve carbon atoms. “Lower alkyl” refers to an alkyl group of one to six carbon atoms, i.e. C1-C6alkyl. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl, n-hexyl, octyl, dodecyl, and the like.


“Alkoxy” and “alkyloxy”, which may be used interchangeably, mean a moiety of the formula —OR, wherein R is an alkyl moiety as defined herein. Examples of alkoxy moieties include, but are not limited to, methoxy, ethoxy, isopropoxy, and the like.


“Aryl” means a monovalent cyclic aromatic hydrocarbon moiety having a mono-, bi- or tricyclic aromatic ring. The aryl group can be optionally substituted as defined herein. Examples of aryl moieties include, but are not limited to, phenyl, naphthyl, phenanthryl, fluorenyl, indenyl, pentalenyl, azulenyl, oxydiphenyl, biphenyl, methylenediphenyl, aminodiphenyl, diphenylsulfidyl, diphenylsulfonyl, diphenylisopropylidenyl, benzodioxanyl, benzofuranyl, benzodioxylyl, benzopyranyl, benzoxazinyl, benzoxazinonyl, benzopiperadinyl, benzopiperazinyl, benzopyrrolidinyl, benzomorpholinyl, methylenedioxyphenyl, ethylenedioxyphenyl, and the like, including partially hydrogenated derivatives thereof, each being optionally substituted.


“Cycloalkyl” means a monovalent saturated carbocyclic moiety having mono- or bicyclic rings. Preferred cycloalkyl are unsubstituted or substituted with alkyl. Cycloalkyl can optionally be substituted with one or more substituents, wherein each substituent is independently hydroxy, alkyl, alkoxy, halo, haloalkyl, amino, monoalkylamino, or dialkylamino, unless otherwise specifically indicated. Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like, including partially unsaturated (cycloalkenyl) derivatives thereof.


“Heteroalkyl” means an alkyl radical as defined herein wherein one, two or three hydrogen atoms have been replaced with a substituent independently selected from the group consisting of −ORa, —NRbRc and —S(O)nRd (where n is an integer from 0 to 2), with the understanding that the point of attachment of the heteroalkyl radical is through a carbon atom, wherein Ra is hydrogen, acyl, alkyl, cycloalkyl, or cycloalkylalkyl; Rb and Rc are independently of each other hydrogen, acyl, alkyl, cycloalkyl, or cycloalkylalkyl; and when n is 0, Rd is hydrogen, alkyl, cycloalkyl, or cycloalkylalkyl, and when n is 1 or 2, Rd is alkyl, cycloalkyl, cycloalkylalkyl, amino, acylamino, monoalkylamino, or dialkylamino. Representative examples include, but are not limited to, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxy-1-hydroxymethylethyl, 2,3-dihydroxypropyl, 1-hydroxymethylethyl, 3-hydroxybutyl, 2,3-dihydroxybutyl, 2-hydroxy-1-methylpropyl, 2-aminoethyl, 3-aminopropyl, 2-methylsulfonylethyl, aminosulfonylmethyl, aminosulfonylethyl, aminosulfonylpropyl, methylaminosulfonylmethyl, methylaminosulfonylethyl, methylaminosulfonylpropyl, and the like.


“Heteroaryl” means a monocyclic or bicyclic radical of 5 to 12 ring atoms having at least one aromatic ring containing one, two, three or four ring heteroatoms selected from N, O, or S, the remaining ring atoms being C, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. The heteroaryl ring may be optionally substituted as defined herein. Examples of heteroaryl moieties include, but are not limited to, optionally substituted imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, thienyl, benzothienyl, thiophenyl, furanyl, pyranyl, pyridyl, pyrrolyl, pyrazolyl, pyrimidyl, quinolinyl, isoquinolinyl, benzofuryl, benzothiophenyl, benzothiopyranyl, benzimidazolyl, benzooxazolyl, benzooxadiazolyl, benzothiazolyl, benzothiadiazolyl, benzopyranyl, indolyl, isoindolyl, tetrazolyl, triazolyl, triazinyl, quinoxalinyl, purinyl, quinazolinyl, quinolizinyl, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, diazepinyl, acridinyl and the like, including partially hydrogenated derivatives thereof, each optionally substituted.


The terms “halo”, “halogen” and “halide”, which may be used interchangeably, refer to a substituent fluoro, chloro, bromo, or iodo.


“Haloalkyl” means alkyl as defined herein in which one or more hydrogen has been replaced with same or different halogen. Exemplary haloalkyls include —CH2Cl, —CH2CF3, —CH2CCl3, perfluoroalkyl (e.g., —CF3), and the like.


“Heterocyclyl” means a monovalent saturated moiety, having one to three rings, incorporating one, two, or three or four heteroatoms (chosen from nitrogen, oxygen or sulfur). The heterocyclyl ring may be optionally substituted as defined herein. Examples of heterocyclyl moieties include, but are not limited to, optionally substituted piperidinyl, piperazinyl, homopiperazinyl, azepinyl, pyrrolidinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, pyridinyl, pyridazinyl, pyrimidinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinuclidinyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazolylidinyl, benzothiazolidinyl, benzoazolylidinyl, dihydrofuryl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinylsulfoxide, thiamorpholinylsulfone, dihydroquinolinyl, dihydrisoquinolinyl, tetrahydroquinolinyl, tetrahydrisoquinolinyl, and the like.


“Modulator” means a molecule that interacts with a target. The interactions include, but are not limited to, agonist, antagonist, and the like, as defined herein.


“Optional” or “optionally” means that the subsequently described event or circumstance may but need not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not.


“Disease” and “Disease state” means any disease, condition, symptom, disorder or indication.


“Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.


“Pharmaceutically acceptable salts” of a compound means salts that are pharmaceutically acceptable, as defined herein, and that possess the desired pharmacological activity of the parent compound. Such salts include:


acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, benzenesulfonic acid, benzoic, camphorsulfonic acid, citric acid, ethanesulfonic acid, fumaric acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, hydroxynaphtoic acid, 2-hydroxyethanesulfonic acid, lactic acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, muconic acid, 2-naphthalenesulfonic acid, propionic acid, salicylic acid, succinic acid, tartaric acid, p-toluenesulfonic acid, trimethylacetic acid, and the like; or


salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic or inorganic base. Acceptable organic bases include diethanolamine, ethanolamine, N-methylglucamine, triethanolamine, tromethamine, and the like. Acceptable inorganic bases include aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate and sodium hydroxide.


The preferred pharmaceutically acceptable salts are the salts formed from acetic acid, hydrochloric acid, sulphuric acid, methanesulfonic acid, maleic acid, phosphoric acid, tartaric acid, citric acid, sodium, potassium, calcium, zinc, and magnesium.


It should be understood that all references to pharmaceutically acceptable salts include solvent addition forms (solvates) or crystal forms (polymorphs) as defined herein, of the same acid addition salt.


“Solvates” means solvent additions forms that contain either stoichiometric or non stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water the solvate formed is a hydrate, when the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one of the substances in which the water retains its molecular state as H2O, such combination being able to form one or more hydrate.


“Subject” means mammals and non-mammals. Mammals means any member of the mammalian class including, but not limited to, humans; non-human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, and swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice, and guinea pigs; and the like. Examples of non-mammals include, but are not limited to, birds, and the like. The term “subject” does not denote a particular age or sex.


“Arthritis” means diseases or conditions damage to joints of the body and pain associated with such joint damage. Arthritis includes rheumatoid arthritis, osteoarthritis, psoriatic arthritis, septic arthritis and gouty arthritis.


“Pain” includes, without limitation, inflammatory pain; surgical pain; visceral pain; dental pain; premenstrual pain; central pain; pain due to burns; migraine or cluster headaches; nerve injury; neuritis; neuralgias; poisoning; ischemic injury; interstitial cystitis; cancer pain; viral, parasitic or bacterial infection; post-traumatic injury; or pain associated with irritable bowel syndrome.


“Therapeutically effective amount” means an amount of a compound that, when administered to a subject for treating a disease state, is sufficient to effect such treatment for the disease state. The “therapeutically effective amount” will vary depending on the compound, disease state being treated, the severity or the disease treated, the age and relative health of the subject, the route and form of administration, the judgment of the attending medical or veterinary practitioner, and other factors.


The terms “those defined above” and “those defined herein” when referring to a variable incorporates by reference the broad definition of the variable as well as preferred, more preferred and most preferred definitions, if any.


“Treating” or “treatment” of a disease state includes: preventing the disease state, i.e. causing the clinical symptoms of the disease state not to develop in a subject that may be exposed to or predisposed to the disease state, but does not yet experience or display symptoms of the disease state:


inhibiting the disease state, i.e., arresting the development of the disease state or its clinical symptoms, or


relieving the disease state, i.e., causing temporary or permanent regression of the disease state or its clinical symptoms.


The terms “treating”, “contacting” and “reacting” when referring to a chemical reaction means adding or mixing two or more reagents under appropriate conditions to produce the indicated and/or the desired product. It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product.


In general, the nomenclature used in this application is based on AUTONOM™ v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. Chemical structures shown herein were prepared using ISIS® version 2.2. Any open valency appearing on a carbon, oxygen sulfur or nitrogen atom in the structures herein indicates the presence of a hydrogen atom unless indicated otherwise. Where a nitrogen-containing heteroaryl ring is shown with an open valency on a nitrogen atom, and variables such as Ra, Rb or Rc are shown on the heteroaryl ring, such variables may be bound or joined to the open valency nitrogen. Where a chiral center exists in a structure but no specific stereochemistry is shown for the chiral center, both enantiomers associated with the chiral center are encompassed by the structure. Where a structure shown herein may exist in multiple tautomeric forms, all such tautomers are encompassed by the structure. The atoms represented in the structures herein are intended to encompass all naturally occurring isotopes of such atoms. Thus, for example, the hydrogen atoms represented herein are meant to include deuterium and tritium, and the carbon atoms are meant to include C13 and C14 isotopes.


