4D camera tracking and optical stabilization

Information

  • Patent Grant
  • 10545215
  • Patent Number
    10,545,215
  • Date Filed
    Wednesday, September 13, 2017
    7 years ago
  • Date Issued
    Tuesday, January 28, 2020
    5 years ago
Abstract
A light-field video stream may be processed to modify the camera pathway from which the light-field video stream is projected. A plurality of target pixels may be selected, in a plurality of key frames of the light-field video stream. The target pixels may be used to generate a camera pathway indicative of motion of the camera during generation of the light-field video stream. The camera pathway may be adjusted to generate an adjusted camera pathway. This may be done, for example, to carry out image stabilization. The light-field video stream may be projected to a viewpoint defined by the adjusted camera pathway to generate a projected video stream with the image stabilization.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. patent application Ser. No. 13/688,026, for “Extended Depth of Field and Variable Center of Perspective in Light-Field Processing”, filed Nov. 28, 2012, and issued on Aug. 19, 2014 as U.S. Pat. No. 8,811,769, the disclosure of which is incorporated herein by reference in its entirety.


The present application is related to U.S. patent application Ser. No. 13/774,971, for “Compensating for Variation in Microlens Position During Light-Field Image Processing”, filed Feb. 22, 2013, and issued on Sep. 9, 2014 as U.S. Pat. No. 8,831,377, the disclosure of which is incorporated herein by reference in its entirety.


TECHNICAL FIELD

The present disclosure relates to digital imaging. More precisely, the present disclosure relates to use of light-field data to track the motion path of a camera and/or adjust the stability of image data generated by the camera.


BACKGROUND

In conventional 2D digital photography, an image of a scene may be captured as a 2D matrix of color values that represents the scene from one field of view. The focus depth and Center of Perspective (CoP) of the image typically cannot be changed after the image has been captured; rather, the focus depth and Center of Perspective at the time of image capture determine what features are in focus and in view. Accordingly, there is also no way to modify the viewpoint from which an image is taken.


One repercussion of this limitation is that it may be difficult to carry out image stabilization. Since true image stabilization would require adjustment of the viewpoint from which the image or video was captured, conventional 2D image stabilization methods are typically limited to lossy processes that can only compensate for 2D shifts within an image sequence. The need to crop portions of the image to correct the 2D shifts results in loss of image data.


SUMMARY

According to various embodiments, a light-field video stream may be processed to obtain a camera pathway indicative of the viewpoint from which a light-field video stream was generated (i.e., captured). The camera pathway may be modified to obtain an adjusted camera pathway, which may provide a more desirable viewpoint. For example, the adjusted camera pathway may be stabilized relative to the camera pathway to provide image stabilization. In the alternative, the adjusted camera pathway may be de-stabilized, or “littered,” relative to the camera pathway to simulate vibration or other motion of the viewer's viewpoint.


The camera pathway may be obtained in various ways. According to one embodiment, a plurality of target pixels may be selected, in a plurality of key frames of the light-field video stream. The target pixels may have predetermined color and/or intensity characteristics that facilitate tracking of the target pixels between frames. For example, the target pixels may be selected from static, textured objects that appear in the key frames. The target pixels may further be from planar regions of the objects to further facilitate tracking.


According to some embodiments, the target pixels may be identified by generating a list of a plurality of targets appearing in each of the key frames, generating a plane model for each of the targets for each of the key frames, and then generating a mask for each of the targets for each of the key frames, indicating one or more target pixels within each of the targets. Further, superpixel segmentation may be carried out, and a motion error map may be calculated, for each of the key frames. The superpixels and motion error maps may be used to access texture and motion error for each of the superpixels for each key frame, to identify a plurality of the superpixels as candidate targets. A plane may be fitted to each of the candidate targets for each key frame. The targets may then be selected from among the candidate targets.


If desired, identification of the target pixels may be facilitated by using a depth map for each of the key frames, and/or initial camera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream. The camera motion may be indicative of motion of the light-field camera during at least a segment, containing the key frames, of the light-field video stream. In some examples the camera motion may be for an initial segment of the light-field video stream, and may facilitate accurate identification and/or location of the targets.


The target pixels may be used to generate a camera pathway indicative of motion of the camera during generation of the light-field video stream. The camera pathway may have six degrees of freedom, and may encompass the entirety of the video stream. A 3D mapping of the target pixels may also be generated.


In some embodiments, the camera pathway may be generated by dividing the light-field video stream into a plurality of sequences, each of which begins with one of the key frames. For each segment, starting with the first segment, the position and/or orientation of the target pixels may be tracked in each frame, and changes in the positions and/or orientations may be compared between frames to obtain a portion of the camera pathway for that segment. The position and/or orientation of each of the target pixels in the last frame of a sequence may be used for the starting key frame of the next sequence.


If desired, generation of the camera pathway may be facilitated by using camera-intrinsic parameters obtained from calibration of the light-field camera, light-field optics parameters pertinent to one or more light-field optical elements of the light-field camera, and/or camera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream. The camera motion may be indicative of motion of the light-field camera during at least a segment of the light-field video stream.


The camera pathway may be adjusted to generate an adjusted camera pathway. This may be done, for example, to carry out image stabilization. Image stabilization may be improved by adjusting U,V coordinates within each of a plurality of frames of the light-field video stream to cause frame-to-frame motion to be relatively smooth and contiguous


The light-field video stream may be projected to a viewpoint defined by the adjusted camera pathway to generate a projected video stream with the image stabilization. The projected video stream may be outputted to an output device, such as a display screen.


These concepts will be described in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate several embodiments. Together with the description, they serve to explain the principles of the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.



FIG. 1 depicts a portion of a light-field image.



FIG. 2 depicts an example of an architecture for implementing the methods of the present disclosure in a light-field capture device, according to one embodiment.



FIG. 3 depicts an example of an architecture for implementing the methods of the present disclosure in a post-processing system communicatively coupled to a light-field capture device, according to one embodiment.



FIG. 4 depicts an example of an architecture for a light-field camera for implementing the methods of the present disclosure according to one embodiment.



FIG. 5 is a flow diagram depicting a method for carrying out image stabilization, according to one embodiment.



FIG. 6 is a flow diagram depicting the step of selecting the target pixels from the method of FIG. 5, in greater detail, according to one embodiment.



FIG. 7 is a screenshot depicting superpixel segmentation of a frame, according to one embodiment.



FIG. 8 is a screenshot depicting a motion error map for the frame of FIG. 7, according to one embodiment.



FIG. 9 is a screenshot depicting identification of candidate targets with texture and small motion error, in the frame of FIG. 7, according to one embodiment.



FIG. 10 is a screenshot depicting selection of targets in the frame of FIG. 7, according to one embodiment.



FIG. 11 is a flow diagram depicting the step of generating the camera pathway from the method of FIG. 5, according to one embodiment.



FIG. 12 is an illustration depicting the relationship between camera acceleration curves and light-field optical constraints, according to one embodiment.



FIG. 13 is a screenshot depicting the use of LiDAR and gyroscope data in combination with a light-field video stream to generate more accurate camera pathways.





DEFINITIONS

For purposes of the description provided herein, the following definitions are used:

    • Adjusted camera pathway: a camera pathway that has been deliberately modified.
    • Camera pathway: a pathway indicative of motion of a camera
    • Conventional image: an image in which the pixel values are not, collectively or individually, indicative of the angle of incidence at which light is received by a camera.
    • Depth: a representation of distance between an object and/or corresponding image sample and a camera or camera element, such as the microlens array of a plenoptic light-field camera.
    • Disk: a region in a light-field image that is illuminated by light passing through a single microlens; may be circular or any other suitable shape.
    • Image: a two-dimensional array of pixel values, or pixels, each specifying a color.
    • Input device: any device that receives input from a user.
    • Light-field camera: any camera capable of capturing light-field images.
    • Light-field data: data indicative of the angle of incidence at which light is received by a camera.
    • Light-field image: an image that contains a representation of light-field data captured at the sensor.
    • Light-field video stream: a sequential arrangement of light-field data captured over a length of time, from which a video stream can be projected.
    • Main lens: a lens or set of lenses that directs light from a scene toward an image sensor.
    • Mask: a map representing whether a set of pixels possesses one or more attributes, such as the attributes needed to operate as a target pixel.
    • Microlens: a small lens, typically one in an array of similar microlenses.
    • Microlens array: an array of microlenses arranged in a predetermined pattern.
    • Output device: any device that provides output to a user.
    • Scene: a collection of one or more objects to be imaged and/or modeled.
    • Image sensor: a light detector in a camera capable of generating electrical signals based on light received by the sensor.
    • Subaperture view: an image generated from light-field data from the same location on each microlens of a microlens array or each camera image of a tiled camera array.
    • Superpixel segmentation: division of an image into groups (superpixels) of adjacent pixels.
    • Target: a portion of a light-field image, containing multiple pixels, including at least one target pixel.
    • Target pixel: a pixel of a target, with properties suitable for automated identification and/or modeling in 3D space.


In addition to the foregoing, additional terms will be set forth and defined in the description below. Terms not explicitly defined are to be interpreted, primarily, in a manner consistently with their usage and context herein, and, secondarily, in a manner consistent with their use in the art.


For ease of nomenclature, the term “camera” is used herein to refer to an image capture device or other data acquisition device. Such a data acquisition device can be any device or system for acquiring, recording, measuring, estimating, determining and/or computing data representative of a scene, including but not limited to two-dimensional image data, three-dimensional image data, and/or light-field data. Such a data acquisition device may include optics, sensors, and image processing electronics for acquiring data representative of a scene, using techniques that are well known in the art. One skilled in the art will recognize that many types of data acquisition devices can be used in connection with the present disclosure, and that the disclosure is not limited to cameras. Thus, the use of the term “camera” herein is intended to be illustrative and exemplary, but should not be considered to limit the scope of the disclosure. Specifically, any use of such term herein should be considered to refer to any suitable device for acquiring image data.


In the following description, several techniques and methods for processing light-field images are described. One skilled in the art will recognize that these various techniques and methods can be performed singly and/or in any suitable combination with one another. Further, many of the configurations and techniques described herein are applicable to conventional imaging as well as light-field imaging. Thus, although the following description focuses on light-field imaging, all of the following systems and methods may additionally or alternatively be used in connection with conventional digital imaging systems. In some cases, the needed modification is as simple as removing the microlens array from the configuration described for light-field imaging to convert the example into a configuration for conventional image capture.


Architecture


In at least one embodiment, the system and method described herein can be implemented in connection with light-field images captured by light-field capture devices including but not limited to those described in Ng et al., Light-field photography with a hand-held plenoptic capture device, Technical Report CSTR 2005-02, Stanford Computer Science. Further, any known depth sensing technology may be used.


Referring now to FIG. 2, there is shown a block diagram depicting an architecture for implementing the method of the present disclosure in a light-field capture device such as a camera 200. Referring now also to FIG. 3, there is shown a block diagram depicting an architecture for implementing the method of the present disclosure in a post-processing system 300 communicatively coupled to a light-field capture device such as a camera 200, according to one embodiment. One skilled in the art will recognize that the particular configurations shown in FIGS. 2 and 3 are merely exemplary, and that other architectures are possible for camera 200 and post-processing system 300. One skilled in the art will further recognize that several of the components shown in the configurations of FIGS. 2 and 3 are optional, and may be omitted or reconfigured.


