The present application is related to U.S. patent application Ser. No. 13/688,026, for “Extended Depth of Field and Variable Center of Perspective in Light-Field Processing”, filed Nov. 28, 2012, and issued on Aug. 19, 2014 as U.S. Pat. No. 8,811,769, the disclosure of which is incorporated herein by reference in its entirety.
The present application is related to U.S. patent application Ser. No. 13/774,971, for “Compensating for Variation in Microlens Position During Light-Field Image Processing”, filed Feb. 22, 2013, and issued on Sep. 9, 2014 as U.S. Pat. No. 8,831,377, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates to digital imaging. More precisely, the present disclosure relates to use of light-field data to track the motion path of a camera and/or adjust the stability of image data generated by the camera.
In conventional 2D digital photography, an image of a scene may be captured as a 2D matrix of color values that represents the scene from one field of view. The focus depth and Center of Perspective (CoP) of the image typically cannot be changed after the image has been captured; rather, the focus depth and Center of Perspective at the time of image capture determine what features are in focus and in view. Accordingly, there is also no way to modify the viewpoint from which an image is taken.
One repercussion of this limitation is that it may be difficult to carry out image stabilization. Since true image stabilization would require adjustment of the viewpoint from which the image or video was captured, conventional 2D image stabilization methods are typically limited to lossy processes that can only compensate for 2D shifts within an image sequence. The need to crop portions of the image to correct the 2D shifts results in loss of image data.
According to various embodiments, a light-field video stream may be processed to obtain a camera pathway indicative of the viewpoint from which a light-field video stream was generated (i.e., captured). The camera pathway may be modified to obtain an adjusted camera pathway, which may provide a more desirable viewpoint. For example, the adjusted camera pathway may be stabilized relative to the camera pathway to provide image stabilization. In the alternative, the adjusted camera pathway may be de-stabilized, or “littered,” relative to the camera pathway to simulate vibration or other motion of the viewer's viewpoint.
The camera pathway may be obtained in various ways. According to one embodiment, a plurality of target pixels may be selected, in a plurality of key frames of the light-field video stream. The target pixels may have predetermined color and/or intensity characteristics that facilitate tracking of the target pixels between frames. For example, the target pixels may be selected from static, textured objects that appear in the key frames. The target pixels may further be from planar regions of the objects to further facilitate tracking.
According to some embodiments, the target pixels may be identified by generating a list of a plurality of targets appearing in each of the key frames, generating a plane model for each of the targets for each of the key frames, and then generating a mask for each of the targets for each of the key frames, indicating one or more target pixels within each of the targets. Further, superpixel segmentation may be carried out, and a motion error map may be calculated, for each of the key frames. The superpixels and motion error maps may be used to access texture and motion error for each of the superpixels for each key frame, to identify a plurality of the superpixels as candidate targets. A plane may be fitted to each of the candidate targets for each key frame. The targets may then be selected from among the candidate targets.
If desired, identification of the target pixels may be facilitated by using a depth map for each of the key frames, and/or initial camera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream. The camera motion may be indicative of motion of the light-field camera during at least a segment, containing the key frames, of the light-field video stream. In some examples the camera motion may be for an initial segment of the light-field video stream, and may facilitate accurate identification and/or location of the targets.
The target pixels may be used to generate a camera pathway indicative of motion of the camera during generation of the light-field video stream. The camera pathway may have six degrees of freedom, and may encompass the entirety of the video stream. A 3D mapping of the target pixels may also be generated.
In some embodiments, the camera pathway may be generated by dividing the light-field video stream into a plurality of sequences, each of which begins with one of the key frames. For each segment, starting with the first segment, the position and/or orientation of the target pixels may be tracked in each frame, and changes in the positions and/or orientations may be compared between frames to obtain a portion of the camera pathway for that segment. The position and/or orientation of each of the target pixels in the last frame of a sequence may be used for the starting key frame of the next sequence.
If desired, generation of the camera pathway may be facilitated by using camera-intrinsic parameters obtained from calibration of the light-field camera, light-field optics parameters pertinent to one or more light-field optical elements of the light-field camera, and/or camera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream. The camera motion may be indicative of motion of the light-field camera during at least a segment of the light-field video stream.
The camera pathway may be adjusted to generate an adjusted camera pathway. This may be done, for example, to carry out image stabilization. Image stabilization may be improved by adjusting U,V coordinates within each of a plurality of frames of the light-field video stream to cause frame-to-frame motion to be relatively smooth and contiguous
The light-field video stream may be projected to a viewpoint defined by the adjusted camera pathway to generate a projected video stream with the image stabilization. The projected video stream may be outputted to an output device, such as a display screen.
These concepts will be described in greater detail below.
The accompanying drawings illustrate several embodiments. Together with the description, they serve to explain the principles of the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.
For purposes of the description provided herein, the following definitions are used:
In addition to the foregoing, additional terms will be set forth and defined in the description below. Terms not explicitly defined are to be interpreted, primarily, in a manner consistently with their usage and context herein, and, secondarily, in a manner consistent with their use in the art.
For ease of nomenclature, the term “camera” is used herein to refer to an image capture device or other data acquisition device. Such a data acquisition device can be any device or system for acquiring, recording, measuring, estimating, determining and/or computing data representative of a scene, including but not limited to two-dimensional image data, three-dimensional image data, and/or light-field data. Such a data acquisition device may include optics, sensors, and image processing electronics for acquiring data representative of a scene, using techniques that are well known in the art. One skilled in the art will recognize that many types of data acquisition devices can be used in connection with the present disclosure, and that the disclosure is not limited to cameras. Thus, the use of the term “camera” herein is intended to be illustrative and exemplary, but should not be considered to limit the scope of the disclosure. Specifically, any use of such term herein should be considered to refer to any suitable device for acquiring image data.
In the following description, several techniques and methods for processing light-field images are described. One skilled in the art will recognize that these various techniques and methods can be performed singly and/or in any suitable combination with one another. Further, many of the configurations and techniques described herein are applicable to conventional imaging as well as light-field imaging. Thus, although the following description focuses on light-field imaging, all of the following systems and methods may additionally or alternatively be used in connection with conventional digital imaging systems. In some cases, the needed modification is as simple as removing the microlens array from the configuration described for light-field imaging to convert the example into a configuration for conventional image capture.
Architecture
In at least one embodiment, the system and method described herein can be implemented in connection with light-field images captured by light-field capture devices including but not limited to those described in Ng et al., Light-field photography with a hand-held plenoptic capture device, Technical Report CSTR 2005-02, Stanford Computer Science. Further, any known depth sensing technology may be used.
Referring now to
In at least one embodiment, camera 200 may be a light-field camera that includes light-field image data acquisition device 209 having optics 201, image sensor 203 (including a plurality of individual sensors for capturing pixels), and microlens array 202. Optics 201 may include, for example, aperture 212 for allowing a selectable amount of light into camera 200, and main lens 213 for focusing light toward microlens array 202. In at least one embodiment, microlens array 202 may be disposed and/or incorporated in the optical path of camera 200 (between main lens 213 and image sensor 203) so as to facilitate acquisition, capture, sampling of, recording, and/or obtaining light-field image data via image sensor 203. The microlens array 203 may be positioned on or near a focal plane 204 of the main lens 213.
Referring now also to
In at least one embodiment, camera 200 may also include a user interface 205 for allowing a user to provide input for controlling the operation of camera 200 for capturing, acquiring, storing, and/or processing image data. The user interface 205 may receive user input from the user via an input device 206, which may include any one or more user input mechanisms known in the art. For example, the input device 206 may include one or more buttons, switches, touch screens, gesture interpretation devices, pointing devices, and/or the like.
Similarly, in at least one embodiment, post-processing system 300 may include a user interface 305 that allows the user to provide input to control parameters for post-processing, and/or for other functions.
In at least one embodiment, camera 200 may also include control circuitry 210 for facilitating acquisition, sampling, recording, and/or obtaining light-field image data. The control circuitry 210 may, in particular, be used to switch image capture configurations such as the zoom level, resolution level, focus, and/or aperture size in response to receipt of the corresponding user input. For example, control circuitry 210 may manage and/or control (automatically or in response to user input) the acquisition timing, rate of acquisition, sampling, capturing, recording, and/or obtaining of light-field image data.
In at least one embodiment, camera 200 may include memory 211 for storing image data, such as output by image sensor 203. Such memory 211 can include external and/or internal memory. In at least one embodiment, memory 211 can be provided at a separate device and/or location from camera 200.
In at least one embodiment, captured image data is provided to post-processing circuitry 204. The post-processing circuitry 204 may be disposed in or integrated into light-field image data acquisition device 209, as shown in
Such a separate component may include any of a wide variety of computing devices, including but not limited to computers, smartphones, tablets, cameras, and/or any other device that processes digital information. Such a separate component may include additional features such as a user input 315 and/or a display screen 316. If desired, light-field image data may be displayed for the user on the display screen 316.