In one embodiment, the invention provides for a compound of Formula (I):




embedded image


wherein:


Ar is phenyl, unsubstituted or substituted with one, two or three substituents independently selected from halogen and alkoxy; and


Ar is phenyl, unsubstituted or substituted with one or two substituents independently selected from lower alkyl, haloalkyl, —SO2N(CH3)2, —CN and halogen, or heteroaryl, unsubstituted or substituted with one or two substituents independently selected from lower alkyl, haloalkyl and halogen,


or a pharmaceutically acceptable salt thereof.


In another embodiment, the invention provides for a compound according to Formula (I), wherein Ar is phenyl substituted with one, two or three substituents independently selected from chlorine, fluorine and —OCH3.


In another embodiment, the invention provides for a compound according to Formula (I), wherein Ar is phenyl substituted with one or two substituents independently selected from chlorine and fluorine.


In another embodiment, the invention provides for a compound according to Formula (I), wherein Ar′ is phenyl substituted with one or two substituents independently selected from methyl, —CF3, —SO2N(CH3)2, —CN, chlorine and fluorine.


In another embodiment, the invention provides for a compound according to Formula (I), wherein Ar′ is pyrazolyl or pyridinyl, substituted with one or two substituents independently selected from methyl and —CF3.


In another embodiment, the invention provides for a compound according to Formula (I), wherein the compound is:

  • [2-[(E)-2-(2-Chloro-phenyl)-vinyl]-6-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-pyridin-3-yl]-methyl-amine;
  • 2-(2-Chloro-6-fluoro-phenyl)-5-(6-chloro-4-methyl-pyridin-3-yl)-1H-pyrrolo[3,2b]pyridine;
  • 2-(2-Chloro-6-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine;
  • 2-(2-chloro-6-fluorophenyl)-5-(2-methyl-4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine;
  • 4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-3-methylbenzonitrile;
  • 4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide;
  • 4-[2-(2-Chloro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;
  • 2-(2-Chloro-4-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine;
  • 4-[2-(2-Chloro-4-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;
  • 4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;
  • 4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3-methyl-benzonitrile;
  • 2-(2,6-Difluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine; or
  • 4-(2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide.


In another embodiment, the invention provides for a pharmaceutical composition, comprising a therapeutically effective amount of a compound according to Formula (I) and a pharmaceutically acceptable carrier.


In another embodiment, the invention provides for a compound according to Formula (I) for use as a therapeutically active substance.


In another embodiment, the invention provides for a use of a compound according to Formula (I) for the treatment or prophylaxis of arthritis or a respiratory disorder.


In another embodiment, the invention provides for a use of a compound according to Formula (I) for the preparation of a medicament for the treatment or prophylaxis of arthritis or a respiratory disorder.


In another embodiment, the invention provides for a compound according to Formula (I) for the treatment or prophylaxis of arthritis or a respiratory disorder.


In another embodiment, the invention provides for a method for treating arthritis, comprising the step of administering a therapeutically effective amount of a compound according to Formula (I) to a subject in need thereof.


In another embodiment, the invention provides for a method for treating a respiratory disorder selected from chronic obstructive pulmonary disorder (COPD), asthma, and bronchospasm, comprising the step of administering a therapeutically effective amount of a compound according to Formula (I) to a subject in need thereof.


In a further embodiment, provided is an invention as hereinbefore described.


The invention also provides methods for treating a disease or condition mediated by or otherwise associated with a CRAC receptor, the method comprising administering to a subject in need thereof an effective amount of a compound of the invention.


The invention also provides methods for treating an inflammatory, respiratory or diabetes condition, the method comprising administering to a subject in need thereof an effective amount of a compound of the invention together with an effective amount of a CRAC inhibitor.


The disease may be an inflammatory disease such as arthritis, and more particularly rheumatoid arthritis, osteoarthritis, psoriasis, allergic dermatitis, asthma, chronic obstructive pulmonary disease, airways hyper-responsiveness, septic shock, glomerulonephritis, irritable bowel disease, and Crohn's disease.


The disease may be a pain condition, such as inflammatory pain; surgical pain; visceral pain; dental pain; premenstrual pain; central pain; pain due to burns; migraine or cluster headaches; nerve injury; neuritis; neuralgias; poisoning; ischemic injury; interstitial cystitis; cancer pain; viral, parasitic or bacterial infection; post-traumatic injury; or pain associated with irritable bowel syndrome.


The disease may be a respiratory disorder, such as chronic obstructive pulmonary disorder (COPD), asthma, or bronchospasm, or a gastrointestinal (GI) disorder such as Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), biliary colic and other biliary disorders, renal colic, diarrhea-dominant IBS, pain associated with GI distension.


Synthesis

Compounds of the present invention can be made by a variety of methods depicted in the illustrative synthetic reaction schemes shown and described below.


The starting materials and reagents used in preparing these compounds generally are either available from commercial suppliers, such as Aldrich Chemical Co., or are prepared by methods known to those skilled in the art following procedures set forth in references such as Fieser and Fieser's Reagents for Organic Synthesis; Wiley & Sons: New York, 1991, Volumes 1-15; Rodd's Chemistry of Carbon Compounds, Elsevier Science Publishers, 1989, Volumes 1-5 and Supplementals; and Organic Reactions, Wiley & Sons: New York, 1991, Volumes 1-40.


The following synthetic reaction schemes are merely illustrative of some methods by which the compounds of the present invention can be synthesized, and various modifications to these synthetic reaction schemes can be made and will be suggested to one skilled in the art having referred to the disclosure contained in this application.


The starting materials and the intermediates of the synthetic reaction schemes can be isolated and purified if desired using conventional techniques, including but not limited to, filtration, distillation, crystallization, chromatography, and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.


Unless specified to the contrary, the reactions described herein preferably are conducted under an inert atmosphere at atmospheric pressure at a reaction temperature range of from about −78° C. to about 150° C., more preferably from about 0° C. to about 125° C., and most preferably and conveniently at about room (or ambient) temperature, e.g., about 20° C.




embedded image


As shown in Scheme 1, halogen substituted heterocyclic amines of type i can be reacted under Sonogashira coupling conditions with an appropriate terminal alkyne to give the alkyne substituted heterocyclic amine ii, where R=aryl, heteroaryl, cycloalkyl, heterocycloalkyl, or alkyl. Conversion of alkynyl amine ii, in the presence of base or a transition metal catalyst, then gives 2-substituted-5-halo-4-azaindole of type iii. Suzuki coupling of indole iii with an appropriate boronic acid or ester then gives 2-substituted-5-aryl-4-azaindole iv.




embedded image


As shown in Scheme 2,3-nitro-picoline v, can be converted to the nitropyridine substituted acetophenone vii via the intermediacy of alcohol vi. Dual reduction and cyclization then gives 4-aza-indole viii, which can be converted to 2,5-diaryl-4-azaindole ix by means of a Suzuki coupling with an appropriate boronic acid or ester.




embedded image


As shown in Scheme 3,2,6-dichloro-3-nitro-pyridine v, can be transformed to 4-aza-oxindole xii in two steps via malonate xi. Conversion of oxindole xii to triflate xvi can be accomplished by addition and selective removal of an intermediate carbonate as reflected in structures xiv and xv. Sequential Suzuki couplings on triflate xvi with the appropriate boronic acids or esters then provides carbonate protected indole xviii. Compounds such as these can then be converted to 2,5-diaryl-4-azaindole ix under basic conditions.




embedded image


As shown in Scheme 4,2,5-diaryl-7-azaindole xxvii can be produced in a manner similar to that shown in Scheme 3 substituting bromo oxindole xxi. This material can be prepared in two steps from 7-azaindole via the intermediacy tribromo oxindole xx.




embedded image


As shown in Scheme 5, carbonate protected 5-bromo-7-azaindole xxv from Scheme 4 can also be converted to boronic ester xxiii. Suzuki coupling with aryl halides or triflates then provides access to 2,5-diaryl-7-azaindole xxvii.




embedded image


As shown in Scheme 6,5-bromo-2-chloro-3-methylpyridine xxix can be reacted with an appropriate benzonitrile and base to provide 5-bromo-7-azaindole xxx. This indole xxx can then be converted to 2,5-diaryl-7-azaindole xxvii by means of a Suzuki coupling with an appropriate boronic acid or ester.




embedded image


As shown in Scheme 7,5-bromo-7-azaindole xxx from Scheme 6 can also be converted to boronic ester xxxi. Suzuki coupling with aryl halides or triflates then provides access to 2,5-diaryl-7-azaindole xxvii.




embedded image


As shown in Scheme 8, pyrimidine xxxii can be brominated to xxxiii and transformed to 4,6-diazaindole xxxv using a Sonogashira/base-mediated cyclization strategy. Suzuki coupling with an appropriate boronic acid or ester then provides access to the 2,5-diaryl-4,6-diazaindole xxxv.




embedded image


As shown in Scheme 9,2-amino-3,5-dibromopyrazine can be transformed in a manner similar to that shown in Scheme 8 to provide 2,5-diaryl-4,7-diazaindole xl.


Many variations on the procedure of the above Schemes are possible and will suggest themselves to those skilled in the art. Specific details for producing compounds of the invention are described in the Examples section below.


Utility

The compounds of the invention are usable for the treatment of a wide range of inflammatory diseases and conditions such as arthritis, including but not limited to, rheumatoid arthritis, spondyloarthropathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus and juvenile arthritis, osteoarthritis, gouty arthritis and other arthritic conditions. The subject compounds would be useful for the treatment of pulmonary disorders or lung inflammation, including adult respiratory distress syndrome, pulmonary sarcoidosis, asthma, silicosis, and chronic pulmonary inflammatory disease.