In at least one embodiment, camera 200 may be a light-field camera that includes light-field image data acquisition device 209 having optics 201, image sensor 203 (including a plurality of individual sensors for capturing pixels), and microlens array 202. Optics 201 may include, for example, aperture 212 for allowing a selectable amount of light into camera 200, and main lens 213 for focusing light toward microlens array 202. In at least one embodiment, microlens array 202 may be disposed and/or incorporated in the optical path of camera 200 (between main lens 213 and image sensor 203) so as to facilitate acquisition, capture, sampling of, recording, and/or obtaining light-field image data via image sensor 203. The microlens array 203 may be positioned on or near a focal plane 204 of the main lens 213.


Referring now also to FIG. 4, there is shown an example of an architecture for a light-field camera, or camera 200, for implementing the method of the present disclosure according to one embodiment. FIG. 4 is not shown to scale. FIG. 4 shows, in conceptual form, the relationship between aperture 212, main lens 213, microlens array 202, and image sensor 203, as such components interact to capture light-field data for one or more objects, represented by an object 401, which may be part of a scene 402.


In at least one embodiment, camera 200 may also include a user interface 205 for allowing a user to provide input for controlling the operation of camera 200 for capturing, acquiring, storing, and/or processing image data. The user interface 205 may receive user input from the user via an input device 206, which may include any one or more user input mechanisms known in the art. For example, the input device 206 may include one or more buttons, switches, touch screens, gesture interpretation devices, pointing devices, and/or the like.


Similarly, in at least one embodiment, post-processing system 300 may include a user interface 305 that allows the user to provide input to control parameters for post-processing, and/or for other functions.


In at least one embodiment, camera 200 may also include control circuitry 210 for facilitating acquisition, sampling, recording, and/or obtaining light-field image data. The control circuitry 210 may, in particular, be used to switch image capture configurations such as the zoom level, resolution level, focus, and/or aperture size in response to receipt of the corresponding user input. For example, control circuitry 210 may manage and/or control (automatically or in response to user input) the acquisition timing, rate of acquisition, sampling, capturing, recording, and/or obtaining of light-field image data.


In at least one embodiment, camera 200 may include memory 211 for storing image data, such as output by image sensor 203. Such memory 211 can include external and/or internal memory. In at least one embodiment, memory 211 can be provided at a separate device and/or location from camera 200.


In at least one embodiment, captured image data is provided to post-processing circuitry 204. The post-processing circuitry 204 may be disposed in or integrated into light-field image data acquisition device 209, as shown in FIG. 2, or it may be in a separate component external to light-field image data acquisition device 209, as shown in FIG. 3. Such separate component may be local or remote with respect to light-field image data acquisition device 209. Any suitable wired or wireless protocol may be used for transmitting image data 321 to circuitry 204; for example, the camera 200 can transmit image data 321 and/or other data via the Internet, a cellular data network, a Wi-Fi network, a Bluetooth communication protocol, and/or any other suitable means.


Such a separate component may include any of a wide variety of computing devices, including but not limited to computers, smartphones, tablets, cameras, and/or any other device that processes digital information. Such a separate component may include additional features such as a user input 315 and/or a display screen 316. If desired, light-field image data may be displayed for the user on the display screen 316.


Overview


Light-field images often include a plurality of projections (which may be circular or of other shapes) of aperture 212 of camera 200, each projection taken from a different vantage point on the camera's focal plane. The light-field image may be captured on image sensor 203. The interposition of microlens array 202 between main lens 213 and image sensor 203 causes images of aperture 212 to be formed on image sensor 203, each microlens in microlens array 202 projecting a small image of main-lens aperture 212 onto image sensor 203. These aperture-shaped projections are referred to herein as disks, although they need not be circular in shape. The term “disk” is not intended to be limited to a circular region, but can refer to a region of any shape.


Light-field images include four dimensions of information describing light rays impinging on the focal plane of camera 200 (or other capture device). Two spatial dimensions (herein referred to as x and y) are represented by the disks themselves. For example, the spatial resolution of a light-field image with 120,000 disks, arranged in a Cartesian pattern 400 wide and 300 high, is 400×300. Two angular dimensions (herein referred to as u and v) are represented as the pixels within an individual disk. For example, the angular resolution of a light-field image with 100 pixels within each disk, arranged as a 10×10 Cartesian pattern, is 10×10. This light-field image has a 4-D (x,y,u,v) resolution of (400,300,10,10). Referring now to FIG. 1, there is shown an example of a 2-disk by 2-disk portion of such a light-field image, including depictions of disks 102 and individual pixels 101; for illustrative purposes, each disk 102 is ten pixels 101 across.


In at least one embodiment, the 4-D light-field representation may be reduced to a 2-D image through a process of projection and reconstruction. As described in more detail in related U.S. Utility application Ser. No. 13/774,971 for “Compensating for Variation in Microlens Position During Light-Field Image Processing,” filed Feb. 22, 2013, the disclosure of which is incorporated herein by reference in its entirety, a virtual surface of projection may be introduced, and the intersections of representative rays with the virtual surface can be computed. The color of each representative ray may be taken to be equal to the color of its corresponding pixel.


Camera Pathway Generation and Adjustment


There are many instances in which it is desirable to obtain the 3D pathway followed by a camera to capture a scene. For example, in order to integrate computer-generated objects or effects in a scene, it may be desirable to render the computer-generated elements with a virtual camera that remains aligned with the actual camera used to capture the scene. Further, integration of the scene with audio effects may be done with reference to the camera pathway. For example, the volume and/or speaker position of audio effects may be determined based on the camera position and/or orientation in any given frame.


It may be most helpful to obtain a camera pathway with six degrees of freedom (for example, three to specify camera position along each of three orthogonal axes, and three to specify the orientation of the camera about each axis) for each frame. In this application, “camera pathway” includes the position and/or orientation of the camera.


In addition to the uses mentioned above, obtaining the camera pathway may enable the camera pathway to be adjusted for various purposes. Light-field image capture provides the unique ability to reproject images at different Centers of Perspective, allowing the viewpoint of the camera to effectively be shifted. Further details regarding projection of light-field data may be found in U.S. Utility application Ser. No. 13/688,026, for “Extended Depth of Field and Variable Center of Perspective in Light-Field Processing”, filed Nov. 28, 2012, the disclosure of which is incorporated herein by reference in its entirety.


In some embodiments, the camera pathway may be adjusted to smooth out the camera pathway, thereby effectively stabilizing the camera. Such stabilization may not have the losses and limitations inherent in known image stabilization algorithms used for conventional 2D images. As another alternative, jitter may be added to the camera pathway, causing the reprojected view to shake. This may be used to simulate an explosion, impact, earthquake, or the like, after image capture.



FIG. 5 is a flow diagram depicting a method 500 for generating and adjusting a camera pathway to carry out image stabilization or other adjustments, according to one embodiment. The method 500 may be used in conjunction with light-field data captured by one or more plenoptic light-field cameras such as the light-field camera 200 of FIG. 2. Additionally or alternatively, the light-field data may be captured through the use of a different camera system, such as a tiled camera array that captures light-field data without the use of a microlens array.


The method 500 may start 510 with a step 520 in which the light-field video stream is captured. This may be done by a light-field camera such as the light-field camera 200 of FIG. 2, or by a different type of light-field image capture system, as mentioned previously. The light-field video stream may be the image data 321 referenced in FIG. 3.


In a step 530, the light-field video stream may be received, for example, at a processor capable of processing the light-field video stream. The processor may be the post-processing circuitry 204 of the camera 200, as in FIG. 2, and/or the post-processing circuitry 204 of the post-processing system 300, as in FIG. 3. In the alternative, any processor capable of processing light-field data may receive the light-field video stream.


In a step 540, target pixels may be selected in key frames of the light-field video stream. Target pixels may be pixels with color/intensity characteristics that make them easy to automatically recognize, and hence track from one frame to another. The target pixels may be identified, at least, in key frames of the light-field video stream. The step 540 will be described in greater detail in connection with FIG. 6.


In a step 550, a camera pathway may be generated, indicative of motion of the light-field camera used to generate (i.e., capture) the light-field video stream. If some information about the camera pathway is already available at the commencement of the step 550, the step 550 may include gathering the remaining data needed to generate the camera pathway with six degrees of freedom, for the entire length of the light-field video stream. The step 550 will be described in greater detail in connection with FIG. 11.


In a step 560, an adjusted camera pathway may be generated, based on the camera pathway. The adjusted camera pathway may include any desired adjustments, such as camera stabilization or camera jittering. This step is optional; as mentioned previously, the camera pathway may be useful independently of the creation of an adjusted camera pathway. For example, integration of computer-generated elements in the light-field video stream may not require the adjustment of the camera pathway, but may rather be based on the un-adjusted camera pathway.


In a step 570, a video stream may be projected based on the adjusted camera pathway. The video stream may be projected from the viewpoint of the camera, in each frame, as indicated on the adjusted camera pathway. The adjusted camera pathway may also provide the position and orientation of the camera with six degrees of freedom, and may thus provide the information needed to generate new projected views. The video stream generated in the step 570 may thus reflect the modifications made to the camera pathway, such as image stabilization. This step is optional, and may be unnecessary if the step 560 is not carried out.


In a step 580, the video stream generated in the step 570 may be output to an output device. This may be, for example, the display screen 316 of the post-processing system 300 of FIG. 3. Additionally or alternatively, the video stream may be output to any other suitable output device, such as a monitor or other display screen that is not part of a light-field data processing system. This step is also optional, and may not be needed if the step 560 and the step 570 are not performed. The method 500 may then end 590.


Various steps of the method 500 of FIG. 5 may be re-ordered, iterated, and/or altered in various ways. Further, various steps of the method 500 may be omitted, replaced with alternative steps, or supplemented with additional steps not specifically shown and described herein. Such modifications would be understood by a person of skill in the art, with the aid of the present disclosure.


Target and Target Pixel Identification



FIG. 6 is a flow diagram depicting the step 540 of selecting the target pixels from the method of FIG. 5, in greater detail, according to one embodiment. The step 540 will be described with reference to FIGS. 7 through 10. The step 540 may utilize one or more of the following, which may be included in the light-field video stream and/or provided separately:

    • Designation of at least two key frames (for example, a first key frame and a second key frame) in the light-field video. This designation may be made by a user, or automatically by the system. In some embodiments, the key frames may be arbitrarily selected.
    • Depth maps for each of the key frames. The depth maps may be obtained by processing the light-field video stream and/or from one or more depth sensors, such as LiDAR or time-of-flight sensors, that captured depth data synchronously with capture of the light-field video stream.
    • Initial camera motion for a sequence of frames that contains the first and second key frames. The initial camera motion need not apply to the entire light-field video stream, but may rather be applicable to only a portion, such as the initial frames of the light-field video stream. In some embodiments, the initial camera motion may be obtained from data captured by other sensors, such as LiDAR sensors, gyroscopes, accelerometers, or other sensors that measure depth, position, orientation, velocity, and/or acceleration. Synchronous location and mapping (SLAM) techniques or the like may be applied to such sensor data to obtain the initial camera motion.


The step 540 may be designed to provide output, which may include one or more of the following:

    • A list of targets, each of which is defined in at least the first frame by a closed contour. The closed contour may be a list of targets, for example, designating each target by (x, y) coordinates.
    • A plane model of each target, for example, providing the position and orientation of a plane passing through the target. The plane model may designate the plane, for example, by a normal vector n and an offset d.
    • A mask for each of the targets for each key frame, indicating one or more target pixels within each of the targets. The target pixels may be the pixels within each target that are suitable for matching in different frames.