Overview
Light-field images often include a plurality of projections (which may be circular or of other shapes) of aperture 212 of camera 200, each projection taken from a different vantage point on the camera's focal plane. The light-field image may be captured on image sensor 203. The interposition of microlens array 202 between main lens 213 and image sensor 203 causes images of aperture 212 to be formed on image sensor 203, each microlens in microlens array 202 projecting a small image of main-lens aperture 212 onto image sensor 203. These aperture-shaped projections are referred to herein as disks, although they need not be circular in shape. The term “disk” is not intended to be limited to a circular region, but can refer to a region of any shape.
Light-field images include four dimensions of information describing light rays impinging on the focal plane of camera 200 (or other capture device). Two spatial dimensions (herein referred to as x and y) are represented by the disks themselves. For example, the spatial resolution of a light-field image with 120,000 disks, arranged in a Cartesian pattern 400 wide and 300 high, is 400×300. Two angular dimensions (herein referred to as u and v) are represented as the pixels within an individual disk. For example, the angular resolution of a light-field image with 100 pixels within each disk, arranged as a 10×10 Cartesian pattern, is 10×10. This light-field image has a 4-D (x,y,u,v) resolution of (400,300,10,10). Referring now to
In at least one embodiment, the 4-D light-field representation may be reduced to a 2-D image through a process of projection and reconstruction. As described in more detail in related U.S. Utility application Ser. No. 13/774,971 for “Compensating for Variation in Microlens Position During Light-Field Image Processing,” filed Feb. 22, 2013, the disclosure of which is incorporated herein by reference in its entirety, a virtual surface of projection may be introduced, and the intersections of representative rays with the virtual surface can be computed. The color of each representative ray may be taken to be equal to the color of its corresponding pixel.
Camera Pathway Generation and Adjustment
There are many instances in which it is desirable to obtain the 3D pathway followed by a camera to capture a scene. For example, in order to integrate computer-generated objects or effects in a scene, it may be desirable to render the computer-generated elements with a virtual camera that remains aligned with the actual camera used to capture the scene. Further, integration of the scene with audio effects may be done with reference to the camera pathway. For example, the volume and/or speaker position of audio effects may be determined based on the camera position and/or orientation in any given frame.
It may be most helpful to obtain a camera pathway with six degrees of freedom (for example, three to specify camera position along each of three orthogonal axes, and three to specify the orientation of the camera about each axis) for each frame. In this application, “camera pathway” includes the position and/or orientation of the camera.
In addition to the uses mentioned above, obtaining the camera pathway may enable the camera pathway to be adjusted for various purposes. Light-field image capture provides the unique ability to reproject images at different Centers of Perspective, allowing the viewpoint of the camera to effectively be shifted. Further details regarding projection of light-field data may be found in U.S. Utility application Ser. No. 13/688,026, for “Extended Depth of Field and Variable Center of Perspective in Light-Field Processing”, filed Nov. 28, 2012, the disclosure of which is incorporated herein by reference in its entirety.
In some embodiments, the camera pathway may be adjusted to smooth out the camera pathway, thereby effectively stabilizing the camera. Such stabilization may not have the losses and limitations inherent in known image stabilization algorithms used for conventional 2D images. As another alternative, jitter may be added to the camera pathway, causing the reprojected view to shake. This may be used to simulate an explosion, impact, earthquake, or the like, after image capture.
The method 500 may start 510 with a step 520 in which the light-field video stream is captured. This may be done by a light-field camera such as the light-field camera 200 of
In a step 530, the light-field video stream may be received, for example, at a processor capable of processing the light-field video stream. The processor may be the post-processing circuitry 204 of the camera 200, as in
In a step 540, target pixels may be selected in key frames of the light-field video stream. Target pixels may be pixels with color/intensity characteristics that make them easy to automatically recognize, and hence track from one frame to another. The target pixels may be identified, at least, in key frames of the light-field video stream. The step 540 will be described in greater detail in connection with
In a step 550, a camera pathway may be generated, indicative of motion of the light-field camera used to generate (i.e., capture) the light-field video stream. If some information about the camera pathway is already available at the commencement of the step 550, the step 550 may include gathering the remaining data needed to generate the camera pathway with six degrees of freedom, for the entire length of the light-field video stream. The step 550 will be described in greater detail in connection with
In a step 560, an adjusted camera pathway may be generated, based on the camera pathway. The adjusted camera pathway may include any desired adjustments, such as camera stabilization or camera jittering. This step is optional; as mentioned previously, the camera pathway may be useful independently of the creation of an adjusted camera pathway. For example, integration of computer-generated elements in the light-field video stream may not require the adjustment of the camera pathway, but may rather be based on the un-adjusted camera pathway.
In a step 570, a video stream may be projected based on the adjusted camera pathway. The video stream may be projected from the viewpoint of the camera, in each frame, as indicated on the adjusted camera pathway. The adjusted camera pathway may also provide the position and orientation of the camera with six degrees of freedom, and may thus provide the information needed to generate new projected views. The video stream generated in the step 570 may thus reflect the modifications made to the camera pathway, such as image stabilization. This step is optional, and may be unnecessary if the step 560 is not carried out.
In a step 580, the video stream generated in the step 570 may be output to an output device. This may be, for example, the display screen 316 of the post-processing system 300 of
Various steps of the method 500 of
Target and Target Pixel Identification
The step 540 may be designed to provide output, which may include one or more of the following:
The step 540 may utilize direct image mapping to determine the camera pose and motion, and the depth of objects in the scene. The targets used for direct image mapping may be selected to facilitate identification and matching between frames. Thus, each of the targets may have color and/or intensity characteristics that facilitate identification. The targets may advantageously be static, so that relative motion of the targets between frames can be used to ascertain motion of the camera (as opposed to motion of the targets). Further, the targets may have textures that make them relatively easy to identify with accuracy.
Further, in at least one embodiment, only planar regions (i.e., planar surfaces of objects) may be selected as targets. This may facilitate usage of planes to approximate the targets, and may minimize the number of unknowns in the expressions used to solve for depth. Specifically, for a planar region, only four unknowns need to be solved for.
As shown, the step 540 may begin 610 with a step 620 in which superpixel segmentation of each key frame is carried out. Superpixel segmentation may entail division of each key frame into groups (superpixels) in which pixels have some traits in common, such as color and/or intensity values.
Returning to
Returning to
Returning to
In a step 660, a mask may be generated for each of the candidate targets 910, indicating which pixels within the candidate target 910 are suitable for use as target pixels. Target pixels may be those with the desired color/intensity characteristics for accurate recognition between frames.
In a step 670, some of the candidate targets may be selected as targets. This selection may be made, for example, based on whether each of the candidate targets 910 was readily and accurately mapped to a plane in the step 650, and/or whether each of the candidate targets 910 contains suitable target pixels, as determined in the step 660. The step 540 may then end 690.
Camera Pathway Generation from Targets
The step 550 may be designed to provide output, which may include one or more of the following:
The step 550 may track the 3D movement of the light-field camera with accuracy sufficient to enable visually precise insertion of computer-generated content into the light-field video stream. As part of the step 550, the motion of the light-field camera may be tracked with six degrees of freedom, and the targets may be mapped in 3D space. Depth mapping may be carried out as a necessary by-product of generation of the camera pathway.
As shown, the step 550 may begin 1110 with a step 1120 in which the light-field video stream is divided into sequences. Each sequence may begin with one of the key frames identified in the step 540.
In a step 1130, one of the sequences may be selected. For the first iteration, this may be the first sequence of the light-field video stream. The targets and target pixels of the first key frame may already have been selected in the step 540.
In a step 1140, the position and/or orientation of the targets may be tracked, in each frame of the sequence. In a step 1150, the position and/or orientation of the targets may be compared between frames of the sequence to obtain a portion of the camera pathway corresponding to that sequence. This may be done, for example, by comparing each pair of adjacent frames, modeling the position and/or orientation of each target for the new frame, and building the camera pathway for the new frame. Thus, the step 1140 and the step 1150 may be carried out synchronously.
Thus, the 3D model (map) of the targets and the camera pathway may be propagated from the key frame to the last frame of the sequence, which may be the key frame of the next sequence. Accordingly, the camera pathway may be generated one frame at a time until the portion of the camera pathway for that sequence is complete. At the end of the sequence, in a step 1160, the position and/or orientation of the target pixels in the key frame at the beginning of the next sequence may be obtained.
In a query 1170, a determination may be made as to whether the camera pathway has been generated for all sequences designated in the step 1120. If not, the system may return to the step 1130 and select the next sequence in the light-field video stream. The step 1140, the step 1150, and the step 1160 may be repeated until the query 1170 is answered in the affirmative. The step 550 may then end 1190.
If desired, user input may be gathered at any point in the performance of the step 550. For example, the user may help identify new targets and/or target pixels, confirm whether the 3D model of targets and/or target pixels is correct, and/or confirm whether each new portion of the camera pathway is correct. Thus, propagation of errors through the process may be avoided.
Image Stabilization
As described in connection with
By using 4D data, parallax and image resolution can be maintained, avoiding the losses inherent in known image stabilization methods for 2D images. The limits of perspective shift may be governed by the specifications of the light-field optics. By generating an adjusted camera pathway in 3D space, using the camera pathway, a new sample from the 4D light-field can be produced, thus generating a near parallax-perfect camera move.
