The present disclosure relates generally to 5G fixed wireless access (FWA) devices, and in particular, to application-based self-installation of 5G FWA devices.
Wireless communications have become ubiquitous in today's society, and as wireless systems capabilities increase so does the adoption rate of wireless technologies. Today, wireless technologies are fast overtaking and replacing conventional wired technologies and infrastructure.
5G is a standard promulgated by the International Telecommunication Union (ITU) and the 3rd Generation Partnership Project (3GPP), with the ITU setting the minimum requirements for 5G compliance, and the 3GPP creating the corresponding specifications. 5G is a successor to the 4G/Long Term Evolution (LTE) standard and refers to the fifth generation of wireless broadband technology for digital cellular networks. 5G is intended to replace or augment 4G/LTE. Touted advantages of 5G include, e.g., exponentially faster data download and upload speeds, along with much-reduced latency (also referred to as “air latency,” i.e., the time it takes for a device to communicate with the network).
The frequency spectrum of 5G includes three bands. The first band can be referred to as the low-band spectrum, i.e., the sub-1 GHz spectrum. This low-band spectrum is the primary band used by U.S. wireless carriers with data speeds reaching about 100 Mbps. The second band can be referred to as the mid-band spectrum, i.e., the sub-6 GHz spectrum, which provides lower latency (e.g., 4-5 ms) and greater data speeds (e.g., up to 1 Gbps) relative to the low-band spectrum. However, mid-band signals are not able to penetrate structures, such as buildings, as effectively as low-band signals. The third band can be referred to as the high-band spectrum, or millimeter wave (mmWave), and operates between 25 GHz and 100 GHz. The term millimeter is associated with this high-band spectrum because wavelengths in this portion of the spectrum range from, e.g., 1-10 mm. Devices operating on this third band can deliver the highest data speed (e.g., up to 10 Gbps) and the lowest latency (e.g., 1 ms). However, its coverage area (the distance it can transfer data) is less than that of the low-band and mid-band spectrums, due in part to poor building penetration. Use of mmWave technology may nevertheless be desirable because the low-band and mid-band portions of the spectrum are already heavily congested with, e.g., TV and radio signals, as well as 4G/LTE traffic, and so long as the limited coverage area is acceptable, the benefits of mmWave technology can still be realized.
In accordance with one embodiment, a managing device comprises: a processor; and a memory unit operatively coupled to the processor. The memory unit includes computer code that when executed, causes the processor to: pair the managing device with a 5G Fixed Wireless Access (FWA) device installed for use on a 5G network; retrieve at least one of performance, identifying, and data usage-related information related to the 5G FWA device; and receive and execute at least one instruction from a user of the managing device to at least one of present at least a subset of the at least one of the retrieved performance, identifying, and data usage-related information, and change a factor associated with the at least one of the retrieved performance, identifying, and data usage-related information.
In some embodiments, the computer code that when executed causes the processor to pair the managing device with the 5G FWA device comprises pairing the managing device over a near field communications channel. In some embodiments, the managing device comprises a mobile device, and wherein the computer code comprises a device management application executable on the mobile device.
In some embodiments, the computer code that when executed causes the processor to pair the managing device with the 5G FWA device comprises pairing the managing device over a cloud network. In some embodiments, the managing device comprises a computing device operatively connected to a cloud service of the cloud network. In some embodiments, the managing device calls one or more cloud application programming interfaces (APIs), the one or more APIs exposing a REST interface.
In some embodiments, the computer code that when executed further causes the processor to retrieve updated performance information related to the 5G FWA device, and determining if the updated performance information warrants re-installation of the 5G FWA device. In some embodiments, the updated performance information warrants re-installation upon the updated performance information falling below a performance threshold associated with the 5G FWA device.
In some embodiments, the computer code that when executed further causes the processor to generate a notification presentable to a user of the managing device prompting re-installation of the 5G FWA device in accordance with the updated performance information. In some embodiments, the updated performance information comprises 5G network performance information, and determining if the 5G network performance information warrants re-installation of the 5G FWA device.