Further, compounds of the invention are useful for treating respiratory disorders, including chronic obstructive pulmonary disorder (COPD), asthma, bronchospasm, and the like.


Administration and Pharmaceutical Composition

The invention includes pharmaceutical compositions comprising at least one compound of the present invention, or an individual isomer, racemic or non-racemic mixture of isomers or a pharmaceutically acceptable salt or solvate thereof, together with at least one pharmaceutically acceptable carrier, and optionally other therapeutic and/or prophylactic ingredients.


In general, the compounds of the invention will be administered in a therapeutically effective amount by any of the accepted modes of administration for agents that serve similar utilities. Suitable dosage ranges are typically 1-500 mg daily, preferably 1-100 mg daily, and most preferably 1-30 mg daily, depending upon numerous factors such as the severity of the disease to be treated, the age and relative health of the subject, the potency of the compound used, the route and form of administration, the indication towards which the administration is directed, and the preferences and experience of the medical practitioner involved. One of ordinary skill in the art of treating such diseases will be able, without undue experimentation and in reliance upon personal knowledge and the disclosure of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease.


Compounds of the invention may be administered as pharmaceutical formulations including those suitable for oral (including buccal and sub-lingual), rectal, nasal, topical, pulmonary, vaginal, or parenteral (including intramuscular, intraarterial, intrathecal, subcutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation. The preferred manner of administration is generally oral using a convenient daily dosage regimen which can be adjusted according to the degree of affliction.


A compound or compounds of the invention, together with one or more conventional adjuvants, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages. The pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. The pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use. Formulations containing about one (1) milligram of active ingredient or, more broadly, about 0.01 to about one hundred (100) milligrams, per tablet, are accordingly suitable representative unit dosage forms.


The compounds of the invention may be formulated in a wide variety of oral administration dosage forms. The pharmaceutical compositions and dosage forms may comprise a compound or compounds of the present invention or pharmaceutically acceptable salts thereof as the active component. The pharmaceutically acceptable carriers may be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about one (1) to about seventy (70) percent of the active compound. Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatine, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term “preparation” is intended to include the formulation of the active compound with encapsulating material as carrier, providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges may be as solid forms suitable for oral administration.


Other forms suitable for oral administration include liquid form preparations including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions, or solid form preparations which are intended to be converted shortly before use to liquid form preparations. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents, for example, such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizers, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents. Solid form preparations include solutions, suspensions, and emulsions, and may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.


The compounds of the invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.


The compounds of the invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatine and glycerine or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.


The compounds of the invention may be formulated for administration as suppositories. A low melting wax, such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.


The compounds of the invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.


The subject compounds may be formulated for nasal administration. The solutions or suspensions are applied directly to the nasal cavity by conventional means, for example, with a dropper, pipette or spray. The formulations may be provided in a single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomizing spray pump.


The compounds of the invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration. The compound will generally have a small particle size for example of the order of five (5) microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. The active ingredient is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC), for example, dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, or carbon dioxide or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by a metered valve. Alternatively the active ingredients may be provided in a form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP). The powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatine or blister packs from which the powder may be administered by means of an inhaler.


When desired, formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the active ingredient. For example, the compounds of the present invention can be formulated in transdermal or subcutaneous drug delivery devices. These delivery systems are advantageous when sustained release of the compound is necessary and when patient compliance with a treatment regimen is crucial. Compounds in transdermal delivery systems are frequently attached to an skin-adhesive solid support. The compound of interest can also be combined with a penetration enhancer, e.g., Azone (1-dodecylazacycloheptan-2-one). Sustained release delivery systems are inserted subcutaneously into the subdermal layer by surgery or injection. The subdermal implants encapsulate the compound in a lipid soluble membrane, e.g., silicone rubber, or a biodegradable polymer, e.g., polylactic acid.


The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.


Other suitable pharmaceutical carriers and their formulations are described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa. Representative pharmaceutical formulations containing a compound of the present invention are described below.


EXAMPLES

The following preparations and examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.


Unless otherwise stated, all temperatures including melting points (i.e., MP) are in degrees celsius (° C.). It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product.


Part I
Preparation of Certain Intermediates
Intermediate 1
Trifluoro-methanesulfonic acid 2-ethyl-5-pyridin-3-yl-2H-pyrazol-3-yl ester



embedded image


3-Oxo-3-pyridin-3-yl-propionic acid ethyl ester: To nicotinic acid (20 g, 162.6 mmol) dissolved in dry THF was added CDI (30.95 g, 273.9 mmol) at 10° C. The mixture was stirred at RT for 1 h. In another flask the potassium salt of diethyl malonate (40.17 g, 245.1 mmol) and MgCl2 (18.05 g, 189.59 mmol) were suspended in THF and heated to 50° C. for 4 h. The nicotinic acid/CDI mixture was then added to it and the entire mixture stirred at RT for 16 h. After completion, the mixture was quenched with water and extracted with EtOAc. The organic phase was washed with brine, dried over Na2SO4 and concentrated. The crude compound was purified by column chromatography using 30% EtOAc-Hexane as an eluent to give 3-oxo-3-pyridin-3-yl-propionic acid ethyl ester (7.8 g, 24.7%).


2-Ethyl-5-pyridin-3-yl-2H-pyrazol-3-ol: To 3-oxo-3-pyridin-3-yl-propionic acid ethyl ester (500 mg, 3.57 mmol) in AcOH was added ethylhydrazine oxalate (231.9 mg, 3.86 mmol) and the mixture refluxed for 16 h. After which, the AcOH was evaporated and crude mass neutralized with aq. Na2CO3 solution. Following extraction with EtOAc, the organic phase was washed with brine, dried over Na2SO4 and concentrated. The crude material was purified by column chromatography using 2% MeOH-DCM as an eluent to give 2-ethyl-5-pyridin-3-yl-2H-pyrazol-3-ol (110 mg, 22.5%) as a yellow solid.


Trifluoro-methanesulfonic acid 2-ethyl-5-pyridin-3-yl-2H-pyrazol-3-yl ester: To a solution of 2-ethyl-5-pyridin-3-yl-2,4-dihydro-pyrazol-3-one (200 mg, 1.058 mmol) in THF, cooled to 0° C., was added NaH (33 mg, 1.37 mmol) followed by N,N-bis(Trifluoromethanesulfonyl) aniline (567 mg, 1.58 mmol). The resulting mixture was stirred at 25° C. for 1 h, after which, it was quenched with ice-water and extracted with EtOAc. The organic phase was washed with 1 N NaOH, dried over Na2SO4 and concentrated. The crude material was then purified by column chromatography using 20% EtOAc-Hexane as an eluent to give trifluoro-methanesulfonic acid 2-ethyl-5-pyridin-3-yl-2H-pyrazol-3-yl ester (170 mg, 50%).


Intermediate 2
Trifluoro-methanesulfonic acid 5-methyl-2-pyridin-3-yl-thiazol-4-yl ester



embedded image


5-Methyl-2-pyridin-3-yl-thiazol-4-ol: To nicotinonitrile (2 g, 19.21 mmol) and 2-mercapto-propionic acid (2.04 g, 19.21 mmol) was added pyridine (0.38 ml, 4.80 mmol). The mixture heated to 100° C. After 3 h the mixture was cooled to rt, diluted with EtOH (20 ml) and stirred for 10 min. The resulting solid was filtered, washed with ether and dried under vacuum to give 5-methyl-2-pyridin-3-yl-thiazol-4-ol (2.5 g, 67.7%).


Trifluoro-methanesulfonic acid 5-methyl-2-pyridin-3-yl-thiazol-4-yl ester: To a solution of 5-methyl-2-pyridin-3-yl-thiazol-4-ol (300 mg, 1.56 mmol) in THF, cooled to 0° C., was added NaH (24 mg, 48.70 mmol) followed by N,N-Bis(Trifluoromethanesulfonyl) aniline (357 mg, 1.81 mmol). The mixture was stirred at 25° C. for 1 h, after which it was quenched with ice-water and extracted with EtOAc. The organic phase was washed with 1 N NaOH, dried over Na2SO4 and concentrated. The crude compound was purified by column chromatography using 20% EtOAc-Hexane as an eluent to obtain trifluoro-methanesulfonic acid 5-methyl-2-pyridin-3-yl-thiazol-4-yl ester (200 mg, 40%).


Intermediate 3
Trifluoro-methanesulfonic acid 2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl ester



embedded image


2-Methyl-5-trifluoromethyl-2H-pyrazol-3-ol: To a solution of 4,4,4-Trifluoro-3-oxo-butyric acid ethyl ester (10 g, 54.34 mmol) in EtOH (40 ml) was added methyl hydrazine (2.9 ml, 54.34 mmol) and HCl (2 ml). The mixture was refluxed for 2 days, after which point the EtOH was evaporated and water was added to the reaction mixture. This was then extracted with EtOAc and the organic phase was evaporated to obtain 2-Methyl-5-trifluoromethyl-2H-pyrazol-3-ol (8 g, 89%) as an off-white solid.


Trifluoro-methanesulfonic acid 2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl ester: To a solution of 2-Methyl-5-trifluoromethyl-2H-pyrazol-3-ol (5 g, 30.1 mmol) in DCM (80 mL) at 0° C. was added TEA (8.42 mL, 60.2 mmol), followed by drop wise addition of Tf2O (7.47 mL, 45.1 mmol). The reaction mixture was allowed to warm to 25° C. and stirred for 1 h. Water was then added to quench the reaction and it was extracted with DCM. The organic phase was then washed with brine, dried over Na2SO4, and concentrated in vacuo to give Trifluoro-methanesulfonic acid 2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl ester (5.5 g, 80%) which was sufficiently pure for use in further reactions.