The camera pathway 1220 may be obtained with relatively high accuracy through use of the methods provided herein. Then, the camera pathway 1220 may be adjusted (for example, by using splines or the like), to generate the adjusted camera pathway 1230, which is much smoother. The configuration and/or positioning of the light-field optics within the light-field camera 200, such as the main lens 213, the microlens array 202, and the image sensor 203, may determine the size of the perspective limits 1240, within which the Center of Perspective of the light-field video stream may be adjusted for each frame.
A much smoother video stream may be projected from the light-field video stream, from the viewpoint of the adjusted camera pathway 1230. This video stream may be outputted to a display screen or the like for viewing.
Integration of Other Sensors
As mentioned previously, other sensors may be used to enable still more accurate generation of the camera pathway 1220. For example, camera position and/or orientation data derived from such sensors may be compared with that of the camera pathway 1220 computed by 3D mapping the targets and/or target pixels in 3D space. If desired, such sensor data may be used for each sequence, or even each frame-by-frame progression, of the step 540.
Such comparison may be performed manually by a user, or automatically by the computing device. The camera pathway 1220 may, if desired, be modified based on the corresponding camera pathway 1310 and/or the corresponding camera pathway 1320. Such modification may also be carried out manually or automatically, and may be done in the course of performance of the step 540. In the alternative, distinct camera pathways may be computed in their entirety, and then compared and/or modified after the step 540 is complete.
The above description and referenced drawings set forth particular details with respect to possible embodiments. Those of skill in the art will appreciate that the techniques described herein may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the techniques described herein may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.
Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some embodiments may include a system or a method for performing the above-described techniques, either singly or in any combination. Other embodiments may include a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.
Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of described herein can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.
Some embodiments relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), and/or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the techniques set forth herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the techniques described herein, and any references above to specific languages are provided for illustrative purposes only.
Accordingly, in various embodiments, the techniques described herein can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the techniques described herein include: a mobile phone, personal digital assistant, smartphone, kiosk, server computer, enterprise computing device, desktop computer, laptop computer, tablet computer, consumer electronic device, television, set-top box, or the like. An electronic device for implementing the techniques described herein may use any operating system such as, for example: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.
In various embodiments, the techniques described herein can be implemented in a distributed processing environment, networked computing environment, or web-based computing environment. Elements can be implemented on client computing devices, servers, routers, and/or other network or non-network components. In some embodiments, the techniques described herein are implemented using a client/server architecture, wherein some components are implemented on one or more client computing devices and other components are implemented on one or more servers. In one embodiment, in the course of implementing the techniques of the present disclosure, client(s) request content from server(s), and server(s) return content in response to the requests. A browser may be installed at the client computing device for enabling such requests and responses, and for providing a user interface by which the user can initiate and control such interactions and view the presented content.
Any or all of the network components for implementing the described technology may, in some embodiments, be communicatively coupled with one another using any suitable electronic network, whether wired or wireless or any combination thereof, and using any suitable protocols for enabling such communication. One example of such a network is the Internet, although the techniques described herein can be implemented using other networks as well.
While a limited number of embodiments has been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the claims. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting.
Number | Name | Date | Kind |
---|---|---|---|
725567 | Ives | Apr 1903 | A |
4383170 | Takagi et al. | May 1983 | A |
4661986 | Adelson | Apr 1987 | A |
4694185 | Weiss | Sep 1987 | A |
4920419 | Easterly | Apr 1990 | A |
5076687 | Adelson | Dec 1991 | A |
5077810 | D'Luna | Dec 1991 | A |
5251019 | Moorman et al. | Oct 1993 | A |
5282045 | Mimura et al. | Jan 1994 | A |
5499069 | Griffith | Mar 1996 | A |
5572034 | Karellas | Nov 1996 | A |
5610390 | Miyano | Mar 1997 | A |
5748371 | Cathey, Jr. et al. | May 1998 | A |
5757423 | Tanaka et al. | May 1998 | A |
5818525 | Elabd | Oct 1998 | A |
5835267 | Mason et al. | Nov 1998 | A |
5907619 | Davis | May 1999 | A |
5949433 | Klotz | Sep 1999 | A |
5974215 | Bilbro et al. | Oct 1999 | A |
6005936 | Shimizu et al. | Dec 1999 | A |
6021241 | Bilbro et al. | Feb 2000 | A |
6023523 | Cohen et al. | Feb 2000 | A |
6028606 | Kolb et al. | Feb 2000 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6061083 | Aritake et al. | May 2000 | A |
6061400 | Pearlstein et al. | May 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6075889 | Hamilton, Jr. et al. | Jun 2000 | A |
6091860 | Dimitri | Jul 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6115556 | Reddington | Sep 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6169285 | Pertrillo et al. | Jan 2001 | B1 |
6201899 | Bergen | Mar 2001 | B1 |
6221687 | Abramovich | Apr 2001 | B1 |
6320979 | Melen | Nov 2001 | B1 |
6424351 | Bishop et al. | Jul 2002 | B1 |
6448544 | Stanton et al. | Sep 2002 | B1 |
6466207 | Gortler et al. | Oct 2002 | B1 |
6476805 | Shum et al. | Nov 2002 | B1 |
6479827 | Hamamoto et al. | Nov 2002 | B1 |
6483535 | Tamburrino et al. | Nov 2002 | B1 |
6529265 | Henningsen | Mar 2003 | B1 |
6577342 | Webster | Jun 2003 | B1 |
6587147 | Li | Jul 2003 | B1 |
6597859 | Leinhardt et al. | Jul 2003 | B1 |
6606099 | Yamada | Aug 2003 | B2 |
6658168 | Kim | Dec 2003 | B1 |
6674430 | Kaufman et al. | Jan 2004 | B1 |
6687419 | Atkin | Feb 2004 | B1 |
6768980 | Meyer et al. | Jul 2004 | B1 |
6785667 | Orbanes et al. | Aug 2004 | B2 |
6833865 | Fuller et al. | Dec 2004 | B1 |
6842297 | Dowski, Jr. et al. | Jan 2005 | B2 |
6900841 | Mihara | May 2005 | B1 |
6924841 | Jones | Aug 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7025515 | Woods | Apr 2006 | B2 |
7034866 | Colmenarez et al. | Apr 2006 | B1 |
7079698 | Kobayashi | Jul 2006 | B2 |
7102666 | Kanade et al. | Sep 2006 | B2 |
7164807 | Morton | Jan 2007 | B2 |
7206022 | Miller et al. | Apr 2007 | B2 |
7239345 | Rogina | Jul 2007 | B1 |
7286295 | Sweatt et al. | Oct 2007 | B1 |
7304670 | Hussey et al. | Dec 2007 | B1 |