The step 540 may utilize direct image mapping to determine the camera pose and motion, and the depth of objects in the scene. The targets used for direct image mapping may be selected to facilitate identification and matching between frames. Thus, each of the targets may have color and/or intensity characteristics that facilitate identification. The targets may advantageously be static, so that relative motion of the targets between frames can be used to ascertain motion of the camera (as opposed to motion of the targets). Further, the targets may have textures that make them relatively easy to identify with accuracy.


Further, in at least one embodiment, only planar regions (i.e., planar surfaces of objects) may be selected as targets. This may facilitate usage of planes to approximate the targets, and may minimize the number of unknowns in the expressions used to solve for depth. Specifically, for a planar region, only four unknowns need to be solved for.


As shown, the step 540 may begin 610 with a step 620 in which superpixel segmentation of each key frame is carried out. Superpixel segmentation may entail division of each key frame into groups (superpixels) in which pixels have some traits in common, such as color and/or intensity values.



FIG. 7 is a screenshot depicting superpixel segmentation of a frame 700, according to one embodiment. The frame 700 may be divided into superpixels 710, as shown. The superpixels 710 may be of a generally, but not precisely, uniform size and shape. Any of a variety of superpixel segmentation algorithms known in the art may be used. In some embodiments, superpixel segmentation may be carried out via Simple Linear Iterative Clustering (SLIC) or a similar method.


Returning to FIG. 6, in a step 630, a motion error map may be calculated for each of the key frames. The motion error map may be a grayscale representation of relative motion between frames (for example consecutive frames). The motion error map may reveal which elements of the scene are moving between the frames, and which are stationary.



FIG. 8 is a screenshot depicting a motion error map 800 for the frame 700 of FIG. 7, according to one embodiment. As shown, the motion error map 800 indicates that the people 810 in the foreground are moving, while the background elements 820 are stationary.


Returning to FIG. 6, in a step 640, candidate targets may be identified from among the superpixels 710 of the frame 700. This may be done by using the superpixels delineated in the step 620 and the motion error maps generated in the step 630. Candidate targets may be superpixels with small motion error (static) and strong gradient (texture). In some embodiments, only superpixels 710 with easily-recognizable textures, in which little or no motion between frames has occurred, may be designated as candidate targets.



FIG. 9 is a screenshot depicting identification of candidate targets 910 with texture and small motion error, in the frame 700 of FIG. 7, according to one embodiment. As shown, some of the superpixels 710 of FIG. 7 have been identified as candidate targets 910. Notably, superpixels 710 lacking in texture (such as those of the blank wall behind the people 810) have not been selected, and moving elements (such as the people 810) also have not been selected. Rather, the candidate targets 910 are portions that are generally stationary and are textured enough to be readily recognized.


Returning to FIG. 6, in a step 650, planes may be fitted to the candidate targets 910. Thus, each of the candidate targets 910 may be approximated or modeled as a portion of a plane. The depth information mentioned earlier, which may be obtained by processing the light-field video stream and/or from another source, such as a depth sensor, may be used in the fitting of planes to the candidate targets 910.


In a step 660, a mask may be generated for each of the candidate targets 910, indicating which pixels within the candidate target 910 are suitable for use as target pixels. Target pixels may be those with the desired color/intensity characteristics for accurate recognition between frames.


In a step 670, some of the candidate targets may be selected as targets. This selection may be made, for example, based on whether each of the candidate targets 910 was readily and accurately mapped to a plane in the step 650, and/or whether each of the candidate targets 910 contains suitable target pixels, as determined in the step 660. The step 540 may then end 690.



FIG. 10 is a screenshot depicting selection of targets 1010 in the frame 700 of FIG. 7, according to one embodiment. As described above, the targets 1010 may be the candidate targets 910 that are readily approximated with planes and contain suitable target pixels.


Camera Pathway Generation from Targets



FIG. 11 is a flow diagram depicting the step 550 of generating the camera pathway from the method 500 of FIG. 5, according to one embodiment. The step 550 may utilize one or more of the following, which may be included in the light-field video stream and/or provided separately:

    • Depth maps for at least the key frames of the light-field video stream. As described above, the depth maps may be obtained by processing the light-field video stream and/or from one or more depth sensors.
    • Subaperture views for at least the key frames of the light-field video stream. For a plenoptic light-field camera, such as the camera 200, a subaperture view is an image generated from light-field data from the same location on each microlens of a microlens array, such as the microlens array 202. For a tiled camera array, a subaperture view is an image generated from light-field data from the same location on the image captured by each of the cameras of the tiled array. Subaperture views may be readily obtained for any frame of the light-field video stream by processing the light-field video stream, itself.
    • Camera-intrinsic parameters obtained from calibration of the light-field camera. Camera-intrinsic parameters may be unique to the light-field camera used to capture the light-field video stream.
    • Light-field optics parameters pertinent to one or more light-field optical elements of the light-field camera used to capture the light-field video stream. For example, the light-field optics parameters may include the distance between the microlens array 202 and the main lens 213, and the distance between the microlens array 202 and the image sensor 203.
    • Camera motion for at least a portion of the light-field video stream. The camera motion need not apply to the entire light-field video stream, but may rather be applicable to only a portion. In some embodiments, the camera motion may be obtained from data captured by other sensors. SLAM techniques or the like may be applied to such sensor data to obtain the camera motion.
    • The targets and target pixels identified in the step 540. These may, if desired, be supplemented with targets and/or target pixels selected by a user through the use of an input device, such as the user input 206 of the camera 200 of FIG. 2 or the user input 315 of the post-processing system 300 of FIG. 3.


The step 550 may be designed to provide output, which may include one or more of the following:

    • The camera pathway for the entire light-field video stream. The camera pathway may advantageously be provided with six degrees of freedom, as mentioned previously.
    • 3D mapping of targets and/or target pixels. If desired, the targets may be modeled in a virtual 3D scene, and the camera pathway may be generated relative to the virtual 3D scene.


The step 550 may track the 3D movement of the light-field camera with accuracy sufficient to enable visually precise insertion of computer-generated content into the light-field video stream. As part of the step 550, the motion of the light-field camera may be tracked with six degrees of freedom, and the targets may be mapped in 3D space. Depth mapping may be carried out as a necessary by-product of generation of the camera pathway.


As shown, the step 550 may begin 1110 with a step 1120 in which the light-field video stream is divided into sequences. Each sequence may begin with one of the key frames identified in the step 540.


In a step 1130, one of the sequences may be selected. For the first iteration, this may be the first sequence of the light-field video stream. The targets and target pixels of the first key frame may already have been selected in the step 540.


In a step 1140, the position and/or orientation of the targets may be tracked, in each frame of the sequence. In a step 1150, the position and/or orientation of the targets may be compared between frames of the sequence to obtain a portion of the camera pathway corresponding to that sequence. This may be done, for example, by comparing each pair of adjacent frames, modeling the position and/or orientation of each target for the new frame, and building the camera pathway for the new frame. Thus, the step 1140 and the step 1150 may be carried out synchronously.


Thus, the 3D model (map) of the targets and the camera pathway may be propagated from the key frame to the last frame of the sequence, which may be the key frame of the next sequence. Accordingly, the camera pathway may be generated one frame at a time until the portion of the camera pathway for that sequence is complete. At the end of the sequence, in a step 1160, the position and/or orientation of the target pixels in the key frame at the beginning of the next sequence may be obtained.


In a query 1170, a determination may be made as to whether the camera pathway has been generated for all sequences designated in the step 1120. If not, the system may return to the step 1130 and select the next sequence in the light-field video stream. The step 1140, the step 1150, and the step 1160 may be repeated until the query 1170 is answered in the affirmative. The step 550 may then end 1190.


If desired, user input may be gathered at any point in the performance of the step 550. For example, the user may help identify new targets and/or target pixels, confirm whether the 3D model of targets and/or target pixels is correct, and/or confirm whether each new portion of the camera pathway is correct. Thus, propagation of errors through the process may be avoided.


Image Stabilization


As described in connection with FIG. 5, in the step 560, the camera pathway obtained in the step 550 may be adjusted, for example, to provide image stabilization. Specifically, the camera pose may be stabilized through all frames via splines or other analytical solutions. The multi-view (4D) nature of the light-field may allow for adjusting the projection coordinates of the individual frames. This may be done by adjusting the U, V coordinates within each light-field frame so that frame-to-frame motion is smooth and continuous.


By using 4D data, parallax and image resolution can be maintained, avoiding the losses inherent in known image stabilization methods for 2D images. The limits of perspective shift may be governed by the specifications of the light-field optics. By generating an adjusted camera pathway in 3D space, using the camera pathway, a new sample from the 4D light-field can be produced, thus generating a near parallax-perfect camera move.



FIG. 12 is an illustration 1200 depicting the relationship between camera acceleration curves and light-field optical constraints, according to one embodiment. As shown, the light-field camera 200 may be used to capture a light-field video stream including the frame 700 of FIG. 7. The light-field camera 200 may be dollied away from the scene, as indicated by the arrow 1210. If the motion of the light-field camera 200 is not smooth, the camera 200 may follow a camera pathway 1220 with an erratic, jittery shape. This may adversely impact the quality of the video projected from the light-field video stream.


The camera pathway 1220 may be obtained with relatively high accuracy through use of the methods provided herein. Then, the camera pathway 1220 may be adjusted (for example, by using splines or the like), to generate the adjusted camera pathway 1230, which is much smoother. The configuration and/or positioning of the light-field optics within the light-field camera 200, such as the main lens 213, the microlens array 202, and the image sensor 203, may determine the size of the perspective limits 1240, within which the Center of Perspective of the light-field video stream may be adjusted for each frame.


A much smoother video stream may be projected from the light-field video stream, from the viewpoint of the adjusted camera pathway 1230. This video stream may be outputted to a display screen or the like for viewing.


Integration of Other Sensors


As mentioned previously, other sensors may be used to enable still more accurate generation of the camera pathway 1220. For example, camera position and/or orientation data derived from such sensors may be compared with that of the camera pathway 1220 computed by 3D mapping the targets and/or target pixels in 3D space. If desired, such sensor data may be used for each sequence, or even each frame-by-frame progression, of the step 540.



FIG. 13 is a screenshot 1300 depicting the use of LiDAR and gyroscope data in combination with a light-field video stream to generate more accurate camera pathways. Specifically, the screenshot 1300 depicts the camera pathway 1220, which may be computed by 3D mapping the targets and/or target pixels in 3D space, as described previously. The camera pathway 1220 generated in this way may be compared with a corresponding camera pathway 1310 generated through use of LiDAR data, and/or a corresponding camera pathway 1320 generated through the use data from a gyroscope mounted on the camera 200.


Such comparison may be performed manually by a user, or automatically by the computing device. The camera pathway 1220 may, if desired, be modified based on the corresponding camera pathway 1310 and/or the corresponding camera pathway 1320. Such modification may also be carried out manually or automatically, and may be done in the course of performance of the step 540. In the alternative, distinct camera pathways may be computed in their entirety, and then compared and/or modified after the step 540 is complete.


The above description and referenced drawings set forth particular details with respect to possible embodiments. Those of skill in the art will appreciate that the techniques described herein may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the techniques described herein may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.


Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some embodiments may include a system or a method for performing the above-described techniques, either singly or in any combination. Other embodiments may include a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.


Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of described herein can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.