Intermediate 4
Trifluoro-methanesulfonic acid 2-ethyl-5-trifluoromethyl-2H-pyrazol-3-yl ester



embedded image


Intermediate 3 can be prepared in a manner identical to that used for Intermediate 2 substituting ethyl hydrazine oxalate in the condensation step. An alternate procedure is also described here:


1-ethyl-3-(trifluoromethyl)-1H-pyrazol-5(4H)-one: A mixture of ethyl 4,4,4-trifluoroacetoacetate (11.0 g, 59.7 mmol) and ethyl hydrazine oxalate (8.96 g, 59.7 mmol) in acetic acid (60 ml) was heated at 120° C. in a microwave reactor for 1.5 h. After irradiation the reaction mixture was poured into ice water, extracted with EtOAc. The organic phase was then washed with brine, dried over Na2SO4, filtered, concentrated under reduced pressure, and the crude material purified by flash chromatography (5-10% EtOAc/hexanes) to give 2-Ethyl-5-trifluoromethyl-2H-pyrazol-3-ol (4.62 g, 43%) as a yellow solid.


ethyl-3-(trifluoromethyl)-1H-pyrazol-5-yl trifluoromethanesulfonate: To a solution of 2-Ethyl-5-trifluoromethyl-2H-pyrazol-3-ol (4.41 g, 24.5 mmol) in CH2Cl2 (100 ml) and DIPEA (4.75 g, 36.7 mmol) at 0° C. was added trifluoromethane sulfonic anhydride (8.98 g, 31.8 mmol) dropwise. The mixture was stirred at 0° C. for 1 hour, then a cold solution of aqueous ammonium chloride and dichloromethane was added. The mixture was partitioned, and the organic phase washed with brine, dried over Na2SO4, filtered, concentrated under reduced pressure, and the crude material purified by filtering through a pad of silica (8% EtOAc/Hexanes) to give 1-ethyl-3-(trifluoromethyl)-1H-pyrazol-5-yl trifluoromethanesulfonate (6.12 g, 80%) as a yellow oil.


Intermediate 5
Trifluoro-methanesulfonic acid 5-methyl-2-oxazol-2-yl-thiazol-4-yl ester



embedded image


5-Methyl-2-oxazol-2-yl-thiazol-4-ol: To a mixture of 2-cyanooxazole (500 mg, 5.32 mmol) and thiolactic acid (564 mg, 5.32 mmol) was added pyridine (0.1 ml, 1.32 mmol). The mixture was heated to 100° C. for 3 h, after which it was cooled to rt, EtOH (3 ml) was added, and the suspension stirred for 10 min, filtered, and the solid dried. Further purification by column chromatography (30% EtOAc/Hexane) gave 5-Methyl-2-oxazol-2-yl-thiazol-4-ol (492 mg, 51%) as an off white solid.


Trifluoro-methanesulfonic acid 5-methyl-2-oxazol-2-yl-thiazol-4-yl ester: To a solution of 5-Methyl-2-oxazol-2-yl-thiazol-4-ol (492 mg, 2.70 mmol) in THF (35 ml) was added NaH (95 mg, 4.05 mmol) followed by N-phenyl bis(trifluoromethanesulfonimide) (1.32 g, 3.24 mmol) at 0° C. The reaction mixture was stirred at 25° C. for 1 h, at which point water was added at 0° C., and resulting solution extracted with EtOAc. The organic phase was washed with NaOH solution (0.1N), brine, then dried over Na2SO4, concentrated, and purified by column chromatography (8% EtOAC-Hexane) to give Trifluoro-methanesulfonic acid 5-methyl-2-oxazol-2-yl-thiazol-4-yl ester (551 mg, 65%) as a white solid.


Intermediate 6
Trifluoro-methanesulfonic acid 5-ethyl-2-pyridin-3-yl-thiazol-4-yl ester



embedded image


Trifluoro-methanesulfonic acid 5-ethyl-2-pyridin-3-yl-thiazol-4-yl ester: To a solution of pyridine-3-carbothioamide (1 g, 7.24 mmol) in EtOH (15 mL) and pyridine (1 mL, 12.3 mmol) was added methyl 2-bromobutanoate (1 mL, 8.68 mmol). The mixture was heated at reflux for 18 hours, after which it was cooled and concentrated. The crude 5-Ethyl-2-pyridin-3-yl-thiazol-4-ol was then redissolved in DMF (36 mL) at 0° C., and to the mixture was added 60% sodium hydride (751 mg, 18.8 mmol). After stirring for 15 min at rt, 1,1,1-trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (3.87 g, 10.8 mmol) was added. The mixture was reacted for 20 min, quenched with sat. NH4Cl, diluted with diethyl ether. The mixture was washed with water, and then brine. The organic layer was concentrated, and the resulting material chromatographed (5-55% EtOAc/Hexanes to give trifluoro-methanesulfonic acid 5-ethyl-2-pyridin-3-yl-thiazol-4-yl ester (0.85 g) as an orange oil.


Intermediate 7
Trifluoro-methanesulfonic acid 5-methyl-2-pyrazin-2-yl-thiazol-4-yl ester



embedded image


5-Methyl-2-pyrazin-2-yl-thiazol-4-ol: In a 250 mL round-bottomed flask, pyrazine-2-carbonitrile (10 g, 95.1 mmol), pyridine (2.26 g, 2.33 ml, 28.5 mmol,) and 2-mercaptopropionic acid (10.1 g, 95.1 mmol) were combined to give a light yellow solution. The reaction mixture was heated to 100° C. and stirred for 2 h. Upon cooling, the thick yellow mixture was diluted with 100 mL ethanol and stirred for 30 min. The slurry was then filtered, and washed with diethyl ether (2×100 mL) to give 5-methyl-2-pyrazin-2-yl-thiazol-4-ol (17.86 g, 97.1%) as yellow solid which was used directly without further purification.


Trifluoro-methanesulfonic acid 5-methyl-2-pyrazin-2-yl-thiazol-4-yl ester: In a 500 mL round-bottomed flask, 5-methyl-2-(pyrazin-2-yl)thiazol-4-ol (12.24 g, 63.3 mmol) was cooled to 0° C. in THF (110 ml) and stirred for 33 min. 60% sodium hydride (3.32 g, 83.0 mmol) was added followed by N-phenylbis(trifluoromethanesulfonimide) (26.6 g, 72.8 mmol) and the resultant reaction mixture was warmed to 25° C. and stirred for 1 h. The reaction mixture was poured into 50 mL H2O and extracted with ethyl acetate (3×20 mL). The organic layers were dried over MgSO4 and concentrated in vacuo. The crude material was purified by flash column chromatography (silica gel, 120 g, 25% to 45% ethyl acetate in hexanes) to give trifluoro-methanesulfonic acid 5-methyl-2-pyrazin-2-yl-thiazol-4-yl ester (7.45 g, 36.2%) as a colorless oil which solidified to an off-white solid.


Intermediate 8
3-(5-Bromo-1-ethyl-1H-[1,2,4]triazol-3-yl)-pyridine



embedded image


Nicotinimidic acid methyl ester: To a stirred solution of 3-cyanopyridine (5.0 g, 48.07 mmol) in methanol-1,4-dioxane (1:1; 50 ml) was added sodium methoxide (2.85 g, 52.88 mmol) at 0° C. The reaction mixture was stirred for 24 h at rt, after which the solvent was removed, and water (20 mL) was added to the resulting mass. This mixture was extracted with ethyl acetate (2×50), and the organic layers were dried, concentrated in vacuo and purified by column chromatography (20% EtOAc/Hexanes) to give nicotinimidic acid methyl ester (3.6 g, 55%) as light yellow liquid.


N′-ethylnicotinimidohydrazide: To a stirred solution of nicotinimidic acid methyl ester (2.0 g, 14.70 mmol) in dry pyridine (10 mL) was added ethyl hydrazine oxalate (2.34 g, 15.58 mmol) at rt. The mixture was stirred for 12 h, after which the solvent was removed to furnish a crude mass. This material was triturated with diethyl ether to give N′-ethylnicotinimidohydrazide (2.1 g, 87%) as a white solid.


2-Ethyl-5-pyridin-3-yl-2H-[1,2,4]triazol-3-ol: To a stirred solution of N′-ethylnicotinimidohydrazide (0.500 g, 3.05 mmol) in dry DMF (15 mL) was added CDI (0.524 g, 3.23 mmol) at rt. The mixture was then stirred for 12 h, after which the DMF was removed in vacuo, the material redissolved in methylene dichloride (25 mL), and filtered through a sintered funnel. The filtrate was concentrated under reduced pressure to provide a crude mass that was purified by column chromatography (20% methanol in DCM), to give 2-Ethyl-5-pyridin-3-yl-2H-[1,2,4]triazol-3-ol (0.200 g, 35%) as a white solid.


3-(5-Bromo-1-ethyl-1H-[1,2,4]triazol-3-yl)-pyridine: A solution of 2-Ethyl-5-pyridin-3-yl-2H-[1,2,4]triazol-3-ol (0.240 g, 1.26 mmol) in phosphorus oxybromide (1.44 g, 5.05 mmol) was stirred at 140° C. for 1 h. It was then cooled to 0° C. and the solution was basified to pH ˜9 with an aqueous solution of saturated sodium bicarbonate. The aqueous mixture was extracted with ethyl acetate (3×20 mL), and the organic layers were then dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography (20% EtOAc/Hexanes) to give 3-(5-Bromo-1-ethyl-1H-[1,2,4]triazol-3-yl)-pyridine (0.160 g, 50.19%) as a brown solid.