7329856 | Ma et al. | Feb 2008 | B2 |
7336430 | George | Feb 2008 | B2 |
7417670 | Linzer et al. | Aug 2008 | B1 |
7469381 | Ording | Dec 2008 | B2 |
7477304 | Hu | Jan 2009 | B2 |
7587109 | Reininger | Sep 2009 | B1 |
7620309 | Georgiev | Nov 2009 | B2 |
7623726 | Georgiev | Nov 2009 | B1 |
7633513 | Kondo et al. | Dec 2009 | B2 |
7683951 | Aotsuka | Mar 2010 | B2 |
7687757 | Tseng et al. | Mar 2010 | B1 |
7723662 | Levoy et al. | May 2010 | B2 |
7724952 | Shum et al. | May 2010 | B2 |
7748022 | Frazier | Jun 2010 | B1 |
7847825 | Aoki et al. | Dec 2010 | B2 |
7936377 | Friedhoff et al. | May 2011 | B2 |
7936392 | Ng et al. | May 2011 | B2 |
7941634 | Georgi | May 2011 | B2 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
7949252 | Georgiev | May 2011 | B1 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8085391 | Machida et al. | Dec 2011 | B2 |
8106856 | Matas et al. | Jan 2012 | B2 |
8115814 | Iwase et al. | Feb 2012 | B2 |
8155456 | Babacan | Apr 2012 | B2 |
8155478 | Vitsnudel et al. | Apr 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8228417 | Georgiev et al. | Jul 2012 | B1 |
8248515 | Ng et al. | Aug 2012 | B2 |
8259198 | Cote et al. | Sep 2012 | B2 |
8264546 | Witt | Sep 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8289440 | Knight et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8310554 | Aggarwal et al. | Nov 2012 | B2 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8400533 | Szedo | Mar 2013 | B1 |
8400555 | Georgiev | Mar 2013 | B1 |
8427548 | Lim et al. | Apr 2013 | B2 |
8442397 | Kang et al. | May 2013 | B2 |
8446516 | Pitts et al. | May 2013 | B2 |
8494304 | Venable et al. | Jul 2013 | B2 |
8531535 | Kwatra | Sep 2013 | B2 |
8531581 | Shroff | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8570426 | Pitts et al. | Oct 2013 | B2 |
8577216 | Li et al. | Nov 2013 | B2 |
8581998 | Ohno | Nov 2013 | B2 |
8589374 | Chaudhri | Nov 2013 | B2 |
8593564 | Border et al. | Nov 2013 | B2 |
8605199 | Imai | Dec 2013 | B2 |
8614764 | Pitts et al. | Dec 2013 | B2 |
8619082 | Ciurea | Dec 2013 | B1 |
8629930 | Brueckner et al. | Jan 2014 | B2 |
8665440 | Kompaniets et al. | Mar 2014 | B1 |
8675073 | Aagaard et al. | Mar 2014 | B2 |
8724014 | Ng et al. | May 2014 | B2 |
8736710 | Spielberg | May 2014 | B2 |
8736751 | Yun | May 2014 | B2 |
8749620 | Pitts et al. | Jun 2014 | B1 |
8749648 | Kohn | Jun 2014 | B1 |
8750509 | Renkis | Jun 2014 | B2 |
8754829 | Lapstun | Jun 2014 | B2 |
8760566 | Pitts et al. | Jun 2014 | B2 |
8768102 | Ng et al. | Jul 2014 | B1 |
8797321 | Bertolami et al. | Aug 2014 | B1 |
8811769 | Pitts et al. | Aug 2014 | B1 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8860856 | Wetzstein et al. | Oct 2014 | B2 |
8879901 | Caldwell et al. | Nov 2014 | B2 |
8903232 | Caldwell | Dec 2014 | B1 |
8908058 | Akeley et al. | Dec 2014 | B2 |
8948545 | Akeley et al. | Feb 2015 | B2 |
8953882 | Lim et al. | Feb 2015 | B2 |
8971625 | Pitts et al. | Mar 2015 | B2 |
8976288 | Ng et al. | Mar 2015 | B2 |
8988317 | Liang et al. | Mar 2015 | B1 |
8995785 | Knight et al. | Mar 2015 | B2 |
8997021 | Liang et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9013611 | Szedo | Apr 2015 | B1 |
9106914 | Doser | Aug 2015 | B2 |
9131155 | Dolgin | Sep 2015 | B1 |
9172853 | Pitts et al. | Oct 2015 | B2 |
9184199 | Pitts et al. | Nov 2015 | B2 |
9201193 | Smith | Dec 2015 | B1 |
9210391 | Mills | Dec 2015 | B1 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9232138 | Baldwin | Jan 2016 | B1 |
9294662 | Vondran, Jr. et al. | Mar 2016 | B2 |
9300932 | Knight et al. | Mar 2016 | B2 |
9305375 | Akeley | Apr 2016 | B2 |
9305956 | Pittes et al. | Apr 2016 | B2 |
9307148 | Baldwin | Apr 2016 | B1 |
9386288 | Akeley et al. | Jul 2016 | B2 |
9392153 | Myhre et al. | Jul 2016 | B2 |
9419049 | Pitts et al. | Aug 2016 | B2 |
9467607 | Ng et al. | Oct 2016 | B2 |
9497380 | Jannard et al. | Nov 2016 | B1 |
9607424 | Ng et al. | Mar 2017 | B2 |
9628684 | Liang et al. | Apr 2017 | B2 |
9635332 | Carroll et al. | Apr 2017 | B2 |
9639945 | Oberheu et al. | May 2017 | B2 |
9647150 | Blasco Claret | May 2017 | B2 |
9681069 | El-Ghoroury et al. | Jun 2017 | B2 |
9774800 | El-Ghoroury et al. | Sep 2017 | B2 |
9858649 | Liang et al. | Jan 2018 | B2 |
9866810 | Knight et al. | Jan 2018 | B2 |
9888179 | Liang | Feb 2018 | B1 |
9900510 | Karafin et al. | Feb 2018 | B1 |
9979909 | Kuang et al. | May 2018 | B2 |
20010048968 | Cox et al. | Dec 2001 | A1 |
20010053202 | Mazess et al. | Dec 2001 | A1 |
20020001395 | Davis et al. | Jan 2002 | A1 |
20020015048 | Nister | Feb 2002 | A1 |
20020061131 | Sawhney | May 2002 | A1 |
20020109783 | Hayashi et al. | Aug 2002 | A1 |
20020159030 | Frey et al. | Oct 2002 | A1 |
20020199106 | Hayashi | Dec 2002 | A1 |
20030081145 | Seaman et al. | May 2003 | A1 |
20030103670 | Schoelkopf et al. | Jun 2003 | A1 |
20030117511 | Betz et al. | Jun 2003 | A1 |
20030123700 | Wakao | Jul 2003 | A1 |
20030133018 | Ziemkowski | Jul 2003 | A1 |
20030147252 | Fioravanti | Aug 2003 | A1 |
20030156077 | Balogh | Aug 2003 | A1 |
20040002179 | Barton et al. | Jan 2004 | A1 |
20040012688 | Tinnerinno et al. | Jan 2004 | A1 |
20040012689 | Tinnerinno et al. | Jan 2004 | A1 |
20040101166 | Williams et al. | May 2004 | A1 |
20040114176 | Bodin et al. | Jun 2004 | A1 |
20040135780 | Nims | Jul 2004 | A1 |
20040189686 | Tanguay et al. | Sep 2004 | A1 |
20040257360 | Sieckmann | Dec 2004 | A1 |
20050031203 | Fukuda | Feb 2005 | A1 |
20050049500 | Babu et al. | Mar 2005 | A1 |
20050052543 | Li et al. | Mar 2005 | A1 |
20050080602 | Snyder et al. | Apr 2005 | A1 |
20050162540 | Yata | Jul 2005 | A1 |
20050212918 | Serra et al. | Sep 2005 | A1 |
20050276441 | Debevec | Dec 2005 | A1 |
20060023066 | Li et al. | Feb 2006 | A1 |
20060050170 | Tanaka | Mar 2006 | A1 |
20060056040 | Lan | Mar 2006 | A1 |
20060056604 | Sylthe et al. | Mar 2006 | A1 |
20060072175 | Oshino | Apr 2006 | A1 |
20060082879 | Miyoshi et al. | Apr 2006 | A1 |
20060130017 | Cohen et al. | Jun 2006 | A1 |
20060208259 | Jeon | Sep 2006 | A1 |
20060248348 | Wakao et al. | Nov 2006 | A1 |
20060256226 | Alon et al. | Nov 2006 | A1 |
20060274210 | Kim | Dec 2006 | A1 |
20060285741 | Subbarao | Dec 2006 | A1 |
20070008317 | Lundstrom | Jan 2007 | A1 |
20070019883 | Wong et al. | Jan 2007 | A1 |
20070030357 | Levien et al. | Feb 2007 | A1 |
20070033588 | Landsman | Feb 2007 | A1 |
20070052810 | Monroe | Mar 2007 | A1 |
20070071316 | Kubo | Mar 2007 | A1 |
20070081081 | Cheng | Apr 2007 | A1 |
20070097206 | Houvener | May 2007 | A1 |
20070103558 | Cai et al. | May 2007 | A1 |
20070113198 | Robertson et al. | May 2007 | A1 |
20070140676 | Nakahara | Jun 2007 | A1 |
20070188613 | Norbori et al. | Aug 2007 | A1 |
20070201853 | Petschnigg | Aug 2007 | A1 |
20070229653 | Matusik et al. | Oct 2007 | A1 |
20070230944 | Georgiev | Oct 2007 | A1 |
20070269108 | Steinberg et al. | Nov 2007 | A1 |
20080007626 | Wernersson | Jan 2008 | A1 |
20080012988 | Baharav et al. | Jan 2008 | A1 |
20080018668 | Yamauchi | Jan 2008 | A1 |
20080031537 | Gutkowicz-Krusin et al. | Feb 2008 | A1 |
20080049113 | Hirai | Feb 2008 | A1 |
20080056569 | Williams et al. | Mar 2008 | A1 |
20080122940 | Mori | May 2008 | A1 |
20080129728 | Satoshi | Jun 2008 | A1 |
20080144952 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080180792 | Georgiev | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080205871 | Utagawa | Aug 2008 | A1 |
20080226274 | Spielberg | Sep 2008 | A1 |
20080232680 | Berestov et al. | Sep 2008 | A1 |
20080253652 | Gupta et al. | Oct 2008 | A1 |
20080260291 | Alakarhu et al. | Oct 2008 | A1 |
20080266688 | Errando Smet et al. | Oct 2008 | A1 |
20080277566 | Utagawa | Nov 2008 | A1 |