Some embodiments relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), and/or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the techniques set forth herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the techniques described herein, and any references above to specific languages are provided for illustrative purposes only.


Accordingly, in various embodiments, the techniques described herein can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the techniques described herein include: a mobile phone, personal digital assistant, smartphone, kiosk, server computer, enterprise computing device, desktop computer, laptop computer, tablet computer, consumer electronic device, television, set-top box, or the like. An electronic device for implementing the techniques described herein may use any operating system such as, for example: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.


In various embodiments, the techniques described herein can be implemented in a distributed processing environment, networked computing environment, or web-based computing environment. Elements can be implemented on client computing devices, servers, routers, and/or other network or non-network components. In some embodiments, the techniques described herein are implemented using a client/server architecture, wherein some components are implemented on one or more client computing devices and other components are implemented on one or more servers. In one embodiment, in the course of implementing the techniques of the present disclosure, client(s) request content from server(s), and server(s) return content in response to the requests. A browser may be installed at the client computing device for enabling such requests and responses, and for providing a user interface by which the user can initiate and control such interactions and view the presented content.


Any or all of the network components for implementing the described technology may, in some embodiments, be communicatively coupled with one another using any suitable electronic network, whether wired or wireless or any combination thereof, and using any suitable protocols for enabling such communication. One example of such a network is the Internet, although the techniques described herein can be implemented using other networks as well.


While a limited number of embodiments has been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the claims. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting.