Intermediate 9
3-(5-bromo-1-methyl-1H-[1,2,4]triazol-3-yl)-pyridine



embedded image


ethyl pyridine-3-carbonothioylcarbamate: n-BuLi (2.5M in THF, 60 mL, 150 mmol, 1 eq) was charged into a 3-neck 2000 ml round bottom flask, attached with a mechanical stirrer and two dropping funnels (one containing a solution of 3-bromopyridine (14.46 mL, 150 mmol, 1 eq) in 220 ml of anhydrous ether and the other one containing O-ethyl carbonisothiocyanatidate (20.4 mL, 180 mmol, 1.2 eq) in 500 mL of anhydrous THF) under argon. The solution was cooled to −78° C. The 3-bromopyridine solution was added dropwise over 45 min and stirred at −7° C. for 30 min. The solution of O-ethyl carbonisothiocyanatidate was added dropwise over 75 min. Stirring was continued and the reaction mixture was allowed to come to RT overnight. 50 mL of saturated ammonium chloride was added and the reaction mixture was concentrated to small volume, diluted with EtOAc, washed with brine, dried over anhydrous magnesium sulfated, filtered and evaporated to a red oil. Flash chromatography on silica gel (600 g) using a gradient of 0-50% EtOAc/hexanes in 60 min gave 5.2 g (16.5%) of ethyl pyridine-3-carbonothioylcarbamate as a yellow solid. LC-MS (ES) calculated for C9H10N2O2S, 210.26; found m/z 211.1 [M+H]+.


methyl-3-(pyridin-3-yl)-1H-1,2,4-triazol-5-ol: The solution of ethyl pyridine-3-carbonothioylcarbamate (4.6 g, 21.9 mmol, 1 eq) and methylhydrazine (46 mL, 873 mmol, 39.9 eq) in 46 mL THF was heated at 80° C. in an oil bath for 40 min. The reaction mixture was cooled and evaporated. Flash chromatography on silica gel (240 g) using a gradient of 20-100% EtOAc/hexanes in 60 min gave 2.65 g (69%) of 1-methyl-3-(pyridin-3-yl)-1H-1,2,4-triazol-5-ol as an off-white solid. LC-MS (ES) calculated for C8H8N4O, 176.18; found m/z 177.1 [M+H]+.


3-(5-bromo-1-methyl-1H-[1,2,4]triazol-3-yl)-pyridine: 1-methyl-3-(pyridin-3-yl)-1H-1,2,4-triazol-5-ol (1.2 g, 11.33 mmol, 1 eq) and phosphoryl tribromide (14.56 g, 50.84 mmol, 3.98 eq) were combined in a microwave reaction vessel and sealed. The mixture was heated at 120° C. in an oil bath for 2 hrs. The reaction mixture was cooled in acetone/dry ice bath and neutralized carefully with a saturated sodium bicarbonate solution, extracted with EtOAc, dried over anhydrous magnesium, filtered and evaporated. Flash chromatography on silica gel (120 g) using a gradient column of 0-60% EtOAc/hexane in 45 min gave 2.28 g (74%) of 3-(5-bromo-1-methyl-1H-[1,2,4]triazol-3-yl)-pyridine as a white solid. LC-MS (ES) calculated for C8H7BrN4, 239.08; found m/z 240.0 [M+H]+.


Intermediate 10
5-Bromo-4-methyl-pyridine-2-carboxylic acid methylamide



embedded image


5-Bromo-4-methyl-2-vinyl-pyridine: To a solution of 2,5-Dibromo-4-methyl-pyridine (10 g, 39.8 mmol) and trivinyl cyclotriboroxane (6.44 g, 39.8 mmol) in DME (150 ml) was added K2CO3 (5.5 gm, 39.8 mmol) in water (30 mL) followed by Pd(PPh3)4 (460 mg, 0.398 mmol). The mixture was stirred at 100° C. for 4 h, after which it was filtered through Celite. The filtrate was diluted with water and extracted with EtOAc. The organic phase was washed with brine, dried, concentrated, and the crude material was purified by column chromatograph to give 5-Bromo-4-methyl-2-vinyl-pyridine (7.04 gm, 70%) as light yellow solid.


5-Bromo-4-methyl-pyridine-2-carboxylic acid: To a solution of 5-Bromo-4-methyl-2-vinyl-pyridine (600 mg, 3 mmol) in acetone-water (1:1, 54 ml) was added KMnO4 (957 mg, 6 mmol). The mixture was stirred for 3 days at rt, at which point it was filtered, concentrated, and purified by column chromatograph to give 5-Bromo-4-methyl-pyridine-2-carboxylic acid (700 mg, 92%) as white solid.


5-Bromo-4-methyl-pyridine-2-carboxylic acid methyl ester: To a solution of 5-Bromo-4-methyl-pyridine-2-carboxylic acid (650 mg, 3.0 mmol) in MeOH (2 ml) was added conc. H2SO4 (0.06 ml). The mixture was refluxed for 14 h, after which it was cooled to 0° C., neutralized with saturated NaHCO3, filtered, concentrated, and purified by column chromatography to give 5-Bromo-4-methyl-pyridine-2-carboxylic acid methyl ester (340 mg, 49%) as white solid.


5-Bromo-4-methyl-pyridine-2-carboxylic acid methylamide: To 5-Bromo-4-methyl-pyridine-2-carboxylic acid methyl ester (200 mg, 0.869 mmol) and methylamine (135 mg, 11.34 mmol) was added (CH3)3Al (0.6 mg, 0.008 mmol). The mixture was placed in a sealed tube and heated at 100° C. for 1 h, after which the mixture was cooled, quenched with water, and extracted with EtOAc. The organic phase was dried, concentrated, and purified by column chromatograph to give 5-Bromo-4-methyl-pyridine-2-carboxylic acid methylamide (130 mg, 65%) as an off-white solid.


Intermediate 11
5-Bromo-4-methyl-pyridine-2-carboxylic acid (2-hydroxy-ethyl)-amide



embedded image


5-Bromo-4-methyl-pyridine-2-carboxylic acid (2-hydroxy-ethyl)-amide: To 5-bromo-4-methyl-pyridine-2-carboxylic acid methyl ester (200 mg, 0.869 mmol) and 2-amino-ethanol (265 mg, 4.34 mmol) was added (CH3)3Al (0.6 mg, 0.008 mmol). The mixture was placed in a sealed tube and heated at 100° C. for 1 h, after which the mixture was cooled, quenched with water, and extracted with EtOAc. The organic phase was dried, concentrated, and purified by column chromatograph to give 5-Bromo-4-methyl-pyridine-2-carboxylic acid (2-hydroxy-ethyl)-amide (130 mg, 65%) as an off-white solid.


Intermediate 12
Trifluoro-methanesulfonic acid 2-ethyl-5-pyrazin-2-yl-2H-pyrazol-3-yl ester



embedded image


Methyl 3-oxo-3-(pyrazin-2-yl)propanoate: To a stirred solution of sodium methoxide (25% in MeOH, 27.54 mL, 72.4 mmol, 1 eq) in 90 mL of toluene at 110° C. in a 3-neck flask attached with a mechanical stirrer, condenser and dropping funnel was added a solution of methylpyrazine-2-carboxylate (10 g, 72.4 mmol, 1 eq) in 115 mL of methyl acetate, dropwise, over a period of ˜35-40 min. A yellow precipitate was formed. Stirring was continued at 110° C. for 3 hrs. The reaction was cooled and the yellow precipitate was filtered and washed with a small quantity of toluene. This solid was taken into 200 mL of saturated ammonium chloride and 400 mL of EtOAc. The aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over magnesium sulfate, filtered and evaporated to give 6.52 g (50%) of methyl 3-oxo-3-(pyrazin-2-yl)propanoate as a yellow solid.


Ethyl-3-(pyrazin-2-yl)-1H-pyrazol-5-ol: Ethylhydrazine oxalate (6.89 g, 45.9 mmol, 1 eq) was stirred with 450 mL of anhydrous ethanol for 10 min. To this was added methyl 3-oxo-3-(pyrazin-2-yl)propanoate (8.27 g, 45.9 mmol, 1 eq) and the mixture was refluxed for 10 hrs. The reaction was cooled, evaporated, taken into 300 ml of EtOAc, extracted with water and brine, dried over anhydrous magnesium, filtered and evaporated to yield 8.7 g of 1-ethyl-3-(pyrazin-2-yl)-1H-pyrazol-5-ol as a red oil. This material was used without further purification.


Trifluoro-methanesulfonic acid 2-ethyl-5-pyrazin-2-yl-2H-pyrazol-3-yl ester: To a stirred solution of 1-ethyl-3-(pyrazin-2-yl)-1H-pyrazol-5-ol (8.7 g, 45.7 mmol, 1 eq) in 230 mL DMF at 0° C. was added NaH (2.93 g, 73.2 mmol, 1.6 eq). The mixture was allowed to warm to rt and stirred for 1 hr. 1,1,1-Trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (24.5 g, 68.6 mmol, 1.5 eq) was added and stirred at RT for 90 min. The mixture was cooled in an ice bath, quenched with saturated ammonium chloride, evaporated and taken into EtOAc, extracted with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated to an oil. Flash chromatography on silica gel (400 g) using a gradient of 10-30% EtOAC/hexane gave 9.27 g (62.9%) of trifluoro-methanesulfonic acid 2-ethyl-5-pyrazin-2-yl-2H-pyrazol-3-yl ester as a white solid. LC-MS (ES) calculated for C10H9F3N4O3S, 322.27; found m/z 322.9 [M+H]+.


Intermediate 13
5-Bromo-2-methanesulfonyl-4-methyl-pyridine



embedded image


5-Bromo-4-methyl-2-methylsulfanyl-pyridine: A mixture of 5-bromo-2-chloro-4-methylpyridine (1.81 g, 8.8 mmol), and sodium thiomethoxide (0.68 g, 9.8 mmol) in 10 mL of dioxane was placed in a 110° C. oil bath for 3 hrs., cooled and extracted between ethyl acetate and water, washed organic layer with water, dried over sodium sulfate, filtered and concentrated to give the crude product as a pale-yellow liquid (1.83 g). The crude product was carried onto the oxidation step without further purification.