20080309813 | Watanabe | Dec 2008 | A1 |
20080316301 | Givon | Dec 2008 | A1 |
20090027542 | Yamamoto et al. | Jan 2009 | A1 |
20090041381 | Georgiev et al. | Feb 2009 | A1 |
20090041448 | Georgiev et al. | Feb 2009 | A1 |
20090070710 | Kagaya | Mar 2009 | A1 |
20090128658 | Hayasaka et al. | May 2009 | A1 |
20090128669 | Ng et al. | May 2009 | A1 |
20090135258 | Nozaki | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090102956 | Georgiev | Jul 2009 | A1 |
20090185051 | Sano | Jul 2009 | A1 |
20090185801 | Georgiev et al. | Jul 2009 | A1 |
20090190022 | Ichimura | Jul 2009 | A1 |
20090190024 | Hayasaka et al. | Jul 2009 | A1 |
20090195689 | Hwang et al. | Aug 2009 | A1 |
20090202235 | Li et al. | Aug 2009 | A1 |
20090204813 | Kwan | Aug 2009 | A1 |
20090273843 | Raskar et al. | Nov 2009 | A1 |
20090295829 | Georgiev et al. | Dec 2009 | A1 |
20090309973 | Kogane | Dec 2009 | A1 |
20090310885 | Tamaru | Dec 2009 | A1 |
20090321861 | Oliver et al. | Dec 2009 | A1 |
20100003024 | Agrawal et al. | Jan 2010 | A1 |
20100021001 | Honsinger et al. | Jan 2010 | A1 |
20100026852 | Ng et al. | Feb 2010 | A1 |
20100033617 | Forutanpour | Feb 2010 | A1 |
20100050120 | Ohazama et al. | Feb 2010 | A1 |
20100060727 | Steinberg et al. | Mar 2010 | A1 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103311 | Makii | Apr 2010 | A1 |
20100107068 | Butcher et al. | Apr 2010 | A1 |
20100111489 | Presler | May 2010 | A1 |
20100123784 | Ding et al. | May 2010 | A1 |
20100141780 | Tan et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100188503 | Tsai | Jul 2010 | A1 |
20100201789 | Yahagi | Aug 2010 | A1 |
20100253782 | Elazary | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100303288 | Malone | Dec 2010 | A1 |
20100328485 | Imamura et al. | Dec 2010 | A1 |
20110018903 | Lapstun et al. | Jan 2011 | A1 |
20110019056 | Hirsch et al. | Jan 2011 | A1 |
20110025827 | Shpunt et al. | Feb 2011 | A1 |
20110050864 | Bond | Mar 2011 | A1 |
20110050909 | Ellenby | Mar 2011 | A1 |
20110069175 | Mistretta et al. | Mar 2011 | A1 |
20110075729 | Dane et al. | Mar 2011 | A1 |
20110090255 | Wilson et al. | Apr 2011 | A1 |
20110123183 | Adelsberger et al. | May 2011 | A1 |
20110129120 | Chan | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110148764 | Gao | Jun 2011 | A1 |
20110149074 | Lee et al. | Jun 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110205384 | Zamowski et al. | Aug 2011 | A1 |
20110221947 | Awazu | Sep 2011 | A1 |
20110242334 | Wilburn et al. | Oct 2011 | A1 |
20110242352 | Hikosaka | Oct 2011 | A1 |
20110261164 | Olesen et al. | Oct 2011 | A1 |
20110261205 | Sun | Oct 2011 | A1 |
20110267263 | Hinckley | Nov 2011 | A1 |
20110273466 | Imai et al. | Nov 2011 | A1 |
20110133649 | Bales et al. | Dec 2011 | A1 |
20110292258 | Adler | Dec 2011 | A1 |
20110298960 | Tan et al. | Dec 2011 | A1 |
20110304745 | Wang et al. | Dec 2011 | A1 |
20110311046 | Oka | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20120014837 | Fehr et al. | Jan 2012 | A1 |
20120050562 | Perwass et al. | Mar 2012 | A1 |
20120056889 | Carter et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120057806 | Backlund et al. | Mar 2012 | A1 |
20120062755 | Takahashi et al. | Mar 2012 | A1 |
20120132803 | Hirato et al. | May 2012 | A1 |
20120133746 | Bigioi et al. | May 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188344 | Imai | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120206574 | Shikata et al. | Aug 2012 | A1 |
20120218463 | Benezra et al. | Aug 2012 | A1 |
20120224787 | Imai | Sep 2012 | A1 |
20120229691 | Hiasa et al. | Sep 2012 | A1 |
20120249529 | Matsumoto et al. | Oct 2012 | A1 |
20120249550 | Akeley | Oct 2012 | A1 |
20120249819 | Imai | Oct 2012 | A1 |
20120251131 | Henderson et al. | Oct 2012 | A1 |
20120257065 | Velarde et al. | Oct 2012 | A1 |
20120257795 | Kim et al. | Oct 2012 | A1 |
20120272271 | Nishizawa et al. | Oct 2012 | A1 |
20120287246 | Katayama | Nov 2012 | A1 |
20120287296 | Fukui | Nov 2012 | A1 |
20120287329 | Yahata | Nov 2012 | A1 |
20120293075 | Engelen et al. | Nov 2012 | A1 |
20120300091 | Shroff et al. | Nov 2012 | A1 |
20120237222 | Ng et al. | Dec 2012 | A9 |
20120307084 | Mantzel et al. | Dec 2012 | A1 |
20120307085 | Mantzel | Dec 2012 | A1 |
20130002902 | Ito | Jan 2013 | A1 |
20130002936 | Hirama et al. | Jan 2013 | A1 |
20130021486 | Richardson | Jan 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130041215 | McDowall | Feb 2013 | A1 |
20130044290 | Kawamura | Feb 2013 | A1 |
20130050546 | Kano | Feb 2013 | A1 |
20130064453 | Nagasaka et al. | Mar 2013 | A1 |
20130064532 | Caldwell et al. | Mar 2013 | A1 |
20130070059 | Kushida | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130082905 | Ranieri et al. | Apr 2013 | A1 |
20130088616 | Ingrassia, Jr. | Apr 2013 | A1 |
20130093844 | Shuto | Apr 2013 | A1 |
20130093859 | Nakamura | Apr 2013 | A1 |
20130094101 | Oguchi | Apr 2013 | A1 |
20130107085 | Ng et al. | May 2013 | A1 |
20130113981 | Knight et al. | May 2013 | A1 |
20130120356 | Georgiev et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130120636 | Baer | May 2013 | A1 |
20130127901 | Georgiev et al. | May 2013 | A1 |
20130127993 | Wang | May 2013 | A1 |
20130128052 | Catrein et al. | May 2013 | A1 |
20130128081 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130129192 | Wang | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130176481 | Holmes et al. | Jul 2013 | A1 |
20130188068 | Said | Jul 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215226 | Chauvier et al. | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130234935 | Griffith | Sep 2013 | A1 |
20130242137 | Kirkland | Sep 2013 | A1 |
20130258451 | Ei-Ghoroury et al. | Oct 2013 | A1 |
20130262511 | Kuffner et al. | Oct 2013 | A1 |
20130286236 | Mankowski | Oct 2013 | A1 |
20130321574 | Zhang et al. | Dec 2013 | A1 |
20130321581 | El-Ghoroury | Dec 2013 | A1 |
20130321677 | Cote et al. | Dec 2013 | A1 |
20130329107 | Burley et al. | Dec 2013 | A1 |
20130329132 | Tico et al. | Dec 2013 | A1 |
20130335596 | Demandoix et al. | Dec 2013 | A1 |
20130335598 | Gustavsson | Dec 2013 | A1 |
20130342700 | Kass | Dec 2013 | A1 |
20140002502 | Han | Jan 2014 | A1 |
20140002699 | Guan | Jan 2014 | A1 |
20140003719 | Bai et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140035959 | Lapstun | Feb 2014 | A1 |
20140037280 | Shirakawa | Feb 2014 | A1 |
20140049663 | Ng et al. | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140085282 | Luebke et al. | Mar 2014 | A1 |
20140092424 | Grosz | Apr 2014 | A1 |
20140098191 | Rime et al. | Apr 2014 | A1 |
20140132741 | Aagaard et al. | May 2014 | A1 |
20140133749 | Kuo et al. | May 2014 | A1 |
20140139538 | Barber et al. | May 2014 | A1 |
20140167196 | Heimgartner et al. | Jun 2014 | A1 |
20140176540 | Tosio et al. | Jun 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140176710 | Brady | Jun 2014 | A1 |
20140177905 | Grefalda | Jun 2014 | A1 |
20140184885 | Tanaka et al. | Jul 2014 | A1 |
20140192208 | Okincha | Jul 2014 | A1 |
20140193047 | Grosz | Jul 2014 | A1 |
20140195921 | Grosz | Jul 2014 | A1 |
20140204111 | Vaidyanathan et al. | Jul 2014 | A1 |
20140211077 | Ng et al. | Jul 2014 | A1 |
20140218540 | Geiss et al. | Aug 2014 | A1 |
20140226038 | Kimura | Aug 2014 | A1 |
20140240463 | Pitts et al. | Aug 2014 | A1 |
20140240578 | Fishman et al. | Aug 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267633 | Venkataraman | Sep 2014 | A1 |
20140267639 | Tatsuta | Sep 2014 | A1 |
20140286566 | Rhoads | Sep 2014 | A1 |
20140300753 | Yin | Oct 2014 | A1 |
20140313350 | Keelan | Oct 2014 | A1 |
20140313375 | Milnar | Oct 2014 | A1 |
20140340390 | Lanman et al. | Nov 2014 | A1 |