Claims
  • 1. A method for processing a light-field video stream, the method comprising: at a processor, receiving a light-field video stream generated by a light-field camera;at the processor, selecting a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream, wherein selecting the plurality of target pixels comprises selecting as target pixels those pixels having at least one of a predetermined color characteristic or a predetermining intensity characteristic and are selected from planar regions of static, textured objects appearing in the key frames of the light-field video stream as the target pixels, and wherein selecting the plurality of target pixels further comprises: generating a list of a plurality of targets appearing in at least one of the key frames;generating a plane model of each of the targets for each of the key frames; andgenerating a mask for each of the targets for each of the key frames, indicating one or more target pixels within each of the targets;at the processor, using the target pixels to generate, in three dimensions, a camera pathway indicative of motion of the light-field camera during generation of the light-field video stream; andat the processor, using the generated camera pathway to process the light-field video stream.
  • 2. The method of claim 1, wherein selecting the plurality of target pixels further comprises: performing superpixel segmentation of each of the key frames to identify superpixels;calculating a motion error map for each of the key frames;using the superpixels and motion error maps to assess texture and motion error for each of the superpixels of each of the key frames to identify a plurality of the superpixels as candidate targets;fitting a plane to each of the candidate targets for each of the key frames; andselecting the targets from among the candidate targets.
  • 3. The method of claim 1, wherein using the generated camera pathway to process the light-field video stream comprises: adjusting the camera pathway to generate an adjusted camera pathway; andprojecting the light-field video stream to a viewpoint defined by the adjusted camera pathway to generate a projected video stream;wherein the method further comprises, at an output device, outputting the projected video stream.
  • 4. A method for processing a light-field video stream, the method comprising: at a processor, receiving a light-field video stream generated by a light-field camera;at the processor, selecting a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream, wherein selecting the plurality of target pixels comprises selecting as target pixels those pixels having at least one of a predetermined color characteristic or a predetermining intensity characteristic;at the processor, using the target pixels to generate, in three dimensions, a camera pathway indicative of motion of the light-field camera during generation of the light-field video stream;at the processor, using the generated camera pathway to process the light-field video stream; andwherein using the target pixels to generate the camera pathway comprises: receiving at least one selection from the group consisting of:camera-intrinsic parameters obtained from calibration of the light-field camera;light-field optics parameters pertinent to one or more light-field optical elements of the light-field camera; andcamera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream, indicative of motion of the light-field camera during at least a segment of the light-field video stream; andusing the selection to generate the camera pathway.
  • 5. The method of claim 4, wherein using the target pixels to generate the camera pathway comprises: generating the camera pathway with six degrees of freedom for an entirety of the light-field video stream; andgenerating a 3D mapping of the target pixels.
  • 6. A method for processing a light-field video stream, the method comprising: at a processor, receiving a light-field video stream generated by a light-field camera;at the processor, selecting a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream;at the processor, using the target pixels to generate, in three dimensions, a camera pathway indicative of motion of the light-field camera during generation of the light-field video stream, wherein using the target pixels to generate the camera pathway comprises: dividing the light-field video stream into a plurality of sequences, each of which begins with one of the key frames;for each sequence: tracking a position and/or orientation of each of the target pixels in each frame;comparing the position and/or orientation of each of the target pixels between frames of the sequence to obtain a portion of the camera pathway for that sequence; andobtaining the position and/or orientation of each of the target pixels for the key frame for the next sequence;generating the camera pathway with six degrees of freedom for an entirety of the light-field video stream; andgenerating a 3D mapping of the target pixels; andat the processor, using the generated camera pathway to process the light-field video stream.
  • 7. The method of claim 6, wherein using the generated camera pathway to process the light-field video stream comprises: adjusting the camera pathway to generate an adjusted camera pathway; andprojecting the light-field video stream to a viewpoint defined by the adjusted camera pathway to generate a projected video stream;wherein the method further comprises, at an output device, outputting the projected video stream.
  • 8. The method of claim 7, wherein adjusting the camera pathway to generate the adjusted camera pathway comprises causing the adjusted camera pathway to be more stable than the camera pathway.
  • 9. The method of claim 7, wherein adjusting the camera pathway to generate the adjusted camera pathway further comprises adjusting U, V coordinates within each of a plurality of frames of the light-field video stream to cause frame-to-frame motion to be relatively smooth and contiguous.
  • 10. A non-transitory computer-readable medium for processing a light-field video stream, comprising instructions stored thereon, that when executed by one or more processors, perform the steps of: receiving a light-field video stream generated by a light-field camera;selecting a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream, wherein selecting the plurality of target pixels comprises: selecting pixels with predetermined color and/or intensity characteristics by selecting pixels from planar regions of static, textured objects appearing in the key frames of the light-field video stream as the target pixels by: generating a list of a plurality of targets appearing in at least one of the key frames;generating a plane model of each of the targets for each of the key frames; andgenerating a mask for each of the targets for each of the key frames, indicating one or more target pixels within each of the targets;using the target pixels to generate, in three dimensions, a camera pathway indicative of motion of the light-field camera during generation of the light-field video stream; andusing the generated camera pathway to process the light-field video stream.
  • 11. The non-transitory computer-readable medium of claim 10, wherein selecting the plurality of target pixels further comprises: performing superpixel segmentation of each of the key frames to identify superpixels;calculating a motion error map for each of the key frames;using the superpixels and motion error maps to assess texture and motion error for each of the superpixels of each of the key frames to identify a plurality of the superpixels as candidate targets;fitting a plane to each of the candidate targets for each of the key frames; andselecting the targets from among the candidate targets.
  • 12. The non-transitory computer-readable medium of claim 10, wherein using the generated camera pathway to process the light-field video stream comprises: adjusting the camera pathway to generate an adjusted camera pathway such that the adjusted camera pathway is more stable than the camera pathway;projecting the light-field video stream to a viewpoint defined by the adjusted camera pathway to generate a projected video stream;wherein the non-transitory computer-readable medium further comprises instructions stored thereon, that when executed by one or more processors, cause an output device to output the projected video stream.
  • 13. A system for processing a light-field video stream, the system comprising: a processor configured to: receive a light-field video stream generated by a light-field camera;select a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream by: selecting pixels from planar regions of static, textured objects appearing in the key frames of the light-field video stream as the target pixels;generating a list of a plurality of targets appearing in at least one of the key frames;generating a plane model of each of the targets for each of the key frames; andgenerating a mask for each of the targets for each of the key frames, indicating one or more target pixels within each of the targets;use the target pixels to generate, in three dimensions, a camera pathway indicative of motion of the light-field camera during generation of the light-field video stream; anduse the generated camera pathway to process the light-field video stream; andan output device configured to output the light-field video stream.
  • 14. The system of claim 13, wherein the processor is further configured to select the plurality of target pixels by: performing superpixel segmentation of each of the key frames to identify superpixels;calculating a motion error map for each of the key frames;using the superpixels and motion error maps to assess texture and motion error for each of the superpixels of each of the key frames to identify a plurality of the superpixels as candidate targets;fitting a plane to each of the candidate targets for each of the key frames; andselecting the targets from among the candidate targets.
  • 15. The system of claim 13, wherein the processor is further configured to use the target pixels to generate the camera pathway by: receiving at least one selection from the group consisting of: camera-intrinsic parameters obtained from calibration of the light-field camera;light-field optics parameters pertinent to one or more light-field optical elements of the light-field camera; andcamera motion, generated by a sensor operating contemporaneously with capture of the light-field video stream, indicative of motion of the light-field camera during at least a segment of the light-field video stream; andusing the selection to generate the camera pathway.
  • 16. The system of claim 13, wherein the processor is further configured to use the generated camera pathway to process the light-field video stream by: adjusting the camera pathway to generate an adjusted camera pathway such that the adjusted camera pathway is more stable than the camera pathway; andprojecting the light-field video stream to a viewpoint defined by the adjusted camera pathway to generate a projected video stream;and wherein the output device is further configured to output the projected video stream.
  • 17. A system for processing a light-field video stream, the system comprising: a processor configured to: receive a light-field video stream generated by a light-field camera;select a plurality of target pixels in a plurality of key frames comprising at least a first frame and a second frame of the light-field video stream;use the target pixels to generate, in three dimensions, a camera pathway with six degrees of freedom and indicative of motion of the light-field camera during generation of the light-field video stream by: dividing the light-field video stream into a plurality of sequences, each of which begins with one of the key frames; andfor each sequence: tracking a position and/or orientation of each of the target pixels in each frame;comparing the position and/or orientation of each of the target pixels between frames of the sequence to obtain a portion of the camera pathway for that sequence; andobtaining the position and/or orientation of each of the target pixels for the key frame for the next sequence; andgenerating a 3D mapping of the target pixels;use the generated camera pathway to process the light-field video stream; andan output device configured to output the light-field video stream.