5-Bromo-2-methanesulfonyl-4-methyl-pyridine: To a 0° C. solution of 5-bromo-4-methyl-2-(methylthio)pyridine (1.83 g, 8.4 mmol) in 25 mL of dichloromethane was added MCPBA (3.50 g, 55% pure, 11 mmol). The reaction mixture was stirred for 1 hr., partitioned between water and dichloromethane, then washed the organic layer twice with aq. sodium bicarbonate, dried over sodium sulfate, filtered and concentrated to give a crude yellow solid. The crude mixture was loaded onto Si-gel and purified by flash chromatography (20:80-1:1 ethyl acetate/hexanes then 100% ethyl acetate) to give the product as a light-yellow solid (0.64 g, 29% over two steps). MS (M+H)=252.


Intermediate 14
1-chloro-2-ethynyl-3-fluoro-benzene



embedded image


2-chloro-6-fluorophenyl trifluoromethanesulfonate: To a stirred solution of pyridine (26.7 mL, 207 mmol, 1 eq) and 2-chloro-6-fluorophenol (30.3 g, 207 mmol, 1 eq) in methylene chloride (380 mL) at 0° C. was added trifluoromethanesulfonic anhydride (45.2 mL, 207 mmol, 1 eq) dropwise. The mixture was stirred at RT for 3 hrs, evaporated, dissolved in EtOAc, washed with water and brine, dried over anhydrous magnesium sulfate, filtered and evaporated to yield 2-chloro-6-fluorophenyl trifluoromethanesulfonate as a yellow oil that was used without purification.


(2-chloro-6-fluoro-phenylethynyl)-trimethyl-silane: To a solution of 2-chloro-6-fluorophenyl trifluoromethanesulfonate (10 g, 35.9 mmol, 1 eq), ethynyltrimethylsilane (5.29 g, 53.8 mmol, 1.5 eq) and triethylamine (5.45 g, 53.8 mmol, 1.5 eq) in anhydrous acetonitrile (200 mL) was added bis(triphenylphosphine)palladium (II) chloride (500 mg, 0.717 mmol, 0.02 eq). The reaction mixture was heated to reflux under argon for 20 h, cooled, evaporated, and the residue redissolved in 300 ml hexanes and stirred for 20 min. It was then washed with water and brine and dried over anhydrous magnesium sulfate, filtered, evaporated to dryness, and chromatographed (hexanes) to give (2-chloro-6-fluoro-phenylethynyl)-trimethyl-silane (6.4 g, 79%) as a solid.


chloro-2-ethynyl-3-fluoro-benzene: To a solution of ((2-chloro-6-fluorophenyl)ethynyl)trimethylsilane (1.0 g, 4.41 mmol, 1 eq) in MeOH (40 ml) was added potassium carbonate (0.616 gm, 4.41 mmol, 1 eq). The reaction mixture was stirred at rt for 3 hrs, diluted with dichloromethane and water and separated. The organic layer was dried over anhydrous magnesium sulfate and evaporated to yield 580 mg (85%) of 1-chloro-2-ethynyl-3-fluoro-benzene as a dark oil that was used without further purification.


Part II
Preparation of Certain Embodiments of the Invention
Example 1
[2-[(E)-2-(2-Chloro-phenyl)-vinyl]-6-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-pyridin-3-yl]-methyl-amine



embedded image


6-Bromo-2-(2-chloro-phenylethynyl)-pyridin-3-ylamine: To a mixture of 3-amino-2,6-dibromopyridine (1.26 g, 5 mmol), CuI (95 mg, 0.1 equiv), PdCl2(PPh3)2 (175 mg, 0.05 equiv) in triethylamine (5 ml) and DMF (10 ml) was added (2-Chlorophenyl)acetylene (0.6 ml, 1 equiv) at room temperature. The mixture was then heated to 100° C. for 8 hours, cooled to room temperature and filtered through a pad of celite. The celite was washed with EtOAc. The filtrate was then washed with sat. LiCl solution and dried over MgSO4. The solvent was removed under reduced pressure and the remaining residue purified on silica gel by flash chromatography (EtOAc/hexane 10%-70%) to yield 6-Bromo-2-(2-chloro-phenylethynyl)-pyridin-3-ylamine (328 mg, 1.07 mmol) as a single isomer in form of a yellow solid.


5-Bromo-2-(2-chloro-phenyl)-1H-pyrrolo[3,2-b]pyridine: To a solution of compound 6-bromo-2-(2-chloro-phenylethynyl)-pyridin-3-ylamine (100 mg, 0.325 mmol) in NMP (2 ml) was added KOtBu (110 mg, 3 equiv) in one portion. The mixture was the heated to 70° C. for 5 h, after which it was cooled to room temperature. Water and EtOAc were then added, the organic phase was separated, dried over MgSO4, and the solvent was removed under reduce pressure. The remaining residue was purified on silica gel by flash chromatography (EtOAc/hexane 10%-70%) to yield 5-Bromo-2-(2-chloro-phenyl)-1H-pyrrolo[3,2-b]pyridine (75 mg, 0.244 mmol) as a white solid.


[2-[(E)-2-(2-Chloro-phenyl)-vinyl]-6-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-pyridin-3-yl]-methyl-amine: 5-Bromo-2-(2-chloro-phenyl)-1H-pyrrolo[3,2-b]pyridine (60 mg, 0.195 mmol), 1-methyl-3-trifluoromethylpyrazole-5-boronic acid (50 mg, 1.3 equiv) and K2CO2 (81 mg, 3 equiv) were charged in a resalable tube fitted with a rubber septum. The tube was evacuated and backfilled with nitrogen. This procedure was repeated two times. The solids were dissolved in a mixture of degassed dioxane (1.2 ml) and H2O (0.3 ml) and the mixture was further purged with nitrogen for 5 minutes. Pd(dppf)Cl2*CH2Cl2 (16 mg, 0.1 equiv) was quickly added, the tube was sealed, and heated to 110° C. for 12 hours. After this time, the reaction mixture was cooled to room temperature and diluted with EtOAc. The solution was filtered through a pad of celite and dried over MgSO4. The solvent was removed under reduce pressure and the remaining residue was purified on silica gel by flash chromatography (EtOAc:hexane 10%-70%) to yield compound [2-[(E)-2-(2-Chloro-phenyl)-vinyl]-6-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-pyridin-3-yl]-methyl-amine (19 mg) as a white solid.


Example 2
2-(2-Chloro-6-fluoro-phenyl)-5-(6-chloro-4-methyl-pyridin-3-yl)-1H-pyrrolo[3,2b]pyridine



embedded image


2-(6-Bromo-3-nitro-pyridin-2-yl)-1-(2-chloro-6-fluoro-phenyl)-ethanol: To a 0° C. solution 6-bromo-2-methyl-3-nitropyridine (5 g, 23.0 mmol) and 2-chloro-6-fluorobenzaldehyde (5.48 g, 34.6 mmol, Eq: 1.5) in diethyl ether (75 ml) was added sodium ethoxide (25.3 ml, 25.3 mmol, Eq: 1.1, 1 M in ethanol) dropwise over 5 minutes. The reaction was stirred at 0° C. for 1 hour, quenched with aq. 1 N NH4Cl, diluted with ether, washed water and brine, then the organic layers were dried over magnesium sulfate. The organic layer was concentrated in vacuo and the residue chromatographed (3% to 20% ea/hex over 23 minutes, 120 g analogix silica column) to give 2-(6-Bromo-3-nitro-pyridin-2-yl)-1-(2-chloro-6-fluoro-phenyl)-ethanol (3.44 g oil, 40% yield) as a 5:1 mixture with 1-(2-Chloro-6-fluoro-phenyl)-2-(6-ethoxy-3-nitro-pyridin-2-yl)-ethanol. This mixture was carried on to the next step.


2-(6-Bromo-3-nitro-pyridin-2-yl)-1-(2-chloro-6-fluoro-phenyl)-ethanone: To a 0° C. solution of 2-(6-bromo-3-nitropyridin-2-yl)-1-(2-chloro-6-fluorophenyl)ethanol (1 g, 2.66 mmol) in dichloromethane (15 ml) was added Dess Martin periodinane (1.13 g, 2.66 mmol, Eq: 1.00) in one portion. The mixture was stirred 45 min at 0 C, at which point an additional 130 mg Dess Martin periodinane was added. Stirring was continued for 1.5 hours, after which the reaction mixture was diluted with dichloromethane, washed water, saturated aqueous sodium bicarbonate, brine, and dried over magnesium sulfate. The solvents were then removed in vacuo and the residue chromatographed (25% ethyl acetate in hexanes) to give 2-(6-Bromo-3-nitro-pyridin-2-yl)-1-(2-chloro-6-fluoro-phenyl)-ethanone (752 mg oil, 76%).


5-Bromo-2-(2-chloro-6-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridine: To a solution of 2-(6-bromo-3-nitropyridin-2-yl)-1-(2-chloro-6-fluorophenyl)ethanone (750 mg, 2.01 mmol) in acetic acid (25 ml) was added iron (448 mg, 8.03 mmol, Eq: 4) in one portion. The mixture was stirred 2 h and 15 m, after which it was diluted with dichloromethane, filtered through paper, and washed with additional dichloromethane. The organic layer was then washed with water, saturated aqueous sodium bicarbonate, brine, and dried over magnesium sulfate. The solvent was removed in vacuo and the residue triturated with hexanes/dichloromethane (about 10:1). The solid thus obtained was filtered and dried under vacuum to give 5-Bromo-2-(2-chloro-6-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridine (380 mg, 58% yield).