20140347540 | Kang | Nov 2014 | A1 |
20140354863 | Ahn et al. | Dec 2014 | A1 |
20140368494 | Sakharnykh et al. | Dec 2014 | A1 |
20140368640 | Strandemar et al. | Dec 2014 | A1 |
20150062178 | Matas et al. | Mar 2015 | A1 |
20150062386 | Sugawara | Mar 2015 | A1 |
20150092071 | Meng et al. | Apr 2015 | A1 |
20150097985 | Akeley | Apr 2015 | A1 |
20150163406 | Laroia | Jun 2015 | A1 |
20150193937 | Georgiev et al. | Jul 2015 | A1 |
20150206340 | Munkberg et al. | Jul 2015 | A1 |
20150207990 | Ford et al. | Jul 2015 | A1 |
20150237273 | Sawadaishi | Aug 2015 | A1 |
20150104101 | Bryant et al. | Oct 2015 | A1 |
20150310592 | Kano | Oct 2015 | A1 |
20150312553 | Ng et al. | Oct 2015 | A1 |
20150312593 | Akeley et al. | Oct 2015 | A1 |
20150370011 | Ishihara | Dec 2015 | A1 |
20150370012 | Ishihara | Dec 2015 | A1 |
20160029017 | Liang | Jan 2016 | A1 |
20160050372 | Lindner et al. | Feb 2016 | A1 |
20160142615 | Liang | May 2016 | A1 |
20160155215 | Suzuki | Jun 2016 | A1 |
20160165206 | Huang et al. | Jun 2016 | A1 |
20160173844 | Knight et al. | Jun 2016 | A1 |
20160191823 | El-Ghoroury | Jun 2016 | A1 |
20160253837 | Zhu et al. | Sep 2016 | A1 |
20160269620 | Romanenko et al. | Sep 2016 | A1 |
20160307368 | Akeley | Oct 2016 | A1 |
20160307372 | Pitts et al. | Oct 2016 | A1 |
20160309065 | Karafin et al. | Oct 2016 | A1 |
20160353026 | Blonde et al. | Dec 2016 | A1 |
20160379374 | Sokeila | Dec 2016 | A1 |
20160381348 | Hayasaka | Dec 2016 | A1 |
20170059305 | Nonn et al. | Mar 2017 | A1 |
20170067832 | Ferrara, Jr. et al. | Mar 2017 | A1 |
20170094906 | Liang et al. | Mar 2017 | A1 |
20170134639 | Pitts | May 2017 | A1 |
20170139131 | Karafin et al. | May 2017 | A1 |
20170180699 | El Choubassi | Jun 2017 | A1 |
20170237971 | Pitts et al. | Aug 2017 | A1 |
20170243373 | Bevensee et al. | Aug 2017 | A1 |
20170244948 | Pang et al. | Aug 2017 | A1 |
20170256036 | Song et al. | Sep 2017 | A1 |
20170263012 | Sabater et al. | Sep 2017 | A1 |
20170302903 | Ng et al. | Oct 2017 | A1 |
20170324950 | Du | Nov 2017 | A1 |
20170358092 | Bleibel | Dec 2017 | A1 |
20170365068 | Tan et al. | Dec 2017 | A1 |
20170366804 | Du | Dec 2017 | A1 |
20180012397 | Carothers | Jan 2018 | A1 |
20180020204 | Pang et al. | Jan 2018 | A1 |
20180033209 | Akeley et al. | Feb 2018 | A1 |
20180034134 | Pang et al. | Feb 2018 | A1 |
20180070066 | Knight et al. | Mar 2018 | A1 |
20180070067 | Knight et al. | Mar 2018 | A1 |
20180082405 | Liang | Mar 2018 | A1 |
20180089903 | Pang et al. | Mar 2018 | A1 |
20180097867 | Pang et al. | Apr 2018 | A1 |
20180158198 | Kamad | Jun 2018 | A1 |
20180249073 | Kim | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
101226292 | Jul 2008 | CN |
101309359 | Nov 2008 | CN |
19624421 | Jan 1997 | DE |
2010020100 | Jan 2010 | JP |
2011135170 | Jul 2011 | JP |
2003052465 | Jun 2003 | WO |
2006039486 | Apr 2006 | WO |
2007092545 | Aug 2007 | WO |
2007092581 | Aug 2007 | WO |
2011010234 | Mar 2011 | WO |
2011029209 | Mar 2011 | WO |
2011081187 | Jul 2011 | WO |
Entry |
---|
Smith et al, “Light Field Video Stabilization” , IEEE International Conference on Computer Vision (ICCV), Sep. 29-Oct. 2, 2009 (Year: 2009). |
Liu et al, “Video Stabilization with a Depth Camera” ,IEEE, pp. 89-95 (Year: 2012). |
Lowe, David, “Distinctive Image Features fro Scale-Invariant Keypoints”, International Journal of Computer Vision 60(2), 91-110, 2004 (Year: 2004). |
Nimeroff, J., et al., “Efficient rendering of naturally illuminatied environments” in Fifth Eurographics Workshop on Rendering, 359-373, 1994. |
Nokia, “City Lens”, May 2012. |
Ogden, J., “Pyramid-Based Computer Graphics”, 1985. |
Okano et al., “Three-dimensional video system based on integral photography” Optical Engineering, Jun. 1999. vol. 38, No. 6, pp. 1072-1077. |
Orzan, Alexandrina, et al., “Diffusion Curves: A Vector Representation for Smooth-Shaded Images,” ACM Transactions on Graphics—Proceedings of SIGGRAPH 2008; vol. 27; 2008. |
Pain, B., “Back-Side Illumination Technology for SOI-CMOS Image Sensors”, 2009. |
Perez, Patrick et al., “Poisson Image Editing,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH 2003; vol. 22, Issue 3; Jul. 2003; pp. 313-318. |
Petschnigg, George, et al., “Digial Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004. |
Primesense, “The Primesense 3D Awareness Sensor”, 2007. |
Ramamoorthi, R., et al, “Frequency space environment map rendering” ACM Transactions on Graphics (SIGGRAPH 2002 proceedings) 21, 3, 517-526. |
Ramamoorthi, R., et al., “An efficient representation for irradiance environment maps”, in Proceedings of SIGGRAPH 2001, 497-500. |
Raskar, Ramesh et al., “Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH, Aug. 2008; vol. 27, Issue 3; pp. 1-10. |
Raskar, Ramesh et al., “Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging”, SIGGRAPH 2004. |
Raytrix, “Raytrix Lightfield Camera,” Raytrix GmbH, Germany 2012, pp. 1-35. |
Roper Scientific, Germany “Fiber Optics,” 2012. |
Scharstein, Daniel, et al., “High-Accuracy Stereo Depth Maps Using Structured Light,” CVPR'03 Proceedings of the 2003 IEEE Computer Society, pp. 195-202. |
Schirmacher, H. et al., “High-Quality Interactive Lumigraph Rendering Through Warping,” May 2000, Graphics Interface 2000. |
Shade, Jonathan, et al., “Layered Depth Images”, SIGGRAPH 98, pp. 1-2. |
Shreiner, OpenGL Programming Guide, 7th edition, Chapter 8, 2010. |
Simpleviewer, “Tiltview”, http://simpleviewer.net/tiltviewer. Retrieved Jan. 2013. |
Skodras, A. et al., “The JPEG 2000 Still Image Compression Standard,” Sep. 2001, IEEE Signal Processing Magazine, pp. 36-58. |
Sloan, P., et al., “Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments”, ACM Transactions on Graphics 21, 3, 527-536, 2002. |
Snavely, Noah, et al., “Photo-tourism: Exploring Photo collections in 3D”, ACM Transactions on Graphics (SIGGRAPH Proceedings), 2006. |
Sokolov, “Autostereoscopy and Integral Photography by Professor Lippmann's Method” , 1911, pp. 23-29. |
Sony Corp, “Interchangeable Lens Digital Camera Handbook”, 2011. |
Sony, Sony's First Curved Sensor Photo: http://www.engadget.com; Jul. 2014. |
Stensvold, M., “Hybrid AF: A New Approach to Autofocus is Emerging for both Still and Video”, Digital Photo Magazine, Nov. 13, 2012. |
Story, D., “The Future of Photography”, Optics Electronics, Oct. 2008. |
Sun, Jian, et al., “Stereo Matching Using Belief Propagation”, 2002. |
Tagging photos on Flickr, Facebook and other online photo sharing sites (see, for example, http://support.gnip.com/customer/portal/articles/809309-flickr-geo-photos-tag-search). Retrieved Jan. 2013. |
Takahashi, Keita, et al., “All in-focus View Synthesis from Under-Sampled Light Fields”, ICAT 2003, Tokyo, Japan. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification” Applied Optics 40, 11 (Apr. 10, 2001), pp. 1806-1813. |
Tao, Michael, et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, Dec. 2013. |
Techcrunch, “Coolinis”, Retrieved Jan. 2013. |
Teo, P., et al., “Efficient linear rendering for interactive light design”, Tech. Rep. STAN-CS-TN-97-60, 1998, Stanford University. |
Teranishi, N. “Evolution of Optical Structure in Images Sensors,” Electron Devices Meeting (IEDM) 2012 IEEE International; Dec. 10-13, 2012. |
Vaish et al., “Using plane + parallax for calibrating dense camera arrays”, In Proceedings CVPR 2004, pp. 2-9. |
Vaish, V., et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform,” Workshop on Advanced 3D Imaging for Safety and Security (in conjunction with CVPR 2005), 2005. |
VR Playhouse, “The Surrogate,” http://www.vrplayhouse.com/the-surrogate. |
Wanner, S. et al., “Globally Consistent Depth Labeling of 4D Light Fields,” IEEE Conference on Computer Vision and Pattern Recognition, 2012. |