  • 18. The system of claim 17, wherein the processor is further configured to use the generated camera pathway to process the light-field video stream by: adjusting the camera pathway to generate an adjusted camera pathway such that the adjusted camera pathway is more stable than the camera pathway; andprojecting the light-field video stream to a viewpoint defined by the adjusted camera pathway to generate a projected video stream;and wherein the output device is further configured to output the projected video stream.
US Referenced Citations (507)
Number Name Date Kind
725567 Ives Apr 1903 A
4383170 Takagi et al. May 1983 A
4661986 Adelson Apr 1987 A
4694185 Weiss Sep 1987 A
4920419 Easterly Apr 1990 A
5076687 Adelson Dec 1991 A
5077810 D'Luna Dec 1991 A
5251019 Moorman et al. Oct 1993 A
5282045 Mimura et al. Jan 1994 A
5499069 Griffith Mar 1996 A
5572034 Karellas Nov 1996 A
5610390 Miyano Mar 1997 A
5748371 Cathey, Jr. et al. May 1998 A
5757423 Tanaka et al. May 1998 A
5818525 Elabd Oct 1998 A
5835267 Mason et al. Nov 1998 A
5907619 Davis May 1999 A
5949433 Klotz Sep 1999 A
5974215 Bilbro et al. Oct 1999 A
6005936 Shimizu et al. Dec 1999 A
6021241 Bilbro et al. Feb 2000 A
6023523 Cohen et al. Feb 2000 A
6028606 Kolb et al. Feb 2000 A
6034690 Gallery et al. Mar 2000 A
6061083 Aritake et al. May 2000 A
6061400 Pearlstein et al. May 2000 A
6069565 Stern et al. May 2000 A
6075889 Hamilton, Jr. et al. Jun 2000 A
6091860 Dimitri Jul 2000 A
6097394 Levoy et al. Aug 2000 A
6115556 Reddington Sep 2000 A
6137100 Fossum et al. Oct 2000 A
6169285 Pertrillo et al. Jan 2001 B1
6201899 Bergen Mar 2001 B1
6221687 Abramovich Apr 2001 B1
6320979 Melen Nov 2001 B1
6424351 Bishop et al. Jul 2002 B1
6448544 Stanton et al. Sep 2002 B1
6466207 Gortler et al. Oct 2002 B1
6476805 Shum et al. Nov 2002 B1
6479827 Hamamoto et al. Nov 2002 B1
6483535 Tamburrino et al. Nov 2002 B1
6529265 Henningsen Mar 2003 B1
6577342 Webster Jun 2003 B1
6587147 Li Jul 2003 B1
6597859 Leinhardt et al. Jul 2003 B1
6606099 Yamada Aug 2003 B2
6658168 Kim Dec 2003 B1
6674430 Kaufman et al. Jan 2004 B1
6687419 Atkin Feb 2004 B1
6768980 Meyer et al. Jul 2004 B1
6785667 Orbanes et al. Aug 2004 B2
6833865 Fuller et al. Dec 2004 B1
6842297 Dowski, Jr. et al. Jan 2005 B2
6900841 Mihara May 2005 B1
6924841 Jones Aug 2005 B2
6927922 George et al. Aug 2005 B2
7015954 Foote et al. Mar 2006 B1
7025515 Woods Apr 2006 B2
7034866 Colmenarez et al. Apr 2006 B1
7079698 Kobayashi Jul 2006 B2
7102666 Kanade et al. Sep 2006 B2
7164807 Morton Jan 2007 B2
7206022 Miller et al. Apr 2007 B2
7239345 Rogina Jul 2007 B1
7286295 Sweatt et al. Oct 2007 B1
7304670 Hussey et al. Dec 2007 B1
7329856 Ma et al. Feb 2008 B2
7336430 George Feb 2008 B2
7417670 Linzer et al. Aug 2008 B1
7469381 Ording Dec 2008 B2
7477304 Hu Jan 2009 B2
7587109 Reininger Sep 2009 B1
7620309 Georgiev Nov 2009 B2
7623726 Georgiev Nov 2009 B1
7633513 Kondo et al. Dec 2009 B2
7683951 Aotsuka Mar 2010 B2
7687757 Tseng et al. Mar 2010 B1
7723662 Levoy et al. May 2010 B2
7724952 Shum et al. May 2010 B2
7748022 Frazier Jun 2010 B1
7847825 Aoki et al. Dec 2010 B2
7936377 Friedhoff et al. May 2011 B2
7936392 Ng et al. May 2011 B2
7941634 Georgi May 2011 B2
7945653 Zuckerberg et al. May 2011 B2
7949252 Georgiev May 2011 B1
7982776 Dunki-Jacobs et al. Jul 2011 B2
8013904 Tan et al. Sep 2011 B2
8085391 Machida et al. Dec 2011 B2
8106856 Matas et al. Jan 2012 B2
8115814 Iwase et al. Feb 2012 B2
8155456 Babacan Apr 2012 B2
8155478 Vitsnudel et al. Apr 2012 B2
8189089 Georgiev et al. May 2012 B1
8228417 Georgiev et al. Jul 2012 B1
8248515 Ng et al. Aug 2012 B2
8259198 Cote et al. Sep 2012 B2
8264546 Witt Sep 2012 B2
8279325 Pitts et al. Oct 2012 B2
8289440 Knight et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8310554 Aggarwal et al. Nov 2012 B2
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8400533 Szedo Mar 2013 B1
8400555 Georgiev Mar 2013 B1
8427548 Lim et al. Apr 2013 B2
8442397 Kang et al. May 2013 B2
8446516 Pitts et al. May 2013 B2
8494304 Venable et al. Jul 2013 B2
8531535 Kwatra Sep 2013 B2
8531581 Shroff Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8559705 Ng Oct 2013 B2
8570426 Pitts et al. Oct 2013 B2
8577216 Li et al. Nov 2013 B2
8581998 Ohno Nov 2013 B2
8589374 Chaudhri Nov 2013 B2
8593564 Border et al. Nov 2013 B2
8605199 Imai Dec 2013 B2
8614764 Pitts et al. Dec 2013 B2
8619082 Ciurea Dec 2013 B1
8629930 Brueckner et al. Jan 2014 B2
8665440 Kompaniets et al. Mar 2014 B1
8675073 Aagaard et al. Mar 2014 B2
8724014 Ng et al. May 2014 B2
8736710 Spielberg May 2014 B2
8736751 Yun May 2014 B2
8749620 Pitts et al. Jun 2014 B1
8749648 Kohn Jun 2014 B1
8750509 Renkis Jun 2014 B2
8754829 Lapstun Jun 2014 B2
8760566 Pitts et al. Jun 2014 B2
8768102 Ng et al. Jul 2014 B1
8797321 Bertolami et al. Aug 2014 B1
8811769 Pitts et al. Aug 2014 B1
8831377 Pitts et al. Sep 2014 B2
8860856 Wetzstein et al. Oct 2014 B2
8879901 Caldwell et al. Nov 2014 B2
8903232 Caldwell Dec 2014 B1
8908058 Akeley et al. Dec 2014 B2
8948545 Akeley et al. Feb 2015 B2
8953882 Lim et al. Feb 2015 B2
8971625 Pitts et al. Mar 2015 B2
8976288 Ng et al. Mar 2015 B2
8988317 Liang et al. Mar 2015 B1
8995785 Knight et al. Mar 2015 B2
8997021 Liang et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9013611 Szedo Apr 2015 B1
9106914 Doser Aug 2015 B2
9131155 Dolgin Sep 2015 B1
9172853 Pitts et al. Oct 2015 B2
9184199 Pitts et al. Nov 2015 B2
9201193 Smith Dec 2015 B1
9210391 Mills Dec 2015 B1
9214013 Venkataraman et al. Dec 2015 B2
9232138 Baldwin Jan 2016 B1
9294662 Vondran, Jr. et al. Mar 2016 B2
9300932 Knight et al. Mar 2016 B2
9305375 Akeley Apr 2016 B2
9305956 Pittes et al. Apr 2016 B2
9307148 Baldwin Apr 2016 B1
9386288 Akeley et al. Jul 2016 B2
9392153 Myhre et al. Jul 2016 B2
9419049 Pitts et al. Aug 2016 B2
9467607 Ng et al. Oct 2016 B2
9497380 Jannard et al. Nov 2016 B1
9607424 Ng et al. Mar 2017 B2
9628684 Liang et al. Apr 2017 B2
9635332 Carroll et al. Apr 2017 B2
9639945 Oberheu et al. May 2017 B2
9647150 Blasco Claret May 2017 B2
9681069 El-Ghoroury et al. Jun 2017 B2
9774800 El-Ghoroury et al. Sep 2017 B2
9858649 Liang et al. Jan 2018 B2
9866810 Knight et al. Jan 2018 B2
9888179 Liang Feb 2018 B1
9900510 Karafin et al. Feb 2018 B1
9979909 Kuang et al. May 2018 B2
20010048968 Cox et al. Dec 2001 A1
20010053202 Mazess et al. Dec 2001 A1
20020001395 Davis et al. Jan 2002 A1
20020015048 Nister Feb 2002 A1
20020061131 Sawhney May 2002 A1
20020109783 Hayashi et al. Aug 2002 A1
20020159030 Frey et al. Oct 2002 A1
20020199106 Hayashi Dec 2002 A1
20030081145 Seaman et al. May 2003 A1
20030103670 Schoelkopf et al. Jun 2003 A1
20030117511 Betz et al. Jun 2003 A1
20030123700 Wakao Jul 2003 A1
20030133018 Ziemkowski Jul 2003 A1
20030147252 Fioravanti Aug 2003 A1
20030156077 Balogh Aug 2003 A1
20040002179 Barton et al. Jan 2004 A1
20040012688 Tinnerinno et al. Jan 2004 A1
20040012689 Tinnerinno et al. Jan 2004 A1
20040101166 Williams et al. May 2004 A1
20040114176 Bodin et al. Jun 2004 A1
20040135780 Nims Jul 2004 A1
20040189686 Tanguay et al. Sep 2004 A1
20040257360 Sieckmann Dec 2004 A1
20050031203 Fukuda Feb 2005 A1
20050049500 Babu et al. Mar 2005 A1
20050052543 Li et al. Mar 2005 A1
20050080602 Snyder et al. Apr 2005 A1
20050162540 Yata Jul 2005 A1
20050212918 Serra et al. Sep 2005 A1
20050276441 Debevec Dec 2005 A1
20060023066 Li et al. Feb 2006 A1
20060050170 Tanaka Mar 2006 A1
20060056040 Lan Mar 2006 A1
20060056604 Sylthe et al. Mar 2006 A1
20060072175 Oshino Apr 2006 A1
20060082879 Miyoshi et al. Apr 2006 A1
20060130017 Cohen et al. Jun 2006 A1
20060208259 Jeon Sep 2006 A1
20060248348 Wakao et al. Nov 2006 A1
20060256226 Alon et al. Nov 2006 A1
20060274210 Kim Dec 2006 A1
20060285741 Subbarao Dec 2006 A1
20070008317 Lundstrom Jan 2007 A1
20070019883 Wong et al. Jan 2007 A1
20070030357 Levien et al. Feb 2007 A1
20070033588 Landsman Feb 2007 A1
20070052810 Monroe Mar 2007 A1
20070071316 Kubo Mar 2007 A1
20070081081 Cheng Apr 2007 A1
20070097206 Houvener May 2007 A1
20070103558 Cai et al. May 2007 A1
20070113198 Robertson et al. May 2007 A1
20070140676 Nakahara Jun 2007 A1
20070188613 Norbori et al. Aug 2007 A1
20070201853 Petschnigg Aug 2007 A1
20070229653 Matusik et al. Oct 2007 A1
20070230944 Georgiev Oct 2007 A1
20070269108 Steinberg et al. Nov 2007 A1
20080007626 Wernersson Jan 2008 A1
20080012988 Baharav et al. Jan 2008 A1
20080018668 Yamauchi Jan 2008 A1
20080031537 Gutkowicz-Krusin et al. Feb 2008 A1
20080049113 Hirai Feb 2008 A1
20080056569 Williams et al. Mar 2008 A1
20080122940 Mori May 2008 A1
20080129728 Satoshi Jun 2008 A1
20080144952 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080168404 Ording Jul 2008 A1
20080180792 Georgiev Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080205871 Utagawa Aug 2008 A1
20080226274 Spielberg Sep 2008 A1
20080232680 Berestov et al. Sep 2008 A1
20080253652 Gupta et al. Oct 2008 A1
20080260291 Alakarhu et al. Oct 2008 A1
20080266688 Errando Smet et al. Oct 2008 A1
20080277566 Utagawa Nov 2008 A1
20080309813 Watanabe Dec 2008 A1
20080316301 Givon Dec 2008 A1
20090027542 Yamamoto et al. Jan 2009 A1
20090041381 Georgiev et al. Feb 2009 A1
20090041448 Georgiev et al. Feb 2009 A1
20090070710 Kagaya Mar 2009 A1
20090128658 Hayasaka et al. May 2009 A1
20090128669 Ng et al. May 2009 A1
20090135258 Nozaki May 2009 A1
20090140131 Utagawa Jun 2009 A1
20090102956 Georgiev Jul 2009 A1
20090185051 Sano Jul 2009 A1
20090185801 Georgiev et al. Jul 2009 A1
20090190022 Ichimura Jul 2009 A1
20090190024 Hayasaka et al. Jul 2009 A1
20090195689 Hwang et al. Aug 2009 A1
20090202235 Li et al. Aug 2009 A1
20090204813 Kwan Aug 2009 A1
20090273843 Raskar et al. Nov 2009 A1
20090295829 Georgiev et al. Dec 2009 A1
20090309973 Kogane Dec 2009 A1
20090310885 Tamaru Dec 2009 A1
20090321861 Oliver et al. Dec 2009 A1
20100003024 Agrawal et al. Jan 2010 A1
20100021001 Honsinger et al. Jan 2010 A1
20100026852 Ng et al. Feb 2010 A1
20100033617 Forutanpour Feb 2010 A1
20100050120 Ohazama et al. Feb 2010 A1
20100060727 Steinberg et al. Mar 2010 A1
20100097444 Lablans Apr 2010 A1
20100103311 Makii Apr 2010 A1
20100107068 Butcher et al. Apr 2010 A1
20100111489 Presler May 2010 A1
20100123784 Ding et al. May 2010 A1
20100141780 Tan et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100188503 Tsai Jul 2010 A1
20100201789 Yahagi Aug 2010 A1
20100253782 Elazary Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100277629 Tanaka Nov 2010 A1
20100303288 Malone Dec 2010 A1
20100328485 Imamura et al. Dec 2010 A1
20110018903 Lapstun et al. Jan 2011 A1
20110019056 Hirsch et al. Jan 2011 A1
20110025827 Shpunt et al. Feb 2011 A1
20110050864 Bond Mar 2011 A1
20110050909 Ellenby Mar 2011 A1
20110069175 Mistretta et al. Mar 2011 A1
20110075729 Dane et al. Mar 2011 A1
20110090255 Wilson et al. Apr 2011 A1
20110123183 Adelsberger et al. May 2011 A1
20110129120 Chan Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110148764 Gao Jun 2011 A1
20110149074 Lee et al. Jun 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110205384 Zamowski et al. Aug 2011 A1
20110221947 Awazu Sep 2011 A1
20110242334 Wilburn et al. Oct 2011 A1
20110242352 Hikosaka Oct 2011 A1
20110261164 Olesen et al. Oct 2011 A1
20110261205 Sun Oct 2011 A1
20110267263 Hinckley Nov 2011 A1
20110273466 Imai et al. Nov 2011 A1
20110133649 Bales et al. Dec 2011 A1
20110292258 Adler Dec 2011 A1
20110298960 Tan et al. Dec 2011 A1
20110304745 Wang et al. Dec 2011 A1
20110311046 Oka Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20120014837 Fehr et al. Jan 2012 A1
20120050562 Perwass et al. Mar 2012 A1
20120056889 Carter et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120057806 Backlund et al. Mar 2012 A1
20120062755 Takahashi et al. Mar 2012 A1
20120132803 Hirato et al. May 2012 A1
20120133746 Bigioi et al. May 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188344 Imai Jul 2012 A1
20120201475 Carmel et al. Aug 2012 A1
20120206574 Shikata et al. Aug 2012 A1
20120218463 Benezra et al. Aug 2012 A1
20120224787 Imai Sep 2012 A1
20120229691 Hiasa et al. Sep 2012 A1
20120249529 Matsumoto et al. Oct 2012 A1
20120249550 Akeley Oct 2012 A1
20120249819 Imai Oct 2012 A1
20120251131 Henderson et al. Oct 2012 A1
20120257065 Velarde et al. Oct 2012 A1
20120257795 Kim et al. Oct 2012 A1
20120272271 Nishizawa et al. Oct 2012 A1
20120287246 Katayama Nov 2012 A1
20120287296 Fukui Nov 2012 A1
20120287329 Yahata Nov 2012 A1
20120293075 Engelen et al. Nov 2012 A1
20120300091 Shroff et al. Nov 2012 A1
20120237222 Ng et al. Dec 2012 A9
20120307084 Mantzel et al. Dec 2012 A1
20120307085 Mantzel Dec 2012 A1
20130002902 Ito Jan 2013 A1
20130002936 Hirama et al. Jan 2013 A1