2-(2-Chloro-6-fluoro-phenyl)-5-(6-chloro-4-methyl-pyridin-3-yl)-1H-pyrrolo[3,2b]pyridine: 5-bromo-2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridine (60 mg, 0.184 mmol), [1,1′-bis(diphenyl phosphino)ferrocene dichloro palladium (II) (27.0 mg, 0.037 mmol, Eq: 0.2), and 6-Chloro-4-methylpyridin-3-boronic acid (41.1 mg, 0.240 mmol, Eq: 1.30) were combined with dioxane (4.00 ml) in a 10 mL sealed tube. To this solution was added potassium carbonate (76.4 mg, 553 μmol, Eq: 3) in water (1 mL) and the resultant mixture was heated to 80° C. for 1 h. After this time, the mixture was poured into 50 mL water and extracted with EtOAc (3×20 mL). The organic layers were dried over MgSO4 and concentrated in vacuo, and the crude residue purified by flash chromatography (silica gel, 12 g, 15% to 25% EtOAc in hexanes) to give 2-(2-Chloro-6-fluoro-phenyl)-5-(6-chloro-4-methyl-pyridin-3-yl)-1H-pyrrolo[3,2b]pyridine (49 mg, 71%) as an off-white solid. MS: (M+H) 373.2 m/e.


Example 3
2-(2-Chloro-6-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine



embedded image


2-(2-Chloro-6-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine: In a 10 mL sealed tube, 5-bromo-2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridine (50 mg, 154 μmol, Eq: 1.00), 1-methyl-3-trifluoromethylpyrazole-5-boronic acid (35.7 mg, 184 μmol, Eq: 1.20), and 1,1′-bis(diphenyl phosphino)ferrocene dichloro palladium (II) (24.0 mg, 30.9 μmol, Eq: 0.2) were combined with dioxane (4.00 ml) to give a orange solution. A solution of potassium carbonate (63.7 mg, 461 μmol, Eq: 3) in water (1 mL) was added and the resultant mixture was heated to 80° C. and stirred for 1 h. The reaction mixture was poured into water (50 mL) and extracted with EtOAc (3×20 mL). The organic layers were dried over MgSO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 12 g, 15% to 25% EtOAc in hexanes) to give 2-(2-Chloro-6-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine (17 mg, 28%) as off-white solid. MS: (M+H+) 395.8 m/e.


Example 4
2-(2-chloro-6-fluorophenyl)-5-(2-methyl-4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine



embedded image


2-(2-chloro-6-fluorophenyl)-5-(2-methyl-4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine: To a mixture of 5-bromo-2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridine (100 mg, 307 μmol, Eq: 1.00), 2-methyl-4-(trifluoromethyl)phenylboronic acid (81.4 mg, 399 μmol, Eq: 1.3), 1,1′-bis(diphenyl phosphino)ferrocene dichloro palladium (II) (22.5 mg, 30.7 μmol, Eq: 0.1) and potassium carbonate (127 mg, 921 μmol, Eq: 3) was added dioxane (2.00 ml) and water (0.5 ml). The mixture was purged with nitrogen for 10 min., then heated at 100° C. for 1 hr. After which, it was filtered through a pad of Celite, and washed with DCM. The solvent was removed in vacuo, the residue redissolved in DCM, washed with water, brine, and dried with MgSO4. The solvent was again removed in vacuo, and the residue chromatographed on a silica gel column eluting with 1% MeOH-DCM to obtain 2-(2-chloro-6-fluorophenyl)-5-(2-methyl-4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine (9.2 mg, 22.7 μmol, 7.4% yield) as a white powder. MS: (M+H)=405.


Example 5
4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-3-methylbenzonitrile



embedded image


4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-3-methylbenzonitrile: Was prepared in a manner identical to that described for Example 4 to give 56 mg (50% yield) as a light-yellow powder. MS: (M+H)=362.


Example 6
4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide



embedded image


4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide: Was prepared in a manner identical to that described for Example 4 to give 26 mg (30.7% yield) as a white powder. MS: (M+H)=444.


Example 7

4-[2-(2-Chloro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide




embedded image


embedded image


2-(6-Chloro-3-nitro-pyridin-2-yl)-malonic acid diethyl ester: To a mechanically stirred suspension of sodium hydride (51.2 g) in dry DME (1 L) was added diethyl malonate (198 ml) in DME (500 ml). The mixture was stirred at rt for 2 h, after which a solution of 2,6-dichloro-3-nitropyridine (100 g) in DME (500 ml) was added. After stirring the dark red solution for 18 h at rt the reaction mixture was poured into water and acidified to pH 3 with 6 N HCl. The mixture was then extracted with ether, and the organic layer washed with brine, dried over magnesium sulfate, and concentrated under vacuum to give a yellow oil. The residue was further heated at 60° C. under high vacuum to remove excess diethyl malonate to give 2-(6-chloro-3-nitro-pyridin-2-yl)-malonic acid diethyl ester and 2-(6-chloro-5-nitro-pyridin-2-yl)-malonic acid diethyl ester (182.8 g). This material was carried on to the next step.


5-Chloro-1H-pyrrolo[3,2-b]pyridin-2(3H)-one: To a mixture of 2-(6-chloro-3-nitro-pyridin-2-yl)-malonic acid diethyl ester and 2-(6-chloro-5-nitro-pyridin-2-yl)-malonic acid diethyl ester (181 g) dissolved in ethanol (800 ml) was added a suspension of 50% Raney nickel in water (114 g). The mixture was hydrogenated in a Parr shaker (3 atm) for two days and then filtered through celite to remove the catalyst. The solvent was evaporated to leave a crude mass that was redissolved in 6N HCl (1 L) and heated to reflux for 5 hours. Upon cooling, the majority of solvent was removed under vacuum and the residue was taken up in water and again concentrated to give 5-chloro-1H-pyrrolo[3,2-b]pyridin-2(3H)-one as a brown solid. This material was further purified by recrystallization with isopropanol to give 18 g of pure 5-chloro-1H-pyrrolo[3,2-b]pyridin-2(3H)-one.


5-Chloro-2-ethoxycarbonyloxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester: In a 250 mL round-bottomed flask, 5-chloro-1H-pyrrolo[3,2-b]pyridin-2(3H)-one (3 g, 17.8 mmol, Eq: 1.00) and triethylamine (5.44 g, 7.5 ml, 53.8 mmol, Eq: 3.02) were combined with THF (60.0 ml) to give a light brown suspension. The reaction mixture was stirred at 0° C. and ethyl chloroformate (4.67 g, 4.1 ml, 43.0 mmol, Eq: 2.42) was added over 3 min. The reaction is stirred in the ice bath for 15 min allowed to warm up to room temperature for 0.5 h. The resultant reaction was diluted with water (75 mL) and extracted with ethyl acetate (3×75 mL). The organic layers were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo to give brown gummy solid. The crude material was purified by flash chromatography (silica gel, 150 g, 10% to 20% EtOAc in hexanes) to give 5-Chloro-2-ethoxycarbonyloxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (1.67 g, 30%) as a white solid. MS (M+H)=313.7.


5-Chloro-2-hydroxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester: In a 100 mL pear-shaped flask, 5-Chloro-2-ethoxycarbonyloxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (1.27 g, 4.06 mmol, Eq: 1.00) was combined with DMF (9 ml) to give a light yellow solution. The solution was cooled to 0° C. Ammonium carbonate (390 mg, 4.06 mmol, Eq: 1.00) was added and resultant reaction mixture was stirred in the ice bath for 5 min and at rt for 30 min. The reaction was quenched by diluting with water (30 mL) and extracted with ethyl acetate (3×30 mL). The organic layers were dried over Na2SO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 40 g, 20% to 100% EtOAc in hexanes) to give 5-Chloro-2-hydroxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (628.7 mg, 64.3%) as a white solid. MS (M+H)=241.6.


5-Chloro-2-trifluoromethanesulfonyloxy-pyrrolo[3,2-b]pyridine-1 carboxylic acid ethyl ester: In a 50 mL pear-shaped flask, 5-Chloro-2-hydroxy-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (660 mg, 2.74 mmol, Eq: 1.00) and N,N-diisopropylamine (756 mg, 1.02 ml, 5.85 mmol, Eq: 2.13) were combined with DCM (10.6 ml) to give a light yellow solution. The solution was cooled in an ice bath at 0° C. Triflic anhydride (1.19 g, 711 μl, 4.23 mmol, Eq: 1.54) was added dropwise and the reaction mixture was stirred at room temperature for 30 min. The reaction mixture was quenched with water (30 mL) and extracted with dichloromethane (3×40 mL), dried over Na2SO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 40 g, 7% to 10% EtOAc in hexanes to give 5-Chloro-2-trifluoromethanesulfonyloxypyrrolo[3,2b]pyridine-1carboxylic acid ethyl ester (800.2 mg, 78.3%) as a white solid. MS (M+H)=373.7.


5-Chloro-2-(2-chloro-phenyl)-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester: In a 50 mL pear-shaped flask, 5-Chloro-2-trifluoromethanesulfonyloxypyrrolo[3,2b]pyridine-1carboxylic acid ethyl ester (485 mg, 1.3 mmol, Eq: 1.00) was combined with dichloromethane (20 ml) to give a yellow solution. The solution was flushed with nitrogen followed by addition of tetrakis(triphenylphosphine) palladium (0) (150 mg, 130 μmol, Eq: 0.1), 2-chlorophenylboronic acid (224 mg, 1.43 mmol, Eq: 1.1) and triethylamine (450 mg, 620 μl, 4.45 mmol, Eq: 3.42). The solution was flushed again with nitrogen. The reaction mixture was heated to 60° C. and stirred for 45 min. The reaction was diluted with ethyl acetate (10 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 40 g, 10% to 15% EtOAc in hexanes to give crude material (376 mg) as a colorless oil. Trituration with hexane gave 5-Chloro-2-(2-chloro-phenyl)-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (351 mg, 80.5%) as a white solid. MS (M+H)=336.2.