Wanner, S. et al., “Variational Light Field Analysis for Disparity Estimation and Super-Resolution,” IEEE Transacations on Pattern Analysis and Machine Intellegence, 2013. |
Wenger, et al, “Performance Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, Institute for Creative Technologies, SIGGRAPH 2005. |
Wetzstein, Gordon, et al., “Sensor Saturation in Fourier Multiplexed Imaging”, IEEE Conference on Computer Vision and Pattern Recognition (2010). |
Wikipedia—Adaptive Optics: http://en.wikipedia.org/wiki/adaptive_optics. Retrieved Feb. 2014. |
Wikipedia—Autofocus systems and methods: http://en.wikipedia.org/wiki/Autofocus. Retrieved Jan. 2013. |
Wikipedia—Bayer Filter: http:/en.wikipedia.org/wiki/Bayer_filter. Retrieved Jun. 20, 2013. |
Wikipedia—Color Image Pipeline: http://en.wikipedia.org/wiki/color_image_pipeline. Retrieved Jan. 15, 2014. |
Wikipedia—Compression standard JPEG XR: http://en.wikipedia.org/wiki/JPEG_XR. Retrieved Jan. 2013. |
Wikipedia—CYGM Filter: http://en.wikipedia.org/wiki/CYGM_filter. Retrieved Jun. 20, 2013. |
International Search Report and Written Opinion dated Dec. 4, 2018 for corresponding International Application No. PCT/US2018/050402, 14 pages. |
U.S. Appl. No. 15/967,076, filed Apr. 30, 2018 listing Jiantao Kuang et al. as inventors, entitled “Automatic Lens Flare Detection and Correction for Light-Field Images”. |
U.S. Appl. No. 15/666,298, filed Aug. 1, 2017 listing Yonggang Ha et al. as inventors, entitled “Focal Reducer With Controlled Optical Properties for Interchangeable Lens Light-Field Camera”. |
U.S. Appl. No. 15/590,808, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Adaptive Control for Immersive Experience Delivery”. |
U.S. Appl. No. 15/864,938, filed Jan. 8, 2018 listing Jon Karafin et al. as inventors, entitled “Motion Blur or Light-Field Images”. |
U.S. Appl. No. 15/590,841, filed May 9, 2017 listing Kurt Akeley et al. as inventors, entitled “Vantage Generation and Interactive Playback”. |
U.S. Appl. No. 15/590,951, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Wedge-Based Light-Field Video Capture”. |
U.S. Appl. No. 15/944,551, filed Apr. 3, 2018 listing Zejing Wang et al. as inventors, entitled “Generating Dolly Zoom Effect Using Light Field Image Data”. |
U.S. Appl. No. 15/874,723, filed Jan. 18, 2018 listing Mark Weir et al. as inventors, entitled “Multl-Camera Navigation Interface”. |
U.S. Appl. No. 15/897,994, filed Feb. 15, 2018 listing Trevor Carothers et al. as inventors, entitled “Generation of Virtual Reality With 6 Degrees of Freesom From Limited Viewer Ata”. |
U.S. Appl. No. 15/605,037, filed May 25, 2017 listing Zejing Wang et al. as inventors, entitled “Multl-View Back-Projection to a Light-Field”. |
U.S. Appl. No. 15/897,836, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking”. |
U.S. Appl. No. 15/897,942, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking With Grabcut”. |
Adelsberger, R. et al., “Spatially Adaptive Photographic Flash,” ETH Zurich, Department of Computer Science, Technical Report 612, 2008, pp. 1-12. |
Adelson et al., “Single Lens Stereo with a Plenoptic Camera” IEEE Translation on Pattern Analysis and Machine Intelligence, Feb. 1992. vol. 14, No. 2, pp. 99-106. |
Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, edited by Michael S. Landy and J. Anthony Movshon. Cambridge, Mass.: mit Press. |
Adobe Systems Inc, “XMP Specification”, Sep. 2005. |
Adobe, “Photoshop CS6 / in depth: Digital Negative (DNG)”, http://www.adobe.com/products/photoshop/extend.displayTab2html. Retrieved Jan. 2013. |
Agarwala, A., et al., “Interactive Digital Photomontage,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2004, vol. 32, No. 3, 2004. |
Andreas Observatory, Spectrograph Manual: IV. Flat-Field Correction, Jul. 2006. |
Apple, “Apple iPad: Photo Features on the iPad”, Retrieved Jan. 2013. |
Bae, S., et al., “Defocus Magnification”, Computer Graphics Forum, vol. 26, Issue 3 (Proc. of Eurographics 2007), pp. 1-9. |
Belhumeur, Peter et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1997, pp. 1060-1066. |
Belhumeur, Peter, et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1999, pp. 33-44, revised version. |
Bhat, P. et al. “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” SIGGRAPH 2010; 14 pages. |
Bolles, R., et al., “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion”, International Journal of Computer Vision, 1, 7-55 (1987). |
Bourke, Paul, “Image filtering in the Frequency Domain,” pp. 1-9, Jun. 1998. |
Canon, Canon Speedlite wireless flash system, User manual for Model 550EX, Sep. 1998. |
Chai, Jin-Xang et al., “Plenoptic Sampling”, ACM SIGGRAPH 2000, Annual Conference Series, 2000, pp. 307-318. |
Chen, S. et al., “A CMOS Image Sensor with On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm,” Very Large Scalee Integration (VLSI) Systems, IEEE Transactions, vol. 19, Issue 4; Apr. 2011. |
Chen, W., et al., “Light Field mapping: Efficient representation and hardware rendering of surface light fields”, ACM Transactions on Graphics 21, 3, 447-456, 2002. |
Cohen, Noy et al., “Enhancing the performance of the light field microscope using wavefront coding,” Optics Express, vol. 22, issue 20; 2014. |
Daly, D., “Microlens Arrays” Retrieved Jan. 2013. |
Debevec, et al, “A Lighting Reproduction Approach to Live-Action Compoisting” Proceedings SIGGRAPH 2002. |
Debevec, P., et al., “Acquiring the reflectance field of a human face”, SIGGRAPH 2000. |
Debevec, P., et al., “Recovering high dynamic radiance maps from photographs”, SIGGRAPH 1997, 369-378. |
Design of the xBox menu. Retrieved Jan. 2013. |
Digital Photography Review, “Sony Announce new RGBE CCD,” Jul. 2003. |
Dorsey, J., et al., “Design and simulation of opera light and projection effects”, in Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50. |
Dorsey, J., et al., “Interactive design of complex time dependent lighting”, IEEE Computer Graphics and Applications 15, 2 (Mar. 1995), 26-36. |
Dowski et al., “Wavefront coding: a modern method of achieving high performance and/or low cost imaging systems” SPIE Proceedings, vol. 3779, Jul. 1999, pp. 137-145. |
Dowski, Jr. “Extended Depth of Field Through Wave-Front Coding,” Applied Optics, vol. 34, No. 11, Apr. 10, 1995; pp. 1859-1866. |
Duparre, J. et al., “Micro-Optical Artificial Compound Eyes,” Institute of Physics Publishing, Apr. 2006. |
Eisemann, Elmar, et al., “Flash Photography Enhancement via Intrinsic Relighting”, SIGGRAPH 2004. |
Fattal, Raanan, et al., “Multiscale Shape and Detail Enhancement from Multi-light Image Collections”, SIGGRAPH 2007. |
Fernando, Randima, “Depth of Field—A Survey of Techniques,” GPU Gems. Boston, MA; Addison-Wesley, 2004. |
Fitzpatrick, Brad, “Camlistore”, Feb. 1, 2011. |
Fujifilm, Super CCD EXR Sensor by Fujifilm, brochure reference No. EB-807E, 2008. |
Georgiev, T. et al., “Reducing Plenoptic Camera Artifacts,” Computer Graphics Forum, vol. 29, No. 6, pp. 1955-1968; 2010. |
Georgiev, T., et al., “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 2006. |
Georgiev, T., et al., “Suppersolution with Plenoptic 2.0 Cameras,” Optical Society of America 2009; pp. 1-3. |
Georgiev, T., et al., “Unified Frequency Domain Analysis of Lightfield Cameras” (2008). |
Georgiev, T., et al., Plenoptic Camera 2.0 (2008). |
Girod, B., “Mobile Visual Search”, IEEE Signal Processing Magazine, Jul. 2011. |
Gortler et al., “The lumigraph” SIGGRAPH 96, pp. 43-54. |
Groen et al., “A Comparison of Different Focus Functions for Use in Autofocus Algorithms,” Cytometry 6:81-91, 1985. |
Haeberli, Paul “A Multifocus Method for Controlling Depth of Field” GRAPHICA Obscura, 1994, pp. 1-3. |