20130021486 Richardson Jan 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130041215 McDowall Feb 2013 A1
20130044290 Kawamura Feb 2013 A1
20130050546 Kano Feb 2013 A1
20130064453 Nagasaka et al. Mar 2013 A1
20130064532 Caldwell et al. Mar 2013 A1
20130070059 Kushida Mar 2013 A1
20130070060 Chatterjee et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130082905 Ranieri et al. Apr 2013 A1
20130088616 Ingrassia, Jr. Apr 2013 A1
20130093844 Shuto Apr 2013 A1
20130093859 Nakamura Apr 2013 A1
20130094101 Oguchi Apr 2013 A1
20130107085 Ng et al. May 2013 A1
20130113981 Knight et al. May 2013 A1
20130120356 Georgiev et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130120636 Baer May 2013 A1
20130127901 Georgiev et al. May 2013 A1
20130127993 Wang May 2013 A1
20130128052 Catrein et al. May 2013 A1
20130128081 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130129192 Wang May 2013 A1
20130135448 Nagumo et al. May 2013 A1
20130176481 Holmes et al. Jul 2013 A1
20130188068 Said Jul 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215226 Chauvier et al. Aug 2013 A1
20130222656 Kaneko Aug 2013 A1
20130234935 Griffith Sep 2013 A1
20130242137 Kirkland Sep 2013 A1
20130258451 Ei-Ghoroury et al. Oct 2013 A1
20130262511 Kuffner et al. Oct 2013 A1
20130286236 Mankowski Oct 2013 A1
20130321574 Zhang et al. Dec 2013 A1
20130321581 El-Ghoroury Dec 2013 A1
20130321677 Cote et al. Dec 2013 A1
20130329107 Burley et al. Dec 2013 A1
20130329132 Tico et al. Dec 2013 A1
20130335596 Demandoix et al. Dec 2013 A1
20130335598 Gustavsson Dec 2013 A1
20130342700 Kass Dec 2013 A1
20140002502 Han Jan 2014 A1
20140002699 Guan Jan 2014 A1
20140003719 Bai et al. Jan 2014 A1
20140013273 Ng Jan 2014 A1
20140035959 Lapstun Feb 2014 A1
20140037280 Shirakawa Feb 2014 A1
20140049663 Ng et al. Feb 2014 A1
20140059462 Wernersson Feb 2014 A1
20140085282 Luebke et al. Mar 2014 A1
20140092424 Grosz Apr 2014 A1
20140098191 Rime et al. Apr 2014 A1
20140132741 Aagaard et al. May 2014 A1
20140133749 Kuo et al. May 2014 A1
20140139538 Barber et al. May 2014 A1
20140167196 Heimgartner et al. Jun 2014 A1
20140176540 Tosio et al. Jun 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140176710 Brady Jun 2014 A1
20140177905 Grefalda Jun 2014 A1
20140184885 Tanaka et al. Jul 2014 A1
20140192208 Okincha Jul 2014 A1
20140193047 Grosz Jul 2014 A1
20140195921 Grosz Jul 2014 A1
20140204111 Vaidyanathan et al. Jul 2014 A1
20140211077 Ng et al. Jul 2014 A1
20140218540 Geiss et al. Aug 2014 A1
20140226038 Kimura Aug 2014 A1
20140240463 Pitts et al. Aug 2014 A1
20140240578 Fishman et al. Aug 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267633 Venkataraman Sep 2014 A1
20140267639 Tatsuta Sep 2014 A1
20140286566 Rhoads Sep 2014 A1
20140300753 Yin Oct 2014 A1
20140313350 Keelan Oct 2014 A1
20140313375 Milnar Oct 2014 A1
20140340390 Lanman et al. Nov 2014 A1
20140347540 Kang Nov 2014 A1
20140354863 Ahn et al. Dec 2014 A1
20140368494 Sakharnykh et al. Dec 2014 A1
20140368640 Strandemar et al. Dec 2014 A1
20150062178 Matas et al. Mar 2015 A1
20150062386 Sugawara Mar 2015 A1
20150092071 Meng et al. Apr 2015 A1
20150097985 Akeley Apr 2015 A1
20150163406 Laroia Jun 2015 A1
20150193937 Georgiev et al. Jul 2015 A1
20150206340 Munkberg et al. Jul 2015 A1
20150207990 Ford et al. Jul 2015 A1
20150237273 Sawadaishi Aug 2015 A1
20150104101 Bryant et al. Oct 2015 A1
20150310592 Kano Oct 2015 A1
20150312553 Ng et al. Oct 2015 A1
20150312593 Akeley et al. Oct 2015 A1
20150370011 Ishihara Dec 2015 A1
20150370012 Ishihara Dec 2015 A1
20160029017 Liang Jan 2016 A1
20160050372 Lindner et al. Feb 2016 A1
20160142615 Liang May 2016 A1
20160155215 Suzuki Jun 2016 A1
20160165206 Huang et al. Jun 2016 A1
20160173844 Knight et al. Jun 2016 A1
20160191823 El-Ghoroury Jun 2016 A1
20160253837 Zhu et al. Sep 2016 A1
20160269620 Romanenko et al. Sep 2016 A1
20160307368 Akeley Oct 2016 A1
20160307372 Pitts et al. Oct 2016 A1
20160309065 Karafin et al. Oct 2016 A1
20160353026 Blonde et al. Dec 2016 A1
20160379374 Sokeila Dec 2016 A1
20160381348 Hayasaka Dec 2016 A1
20170059305 Nonn et al. Mar 2017 A1
20170067832 Ferrara, Jr. et al. Mar 2017 A1
20170094906 Liang et al. Mar 2017 A1
20170134639 Pitts May 2017 A1
20170139131 Karafin et al. May 2017 A1
20170180699 El Choubassi Jun 2017 A1
20170237971 Pitts et al. Aug 2017 A1
20170243373 Bevensee et al. Aug 2017 A1
20170244948 Pang et al. Aug 2017 A1
20170256036 Song et al. Sep 2017 A1
20170263012 Sabater et al. Sep 2017 A1
20170302903 Ng et al. Oct 2017 A1
20170324950 Du Nov 2017 A1
20170358092 Bleibel Dec 2017 A1
20170365068 Tan et al. Dec 2017 A1
20170366804 Du Dec 2017 A1
20180012397 Carothers Jan 2018 A1
20180020204 Pang et al. Jan 2018 A1
20180033209 Akeley et al. Feb 2018 A1
20180034134 Pang et al. Feb 2018 A1
20180070066 Knight et al. Mar 2018 A1
20180070067 Knight et al. Mar 2018 A1
20180082405 Liang Mar 2018 A1
20180089903 Pang et al. Mar 2018 A1
20180097867 Pang et al. Apr 2018 A1
20180158198 Kamad Jun 2018 A1
20180249073 Kim Aug 2018 A1
Foreign Referenced Citations (12)
Number Date Country
101226292 Jul 2008 CN
101309359 Nov 2008 CN
19624421 Jan 1997 DE
2010020100 Jan 2010 JP
2011135170 Jul 2011 JP
2003052465 Jun 2003 WO
2006039486 Apr 2006 WO
2007092545 Aug 2007 WO
2007092581 Aug 2007 WO
2011010234 Mar 2011 WO
2011029209 Mar 2011 WO
2011081187 Jul 2011 WO
Non-Patent Literature Citations (174)
Entry
Smith et al, “Light Field Video Stabilization” , IEEE International Conference on Computer Vision (ICCV), Sep. 29-Oct. 2, 2009 (Year: 2009).
Liu et al, “Video Stabilization with a Depth Camera” ,IEEE, pp. 89-95 (Year: 2012).
Lowe, David, “Distinctive Image Features fro Scale-Invariant Keypoints”, International Journal of Computer Vision 60(2), 91-110, 2004 (Year: 2004).
Nimeroff, J., et al., “Efficient rendering of naturally illuminatied environments” in Fifth Eurographics Workshop on Rendering, 359-373, 1994.
Nokia, “City Lens”, May 2012.
Ogden, J., “Pyramid-Based Computer Graphics”, 1985.
Okano et al., “Three-dimensional video system based on integral photography” Optical Engineering, Jun. 1999. vol. 38, No. 6, pp. 1072-1077.
Orzan, Alexandrina, et al., “Diffusion Curves: A Vector Representation for Smooth-Shaded Images,” ACM Transactions on Graphics—Proceedings of SIGGRAPH 2008; vol. 27; 2008.
Pain, B., “Back-Side Illumination Technology for SOI-CMOS Image Sensors”, 2009.
Perez, Patrick et al., “Poisson Image Editing,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH 2003; vol. 22, Issue 3; Jul. 2003; pp. 313-318.
Petschnigg, George, et al., “Digial Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004.
Primesense, “The Primesense 3D Awareness Sensor”, 2007.
Ramamoorthi, R., et al, “Frequency space environment map rendering” ACM Transactions on Graphics (SIGGRAPH 2002 proceedings) 21, 3, 517-526.
Ramamoorthi, R., et al., “An efficient representation for irradiance environment maps”, in Proceedings of SIGGRAPH 2001, 497-500.
Raskar, Ramesh et al., “Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH, Aug. 2008; vol. 27, Issue 3; pp. 1-10.
Raskar, Ramesh et al., “Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging”, SIGGRAPH 2004.
Raytrix, “Raytrix Lightfield Camera,” Raytrix GmbH, Germany 2012, pp. 1-35.
Roper Scientific, Germany “Fiber Optics,” 2012.
Scharstein, Daniel, et al., “High-Accuracy Stereo Depth Maps Using Structured Light,” CVPR'03 Proceedings of the 2003 IEEE Computer Society, pp. 195-202.
Schirmacher, H. et al., “High-Quality Interactive Lumigraph Rendering Through Warping,” May 2000, Graphics Interface 2000.
Shade, Jonathan, et al., “Layered Depth Images”, SIGGRAPH 98, pp. 1-2.
Shreiner, OpenGL Programming Guide, 7th edition, Chapter 8, 2010.
Simpleviewer, “Tiltview”, http://simpleviewer.net/tiltviewer. Retrieved Jan. 2013.
Skodras, A. et al., “The JPEG 2000 Still Image Compression Standard,” Sep. 2001, IEEE Signal Processing Magazine, pp. 36-58.
Sloan, P., et al., “Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments”, ACM Transactions on Graphics 21, 3, 527-536, 2002.
Snavely, Noah, et al., “Photo-tourism: Exploring Photo collections in 3D”, ACM Transactions on Graphics (SIGGRAPH Proceedings), 2006.
Sokolov, “Autostereoscopy and Integral Photography by Professor Lippmann's Method” , 1911, pp. 23-29.
Sony Corp, “Interchangeable Lens Digital Camera Handbook”, 2011.
Sony, Sony's First Curved Sensor Photo: http://www.engadget.com; Jul. 2014.
Stensvold, M., “Hybrid AF: A New Approach to Autofocus is Emerging for both Still and Video”, Digital Photo Magazine, Nov. 13, 2012.
Story, D., “The Future of Photography”, Optics Electronics, Oct. 2008.
Sun, Jian, et al., “Stereo Matching Using Belief Propagation”, 2002.
Tagging photos on Flickr, Facebook and other online photo sharing sites (see, for example, http://support.gnip.com/customer/portal/articles/809309-flickr-geo-photos-tag-search). Retrieved Jan. 2013.
Takahashi, Keita, et al., “All in-focus View Synthesis from Under-Sampled Light Fields”, ICAT 2003, Tokyo, Japan.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification” Applied Optics 40, 11 (Apr. 10, 2001), pp. 1806-1813.
Tao, Michael, et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, Dec. 2013.
Techcrunch, “Coolinis”, Retrieved Jan. 2013.
Teo, P., et al., “Efficient linear rendering for interactive light design”, Tech. Rep. STAN-CS-TN-97-60, 1998, Stanford University.
Teranishi, N. “Evolution of Optical Structure in Images Sensors,” Electron Devices Meeting (IEDM) 2012 IEEE International; Dec. 10-13, 2012.
Vaish et al., “Using plane + parallax for calibrating dense camera arrays”, In Proceedings CVPR 2004, pp. 2-9.
Vaish, V., et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform,” Workshop on Advanced 3D Imaging for Safety and Security (in conjunction with CVPR 2005), 2005.
VR Playhouse, “The Surrogate,” http://www.vrplayhouse.com/the-surrogate.
Wanner, S. et al., “Globally Consistent Depth Labeling of 4D Light Fields,” IEEE Conference on Computer Vision and Pattern Recognition, 2012.
Wanner, S. et al., “Variational Light Field Analysis for Disparity Estimation and Super-Resolution,” IEEE Transacations on Pattern Analysis and Machine Intellegence, 2013.
Wenger, et al, “Performance Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, Institute for Creative Technologies, SIGGRAPH 2005.
Wetzstein, Gordon, et al., “Sensor Saturation in Fourier Multiplexed Imaging”, IEEE Conference on Computer Vision and Pattern Recognition (2010).
Wikipedia—Adaptive Optics: http://en.wikipedia.org/wiki/adaptive_optics. Retrieved Feb. 2014.
Wikipedia—Autofocus systems and methods: http://en.wikipedia.org/wiki/Autofocus. Retrieved Jan. 2013.
Wikipedia—Bayer Filter: http:/en.wikipedia.org/wiki/Bayer_filter. Retrieved Jun. 20, 2013.
Wikipedia—Color Image Pipeline: http://en.wikipedia.org/wiki/color_image_pipeline. Retrieved Jan. 15, 2014.
Wikipedia—Compression standard JPEG XR: http://en.wikipedia.org/wiki/JPEG_XR. Retrieved Jan. 2013.
Wikipedia—CYGM Filter: http://en.wikipedia.org/wiki/CYGM_filter. Retrieved Jun. 20, 2013.
International Search Report and Written Opinion dated Dec. 4, 2018 for corresponding International Application No. PCT/US2018/050402, 14 pages.
U.S. Appl. No. 15/967,076, filed Apr. 30, 2018 listing Jiantao Kuang et al. as inventors, entitled “Automatic Lens Flare Detection and Correction for Light-Field Images”.
U.S. Appl. No. 15/666,298, filed Aug. 1, 2017 listing Yonggang Ha et al. as inventors, entitled “Focal Reducer With Controlled Optical Properties for Interchangeable Lens Light-Field Camera”.
U.S. Appl. No. 15/590,808, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Adaptive Control for Immersive Experience Delivery”.
U.S. Appl. No. 15/864,938, filed Jan. 8, 2018 listing Jon Karafin et al. as inventors, entitled “Motion Blur or Light-Field Images”.
U.S. Appl. No. 15/590,841, filed May 9, 2017 listing Kurt Akeley et al. as inventors, entitled “Vantage Generation and Interactive Playback”.
U.S. Appl. No. 15/590,951, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Wedge-Based Light-Field Video Capture”.
U.S. Appl. No. 15/944,551, filed Apr. 3, 2018 listing Zejing Wang et al. as inventors, entitled “Generating Dolly Zoom Effect Using Light Field Image Data”.
U.S. Appl. No. 15/874,723, filed Jan. 18, 2018 listing Mark Weir et al. as inventors, entitled “Multl-Camera Navigation Interface”.
U.S. Appl. No. 15/897,994, filed Feb. 15, 2018 listing Trevor Carothers et al. as inventors, entitled “Generation of Virtual Reality With 6 Degrees of Freesom From Limited Viewer Ata”.