2-(2-Chloro-phenyl)-5-(4-dimethylsulfamoyl-2-methyl-phenyl)-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester: In a 30 ml microwave flask, 4-(N,N-dimethylsulfamoyl-2-methylphenyl boronic acid (80.2 mg, 330 μmol, Eq: 1.4), ethyl 5-chloro-2-(2-chlorophenyl)-1H-pyrrolo[3,2-b]pyridine-1-carboxylate (79 mg, 236 μmol, Eq: 1.00), X-PHOS (64.1 mg, 135 μmol, Eq: 0.571) were combined with dioxane (4 ml). [1,1′-bis(diphenyl phosphino)ferrocenedichloropalladium (II) dichloromethane complex (55.1 mg, 67.5 μmol, Eq: 0.286) and triethylamine (163 mg, 225 μl, 1.61 mmol, Eq: 6.85) were added. The mixture was flushed with nitrogen and microwaved at 150° C. for 60 min. The resultant reaction is diluted with ethyl acetate (5 ml), washed with brine (15 ml), dried over Na2SO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 12 g, 10% to 15% EtOAc in hexanes) to obtained 2-(2-Chloro-phenyl)-5-(4-dimethylsulfamoyl-2-methyl-phenyl)-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (38 mg) as a light green oil. MS (M+H)=499.0


4-[2-(2-Chloro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide: In a 25 mL pear-shaped flask, 2-(2-Chloro-phenyl)-5-(4-dimethyl sulfamoyl-2-methyl-phenyl)-pyrrolo[3,2-b]pyridine-1-carboxylic acid ethyl ester (38 mg) was combined with MeOH (3 ml) to give a colorless solution. Potassium carbonate (11.9 mg, 84 mmol) was added and the mixture was stirred at room temperature for 45 minutes. The reaction was diluted with brine (20 mL) followed by extraction with ethyl acetate (3×30 mL). The organic layer was dried over MgSO4 and concentrated in vacuo. The crude material was purified by flash chromatography (silica gel, 12 g, 10% to 40% EtOAc in hexanes) to obtained 4-[2-(2-Chloro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide (4.2 mg) as a off white solid. MS (M+H)=426.9


Example 8
2-(2-Chloro-4-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine



embedded image


2-(2-Chloro-4-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine: Was prepared in a manner identical to that described for Example 7 substituting 2-Chloro-4-fluoro-phenylboronic acid and 1-methyl-3-trifluoromethylpyrazole-5-boronic acid in the initial and subsequent Suzuki coupling steps to give a solid. MS: (M+H) 395.7 m/e.


Example 9
4-[2-(2-Chloro-4-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide



embedded image


4-[2-(2-Chloro-4-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide: Was prepared in a manner identical to that described for Example 7 substituting 2-Chloro-4-fluoro-phenylboronic in the initial Suzuki coupling step to give a solid. MS: (M+H+) 444.9 m/e.


Example 10
4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide



embedded image


4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide: Was prepared in a manner identical to that described for Example 7 substituting 2,6-difluoro-phenylboronic in the initial Suzuki coupling step to give a solid. MS: (M+H+) 428.5 m/e.


Example 11
4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3-methyl-benzonitrile



embedded image


4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3-methyl-benzonitrile: Was prepared in a manner identical to that described for Example 7 substituting 2,6-difluoro-phenylboronic and 2-methyl-3-cyano-phenylboronic in the initial and subsequent Suzuki coupling steps to give a solid. MS: (M+H+) 346.3.


Example 12
2-(2,6-Difluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine



embedded image


4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3-methyl-benzonitrile: Was prepared in a manner identical to that described for Example 7 substituting 2,6-difluoro-phenylboronic and 1-methyl-3-trifluoromethylpyrazole-5-boronic acid in the initial and subsequent Suzuki coupling steps to give a solid. MS: (M+H+) 379 m/e.


Example 13
4-(2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide



embedded image


5-chloro-2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine: To a mixture of ethyl 5-chloro-2-(trifluoromethylsulfonyloxy)-1H-pyrrolo[3,2-b]pyridine-1-carboxylate (151 mg, 405 μmol, Eq: 1.00), 2,6-difluoro-4-methoxyphenylboronic acid (99.0 mg, 527 μmol, Eq: 1.30), tetrakis(triphenylphosphine)palladium(0) (46.8 mg, 40.5 μmol, Eq: 0.10) and sodium bicarbonate (272 mg, 3.24 mmol, Eq: 8.0) was added toluene (1.5 ml), ethanol (1.0 ml) and water (0.5 ml). This suspension was purged with nitrogen for 10 min and then heated at 110° C. for 16 hrs. After which, the mixture was filtered through a pad of Celite and washed with DCM. The organics were concentrated and chromatographed directly (silica gel, 15% EtOAc in hexane) to give 5-chloro-2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (82 mg, 278 μmol, 68.7% yield) as an off-white powder. MS: (M+H)=295.


4-(2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide: To a mixture of 5-chloro-2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridine (25 mg, 84.8 μmol, Eq: 1.00), 4-(N,N-dimethylsulfamoyl)-2-methylphenylboronic acid (26.8 mg, 110 μmol, Eq: 1.3), 1,1′-bis(diphenylphosphino)ferrocenedichloro palladium (II) (6.21 mg, 8.48 μmol, Eq: 0.1) and potassium carbonate (35.2 mg, 255 μmol, Eq: 3) was added dioxane (2.00 ml) and water (0.5 ml). This suspension was purged with nitrogen for 10 min and then heated at 110° C. for 16 hrs. After which the solvent was removed in vacuo, and the residue chromatographed on silica gel eluting with 1% MeOH-DCM to give 4-(2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide (32.2 mg, 70.4 μmol, 83.0% yield) as an off-white powder, MS: (M+H)=458.


Example 14
Jurkat IL-2 Production Assay

Cell:


Jurkat cell (ATCC) was grown in RPMI 1640 with 10% FBS and 1% penicillin/streptomycin. The cell density was kept at 1.2˜1.8×106/mL in culture flask before seeding into culture plate, and the cell density in the plate was 0.5×106/2004/well.


Culture Media:


RPMI 1640 with 1% FBS or 30% FBS for high serum assay.


Test Compound:


serial dilution was done in 100% DMSO, and intermediate dilution was done with RPMI 1640 medium with 1% FBS. The DMSO final concentration in culture well was 0.25%.


Stimulant:


PHA (Sigma#L9017-10MG) was used for the assay with 1% FBS in culture medium, and added after 10 minutes exposure of cell to compound/DMSO. The PHA final concentration in culture well was 5 μg/mL. PMA (Sigma# P-8139 5MG)/Ionomycin (Sigma# I0634-5MG) was used for the assay with 30% FBS in culture medium, and added at same time point as the 1% FBS culture assay. The final concentration of PMA was 50 ng/mL, and Ionomycin final concentration was 500 ng/mL.


Incubation:


at 37° C. with 5% CO2 and 95% humidity for 18 h ˜20 h.


IC50:


IC50 was calculated with the data analysis software XLfit4, General Pharmacology model 251.


Using the above procedure, the IC50 values for certain embodiments of the invention are provided in Table 1:












TABLE 1







Example
IC50 (μM)



















1
0.078



2
0.246



3
0.094



4
0.08



5
0.347



6
0.092



7
0.3



8
0.147



9
0.098



10
0.134



11
0.767



12
0.2



13
0.169










While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. A compound of Formula (I):
  • 2. The compound according to claim 1, wherein Ar is phenyl substituted with one, two or three substituents independently selected from chlorine, fluorine and —OCH3.
  • 3. The compound according to claim 1, wherein Ar is phenyl substituted with one or two substituents independently selected from chlorine and fluorine.
  • 4. The compound according to claim 1, wherein Ar′ is phenyl substituted with one or two substituents independently selected from methyl, —CF3, —SO2N(CH3)2, —CN, chlorine and fluorine.
  • 5. The compound according to claim 1, wherein Ar′ is pyrazolyl or pyridinyl, substituted with one or two substituents independently selected from methyl and —CF3.
  • 6. The compound according to claim 1, wherein said compound is: [2-[(E)-2-(2-Chloro-phenyl)-vinyl]-6-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-pyridin-3-yl]-methyl-amine;2-(2-Chloro-6-fluoro-phenyl)-5-(6-chloro-4-methyl-pyridin-3-yl)-1H-pyrrolo[3,2b]pyridine;2-(2-Chloro-6-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine;2-(2-chloro-6-fluorophenyl)-5-(2-methyl-4-(trifluoromethyl)phenyl)-1H-pyrrolo[3,2-b]pyridine;4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-3-methylbenzonitrile;4-(2-(2-chloro-6-fluorophenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide;4-[2-(2-Chloro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;2-(2-Chloro-4-fluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine;4-[2-(2-Chloro-4-fluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3,N,N-trimethyl-benzenesulfonamide;4-[2-(2,6-Difluoro-phenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl]-3-methyl-benzonitrile;2-(2,6-Difluoro-phenyl)-5-(2-methyl-5-trifluoromethyl-2H-pyrazol-3-yl)-1H-pyrrolo[3,2-b]pyridine; or4-(2-(2,6-difluoro-4-methoxyphenyl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-N,N,3-trimethylbenzenesulfonamide.
  • 7. A pharmaceutical composition, comprising a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.
  • 8. A method for treating arthritis, comprising the step of administering a therapeutically effective amount of a compound according to claim 1 to a subject in need thereof.
  • 9. A method for treating a respiratory disorder, comprising the step of administering a therapeutically effective amount of a compound according to claim 1 to a subject in need thereof.
  • 10. The method according to claim 9, wherein said respiratory disorder is chronic obstructive pulmonary disorder (COPD), asthma or bronchospasm.
PRIORITY TO RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional Application No. 61/577,839, filed Dec. 20, 2012, which is hereby incorporated by reference in its entirety. This application is related to U.S. application Ser. No. 12/888,701, filed on Sep. 23, 2010, the entire contents of which are incorporated by reference herein.

Provisional Applications (1)
Number Date Country
61577839 Dec 2011 US