Heide, F. et al., “High-Quality Computational Imaging Through Simple Lenses,” ACM Transactions on Graphics, SIGGRAPH 2013; pp. 1-7. |
Heidelberg Collaboratory for Image Processing, “Consistent Depth Estimation in a 4D Light Field,” May 2013. |
Hirigoyen, F., et al., “1.1 um Backside Imager vs. Frontside Image: an optics-dedicated FDTD approach”, IEEE 2009 International Image Sensor Workshop. |
Huang, Fu-Chung et al., “Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays,” ACM Transaction on Graphics, Aug. 2014, pp. 1-12. |
Isaksen, A., et al., “Dynamically Reparameterized Light Fields,” SIGGRAPH 2000, pp. 297-306. |
Ives H., “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931). |
Ives, H. “Parallax Panoramagrams Made with a Large Diameter Lens”, Journal of the Optical Society of America; 1930. |
Jackson et al., “Selection of a Convolution Function for Fourier Inversion Using Gridding” IEEE Transactions on Medical Imaging, Sep. 1991, vol. 10, No. 3, pp. 473-478. |
Kautz, J., et al., “Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics”, in Eurographic Rendering Workshop 2002, 291-296. |
Koltun, et al., “Virtual Occluders: An Efficient Interediate PVS Representation”, Rendering Techniques 2000: Proc. 11th Eurographics Workshop Rendering, pp. 59-70, Jun. 2000. |
Kopf, J., et al., Deep Photo: Model-Based Photograph Enhancement and Viewing, SIGGRAPH Asia 2008. |
Lehtinen, J., et al. “Matrix radiance transfer”, in Symposium on Interactive 3D Graphics, 59-64, 2003. |
Lesser, Michael, “Back-Side Illumination”, 2009. |
Levin, A., et al., “Image and Depth from a Conventional Camera with a Coded Aperture”, SIGGRAPH 2007, pp. 1-9. |
Levoy et al.,“Light Field Rendering” SIGGRAPH 96 Proceeding, 1996. pp. 31-42. |
Levoy, “Light Fields and Computational Imaging” IEEE Computer Society, Aug. 2006, pp. 46-55. |
Levoy, M. “Light Field Photography and Videography,” Oct. 18, 2005. |
Levoy, M. “Stanford Light Field Microscope Project,” 2008; http://graphics.stanford.edu/projects/lfmicroscope/, 4 pages. |
Levoy, M., “Autofocus: Contrast Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M.,“Autofocus: Phase Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M., et al., “Light Field Microscopy,” ACM Transactions on Graphics, vol. 25, No. 3, Proceedings SIGGRAPH 2006. |
Liang, Chia-Kai, et al., “Programmable Aperture Photography: Multiplexed Light Field Acquisition”, ACM SIGGRAPH, 2008. |
Lippmann, “Reversible Prints”, Communication at the French Society of Physics, Journal of Physics, 7 , 4, Mar. 1908, pp. 821-825. |
Lumsdaine et al., “Full Resolution Lightfield Rendering” Adobe Technical Report Jan. 2008, pp. 1-12. |
Maeda, Y. et al., “A CMOS Image Sensor with Pseudorandom Pixel Placement for Clear Imaging,” 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2009. |
Magnor, M. et al., “Model-Aided Coding of Multi-Viewpoint Image Data,” Proceedings IEEE Conference on Image Processing, ICIP-2000, Vancouver, Canada, Sep. 2000. https://graphics.tu-bs.de/static/people/magnor/publications/icip00.pdf. |
Mallat, Stephane, “A Wavelet Tour of Signal Processing”, Academic Press 1998. |
Malzbender, et al., “Polynomial Texture Maps”, Proceedings SIGGRAPH 2001. |
Marshall, Richard J. et al., “Improving Depth Estimation from a Plenoptic Camera by Patterned Illumination,” Proc. of SPIE, vol. 9528, 2015, pp. 1-6. |
Masselus, Vincent, et al., “Relighting with 4D Incident Light Fields”, SIGGRAPH 2003. |
Meynants, G., et al., “Pixel Binning in CMOS Image Sensors,” Frontiers in Electronic Imaging Conference, 2009. |
Moreno-Noguer, F. et al., “Active Refocusing of Images and Videos,” ACM Transactions on Graphics, Aug. 2007; pp. 1-9. |
Munkberg, J. et al., “Layered Reconstruction for Defocus and Motion Blur” EGSR 2014, pp. 1-12. |
Naemura et al., “3-D Computer Graphics based on Integral Photography” Optics Express, Feb. 12, 2001. vol. 8, No. 2, pp. 255-262. |
Nakamura, J., “Image Sensors and Signal Processing for Digital Still Cameras” (Optical Science and Engineering), 2005. |
National Instruments, “Anatomy of a Camera,” pp. 1-5, Sep. 6, 2006. |
Nayar, Shree, et al., “Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 8, pp. 824-831, Aug. 1994. |
Ng, R., et al. “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Technical Report, CSTR 2005-2, 2005. |
Ng, R., et al., “All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Transactions on Graphics,” ACM Transactions on Graphics; Proceedings of SIGGRAPH 2003. |
Ng, R., et al., “Triple Product Wavelet Integrals for All-Frequency Relighting”, ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004). |
Ng, Yi-Ren, “Digital Light Field Photography,” Doctoral Thesis, Standford University, Jun. 2006; 203 pages. |
Ng., R., “Fourier Slice Photography,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2005, vol. 24, No. 3, 2005, pp. 735-744. |
Nguyen, Hubert. “Practical Post-Process Depth of Field.” GPU Gems 3. Upper Saddle River, NJ: Addison-Wesley, 2008. |
Wikipedia—Data overlay techniques for real-time visual feed. For example, heads-up displays: http://en.wikipedia.org/wiki/Head-up_display. Retrieved Jan. 2013. |
Wikipedia—Exchangeable image file format: http://en.wikipedia.org/wiki/Exchangeable_image_file_format. Retrieved Jan. 2013. |
Wikipedia—Expeed: http://en.wikipedia.org/wiki/EXPEED. Retrieved Jan. 15, 2014. |
Wikipedia—Extensible Metadata Platform: http://en.wikipedia.org/wiki/Extensible_Metadata_Plafform. Retrieved Jan. 2013. |
Wikipedia—Key framing for video animation: http://en.wikipedia.org/wiki/Key_frame. Retrieved Jan. 2013. |
Wikipedia—Lazy loading of image data: http://en.wikipedia.org/wiki/Lazy_loading. Retrieved Jan. 2013. |
Wikipedia—Methods of Variable Bitrate Encoding: http://en.wikipedia.org/wiki/Variable_bitrate#Methods_of_VBR_encoding. Retrieved Jan. 2013. |
Wikipedia—Portable Network Graphics format: http://en.wikipedia.org/wiki/Portable_Network_Graphics. Retrieved Jan. 2013. |
Wikipedia—Unsharp Mask Technique: https://en.wikipedia.org/wiki/Unsharp_masking. Retrieved May 3, 2016. |
Wilburn et al., “High Performance Imaging using Large Camera Arrays”, ACM Transactions on Graphics (TOG), vol. 24, Issue 3 (Jul. 2005), Proceedings of ACM SIGGRAPH 2005, pp. 765-776. |
Wilburn, Bennett, et al., “High Speed Video Using a Dense Camera Array”, 2004. |
Wilburn, Bennett, et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002. |
Williams, L. “Pyramidal Parametrics,” Computer Graphic (1983). |
Winnemoller, H., et al., “Light Waving: Estimating Light Positions From Photographs Alone”, Eurographics 2005. |
Wippermann, F. “Chirped Refractive Microlens Array,” Dissertation 2007. |
Wuu, S., et al., “A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors”, 2009 International Image Sensor Workshop, Bergen, Norway. |
Wuu, S., et al., “BSI Technology with Bulk Si Wafer”, 2009 International Image Sensor Workshop, Bergen, Norway. |
Xiao, Z. et al., “Aliasing Detection and Reduction in Plenoptic Imaging,” IEEE Conference on Computer Vision and Pattern Recognition; 2014. |
Xu, Xin et al., “Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure,” Sensors 2011; 14 pages. |
Zheng, C. et al., “Parallax Photography: Creating 3D Cinematic Effects from Stills”, Proceedings of Graphic Interface, 2009. |
Zitnick, L. et al., “High-Quality Video View Interpolation Using a Layered Representation,” Aug. 2004; ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2004; vol. 23, Issue 3; pp. 600-608. |
Zoberbier, M., et al., “Wafer Cameras—Novel Fabrication and Packaging Technologies”, 2009 International Image Senor Workshop, Bergen, Norway, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190079158 A1 | Mar 2019 | US |