U.S. Appl. No. 15/605,037, filed May 25, 2017 listing Zejing Wang et al. as inventors, entitled “Multl-View Back-Projection to a Light-Field”.
U.S. Appl. No. 15/897,836, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking”.
U.S. Appl. No. 15/897,942, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking With Grabcut”.
Adelsberger, R. et al., “Spatially Adaptive Photographic Flash,” ETH Zurich, Department of Computer Science, Technical Report 612, 2008, pp. 1-12.
Adelson et al., “Single Lens Stereo with a Plenoptic Camera” IEEE Translation on Pattern Analysis and Machine Intelligence, Feb. 1992. vol. 14, No. 2, pp. 99-106.
Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, edited by Michael S. Landy and J. Anthony Movshon. Cambridge, Mass.: mit Press.
Adobe Systems Inc, “XMP Specification”, Sep. 2005.
Adobe, “Photoshop CS6 / in depth: Digital Negative (DNG)”, http://www.adobe.com/products/photoshop/extend.displayTab2html. Retrieved Jan. 2013.
Agarwala, A., et al., “Interactive Digital Photomontage,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2004, vol. 32, No. 3, 2004.
Andreas Observatory, Spectrograph Manual: IV. Flat-Field Correction, Jul. 2006.
Apple, “Apple iPad: Photo Features on the iPad”, Retrieved Jan. 2013.
Bae, S., et al., “Defocus Magnification”, Computer Graphics Forum, vol. 26, Issue 3 (Proc. of Eurographics 2007), pp. 1-9.
Belhumeur, Peter et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1997, pp. 1060-1066.
Belhumeur, Peter, et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1999, pp. 33-44, revised version.
Bhat, P. et al. “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” SIGGRAPH 2010; 14 pages.
Bolles, R., et al., “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion”, International Journal of Computer Vision, 1, 7-55 (1987).
Bourke, Paul, “Image filtering in the Frequency Domain,” pp. 1-9, Jun. 1998.
Canon, Canon Speedlite wireless flash system, User manual for Model 550EX, Sep. 1998.
Chai, Jin-Xang et al., “Plenoptic Sampling”, ACM SIGGRAPH 2000, Annual Conference Series, 2000, pp. 307-318.
Chen, S. et al., “A CMOS Image Sensor with On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm,” Very Large Scalee Integration (VLSI) Systems, IEEE Transactions, vol. 19, Issue 4; Apr. 2011.
Chen, W., et al., “Light Field mapping: Efficient representation and hardware rendering of surface light fields”, ACM Transactions on Graphics 21, 3, 447-456, 2002.
Cohen, Noy et al., “Enhancing the performance of the light field microscope using wavefront coding,” Optics Express, vol. 22, issue 20; 2014.
Daly, D., “Microlens Arrays” Retrieved Jan. 2013.
Debevec, et al, “A Lighting Reproduction Approach to Live-Action Compoisting” Proceedings SIGGRAPH 2002.
Debevec, P., et al., “Acquiring the reflectance field of a human face”, SIGGRAPH 2000.
Debevec, P., et al., “Recovering high dynamic radiance maps from photographs”, SIGGRAPH 1997, 369-378.
Design of the xBox menu. Retrieved Jan. 2013.
Digital Photography Review, “Sony Announce new RGBE CCD,” Jul. 2003.
Dorsey, J., et al., “Design and simulation of opera light and projection effects”, in Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50.
Dorsey, J., et al., “Interactive design of complex time dependent lighting”, IEEE Computer Graphics and Applications 15, 2 (Mar. 1995), 26-36.
Dowski et al., “Wavefront coding: a modern method of achieving high performance and/or low cost imaging systems” SPIE Proceedings, vol. 3779, Jul. 1999, pp. 137-145.
Dowski, Jr. “Extended Depth of Field Through Wave-Front Coding,” Applied Optics, vol. 34, No. 11, Apr. 10, 1995; pp. 1859-1866.
Duparre, J. et al., “Micro-Optical Artificial Compound Eyes,” Institute of Physics Publishing, Apr. 2006.
Eisemann, Elmar, et al., “Flash Photography Enhancement via Intrinsic Relighting”, SIGGRAPH 2004.
Fattal, Raanan, et al., “Multiscale Shape and Detail Enhancement from Multi-light Image Collections”, SIGGRAPH 2007.
Fernando, Randima, “Depth of Field—A Survey of Techniques,” GPU Gems. Boston, MA; Addison-Wesley, 2004.
Fitzpatrick, Brad, “Camlistore”, Feb. 1, 2011.
Fujifilm, Super CCD EXR Sensor by Fujifilm, brochure reference No. EB-807E, 2008.
Georgiev, T. et al., “Reducing Plenoptic Camera Artifacts,” Computer Graphics Forum, vol. 29, No. 6, pp. 1955-1968; 2010.
Georgiev, T., et al., “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 2006.
Georgiev, T., et al., “Suppersolution with Plenoptic 2.0 Cameras,” Optical Society of America 2009; pp. 1-3.
Georgiev, T., et al., “Unified Frequency Domain Analysis of Lightfield Cameras” (2008).
Georgiev, T., et al., Plenoptic Camera 2.0 (2008).
Girod, B., “Mobile Visual Search”, IEEE Signal Processing Magazine, Jul. 2011.
Gortler et al., “The lumigraph” SIGGRAPH 96, pp. 43-54.
Groen et al., “A Comparison of Different Focus Functions for Use in Autofocus Algorithms,” Cytometry 6:81-91, 1985.
Haeberli, Paul “A Multifocus Method for Controlling Depth of Field” GRAPHICA Obscura, 1994, pp. 1-3.
Heide, F. et al., “High-Quality Computational Imaging Through Simple Lenses,” ACM Transactions on Graphics, SIGGRAPH 2013; pp. 1-7.
Heidelberg Collaboratory for Image Processing, “Consistent Depth Estimation in a 4D Light Field,” May 2013.
Hirigoyen, F., et al., “1.1 um Backside Imager vs. Frontside Image: an optics-dedicated FDTD approach”, IEEE 2009 International Image Sensor Workshop.
Huang, Fu-Chung et al., “Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays,” ACM Transaction on Graphics, Aug. 2014, pp. 1-12.
Isaksen, A., et al., “Dynamically Reparameterized Light Fields,” SIGGRAPH 2000, pp. 297-306.
Ives H., “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
Ives, H. “Parallax Panoramagrams Made with a Large Diameter Lens”, Journal of the Optical Society of America; 1930.
Jackson et al., “Selection of a Convolution Function for Fourier Inversion Using Gridding” IEEE Transactions on Medical Imaging, Sep. 1991, vol. 10, No. 3, pp. 473-478.
Kautz, J., et al., “Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics”, in Eurographic Rendering Workshop 2002, 291-296.
Koltun, et al., “Virtual Occluders: An Efficient Interediate PVS Representation”, Rendering Techniques 2000: Proc. 11th Eurographics Workshop Rendering, pp. 59-70, Jun. 2000.
Kopf, J., et al., Deep Photo: Model-Based Photograph Enhancement and Viewing, SIGGRAPH Asia 2008.
Lehtinen, J., et al. “Matrix radiance transfer”, in Symposium on Interactive 3D Graphics, 59-64, 2003.
Lesser, Michael, “Back-Side Illumination”, 2009.
Levin, A., et al., “Image and Depth from a Conventional Camera with a Coded Aperture”, SIGGRAPH 2007, pp. 1-9.
Levoy et al.,“Light Field Rendering” SIGGRAPH 96 Proceeding, 1996. pp. 31-42.
Levoy, “Light Fields and Computational Imaging” IEEE Computer Society, Aug. 2006, pp. 46-55.
Levoy, M. “Light Field Photography and Videography,” Oct. 18, 2005.
Levoy, M. “Stanford Light Field Microscope Project,” 2008; http://graphics.stanford.edu/projects/lfmicroscope/, 4 pages.
Levoy, M., “Autofocus: Contrast Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010.
Levoy, M.,“Autofocus: Phase Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010.
Levoy, M., et al., “Light Field Microscopy,” ACM Transactions on Graphics, vol. 25, No. 3, Proceedings SIGGRAPH 2006.
Liang, Chia-Kai, et al., “Programmable Aperture Photography: Multiplexed Light Field Acquisition”, ACM SIGGRAPH, 2008.
Lippmann, “Reversible Prints”, Communication at the French Society of Physics, Journal of Physics, 7 , 4, Mar. 1908, pp. 821-825.
Lumsdaine et al., “Full Resolution Lightfield Rendering” Adobe Technical Report Jan. 2008, pp. 1-12.
Maeda, Y. et al., “A CMOS Image Sensor with Pseudorandom Pixel Placement for Clear Imaging,” 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2009.
Magnor, M. et al., “Model-Aided Coding of Multi-Viewpoint Image Data,” Proceedings IEEE Conference on Image Processing, ICIP-2000, Vancouver, Canada, Sep. 2000. https://graphics.tu-bs.de/static/people/magnor/publications/icip00.pdf.
Mallat, Stephane, “A Wavelet Tour of Signal Processing”, Academic Press 1998.
Malzbender, et al., “Polynomial Texture Maps”, Proceedings SIGGRAPH 2001.
Marshall, Richard J. et al., “Improving Depth Estimation from a Plenoptic Camera by Patterned Illumination,” Proc. of SPIE, vol. 9528, 2015, pp. 1-6.
Masselus, Vincent, et al., “Relighting with 4D Incident Light Fields”, SIGGRAPH 2003.
Meynants, G., et al., “Pixel Binning in CMOS Image Sensors,” Frontiers in Electronic Imaging Conference, 2009.
Moreno-Noguer, F. et al., “Active Refocusing of Images and Videos,” ACM Transactions on Graphics, Aug. 2007; pp. 1-9.
Munkberg, J. et al., “Layered Reconstruction for Defocus and Motion Blur” EGSR 2014, pp. 1-12.
Naemura et al., “3-D Computer Graphics based on Integral Photography” Optics Express, Feb. 12, 2001. vol. 8, No. 2, pp. 255-262.
Nakamura, J., “Image Sensors and Signal Processing for Digital Still Cameras” (Optical Science and Engineering), 2005.
National Instruments, “Anatomy of a Camera,” pp. 1-5, Sep. 6, 2006.
Nayar, Shree, et al., “Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 8, pp. 824-831, Aug. 1994.
Ng, R., et al. “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Technical Report, CSTR 2005-2, 2005.
Ng, R., et al., “All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Transactions on Graphics,” ACM Transactions on Graphics; Proceedings of SIGGRAPH 2003.
Ng, R., et al., “Triple Product Wavelet Integrals for All-Frequency Relighting”, ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004).
Ng, Yi-Ren, “Digital Light Field Photography,” Doctoral Thesis, Standford University, Jun. 2006; 203 pages.
Ng., R., “Fourier Slice Photography,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2005, vol. 24, No. 3, 2005, pp. 735-744.
Nguyen, Hubert. “Practical Post-Process Depth of Field.” GPU Gems 3. Upper Saddle River, NJ: Addison-Wesley, 2008.
Wikipedia—Data overlay techniques for real-time visual feed. For example, heads-up displays: http://en.wikipedia.org/wiki/Head-up_display. Retrieved Jan. 2013.
Wikipedia—Exchangeable image file format: http://en.wikipedia.org/wiki/Exchangeable_image_file_format. Retrieved Jan. 2013.
Wikipedia—Expeed: http://en.wikipedia.org/wiki/EXPEED. Retrieved Jan. 15, 2014.
Wikipedia—Extensible Metadata Platform: http://en.wikipedia.org/wiki/Extensible_Metadata_Plafform. Retrieved Jan. 2013.
Wikipedia—Key framing for video animation: http://en.wikipedia.org/wiki/Key_frame. Retrieved Jan. 2013.
Wikipedia—Lazy loading of image data: http://en.wikipedia.org/wiki/Lazy_loading. Retrieved Jan. 2013.
Wikipedia—Methods of Variable Bitrate Encoding: http://en.wikipedia.org/wiki/Variable_bitrate#Methods_of_VBR_encoding. Retrieved Jan. 2013.
Wikipedia—Portable Network Graphics format: http://en.wikipedia.org/wiki/Portable_Network_Graphics. Retrieved Jan. 2013.
Wikipedia—Unsharp Mask Technique: https://en.wikipedia.org/wiki/Unsharp_masking. Retrieved May 3, 2016.
Wilburn et al., “High Performance Imaging using Large Camera Arrays”, ACM Transactions on Graphics (TOG), vol. 24, Issue 3 (Jul. 2005), Proceedings of ACM SIGGRAPH 2005, pp. 765-776.
Wilburn, Bennett, et al., “High Speed Video Using a Dense Camera Array”, 2004.
Wilburn, Bennett, et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002.
Williams, L. “Pyramidal Parametrics,” Computer Graphic (1983).
Winnemoller, H., et al., “Light Waving: Estimating Light Positions From Photographs Alone”, Eurographics 2005.
Wippermann, F. “Chirped Refractive Microlens Array,” Dissertation 2007.
Wuu, S., et al., “A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors”, 2009 International Image Sensor Workshop, Bergen, Norway.
Wuu, S., et al., “BSI Technology with Bulk Si Wafer”, 2009 International Image Sensor Workshop, Bergen, Norway.
Xiao, Z. et al., “Aliasing Detection and Reduction in Plenoptic Imaging,” IEEE Conference on Computer Vision and Pattern Recognition; 2014.
Xu, Xin et al., “Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure,” Sensors 2011; 14 pages.
Zheng, C. et al., “Parallax Photography: Creating 3D Cinematic Effects from Stills”, Proceedings of Graphic Interface, 2009.
Zitnick, L. et al., “High-Quality Video View Interpolation Using a Layered Representation,” Aug. 2004; ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2004; vol. 23, Issue 3; pp. 600-608.
Zoberbier, M., et al., “Wafer Cameras—Novel Fabrication and Packaging Technologies”, 2009 International Image Senor Workshop, Bergen, Norway, 5 pages.
Related Publications (1)
Number Date Country
20190079158 A1 Mar 2019 US