In some embodiments, the computer code that when executed further causes the processor to generate a notification presentable to a user of the managing device prompting re-installation of the 5G FWA device in accordance with the 5G network-related information. In some embodiments, the re-installation of the 5G FWA device comprises changing at least one of a current location and position of the 5G FWA device to at least one of another location and position of the 5G FWA device.
In accordance with one embodiments, a managing device comprises: a processor; and a memory unit operatively coupled to the processor. The memory unit includes computer code that when executed, causes the processor to: pair the managing device with a 5G Fixed Wireless Access (FWA) device; provide guidance regarding optimal placement of the 5G FWA device relative to a 5G cell; determine operating characteristics of the 5G FWA device relative to the 5G cell in one or more locations where the 5G FWA device is placed; and present the operating characteristics of the 5G FWA device relative to the 5G cell via the mobile device in accordance with a heat map indicative of relative strengths of the determined operating characteristics of the 5G FWA device.
In some embodiments, the computer code that when executed causes the processor to pair the mobile device with the 5G FWA device further comprises computer code that when executed causes the processor to perform the pairing over a short-range wireless communications connection.
In some embodiments, the computer code that when executed causes the processor to pair the mobile device with the 5G FWA device further comprises computer code that when executed causes the processor to perform the pairing over a wired communications connection. In some embodiments, the computer code that when executed causes the processor to determine the operating characteristics of the 5G FWA device further comprises computer code that when executed causes the processor to obtain from the 5G FWA device, received signal strength measurements obtained by the 5G FWA device.
In some embodiments, the computer code that when executed causes the processor to present the operating characteristics of the 5G FWA device further comprises computer code that when executed causes the processor to translate the received signal strength measurements into at least one of visual and auditory indications representative of the received signal strength measurements understandable to a user of the mobile device. In some embodiments, the received signal strength measurements comprise at least one of Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Interference plus Noise Ratio (SINR) parameters of a reference signal received from the 5G cell.
The present disclosure, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The figures are provided for purposes of illustration only and merely depict typical or example embodiments.
The figures are not exhaustive and do not limit the present disclosure to the precise form disclosed.
As alluded to above, 5G technology promises faster data speeds and lower latency. For example, with the promise of data speeds on the order of Gigabits per second (Gbps), despite being a “mobile” standard, 5G technology can offer the possibility of providing, e.g., home broadband services over cellular networks. Fixed Wireless Access (FWA) can refer to a method or process of accessing a communications network or internet via fixed wireless networks. Accordingly, FWA can be used to realize 5G home broadband service over cellular networks.
FWA may be thought of as a type of wireless broadband data communication that is effectuated between two fixed locations that are connected by FWA devices and/or equipment. FWA may be useful in areas where implementing wired broadband access (laying cable/wire) is prohibitively expensive, impractical, etc. especially in densely populated areas. In areas were wired broadband access already exists and/or would be cheap to implement, FWA may still be used to support software-defined networking in a wide area network (SD-WAN) with traffic bursting, as a backup to existing networks, etc.
However, as noted above, the frequency of mmWave signals are so high that they cannot penetrate most building materials, e.g., cement or brick, or is attenuated/reflected so much that its utility is lost (e.g., on the order of above 20-50 dB). Even propagation through air results in signal loss, thereby limiting the efficacy of mmWave to smaller areas as alluded to above. Moreover, mmWave signals have poor multipath propagation. Factors that may compound these issues include, for example, a common desire by end users to place equipment wherever they desire (for convenience, aesthetics, etc.). Additionally, if installation is to be performed by a professional installer/technician, proper installation at the outset (without repeated attempts) results in better perceived customer service, and may cut down on the expense and time associated with subsequent attempts at installation. Thus, proper or optimal location/orientation of a 5G FWA device can be an important factor to the success of using a 5G FWA device.
In accordance with various embodiments, one or more applications guiding/managing installation and/or use of one or more 5G FWA devices may be provided. For example, a self-installation application may be provided to users to assist with installation of a 5G FWA device. The self-installation application may provide a convenient user interface by which users are guided through various steps to determine an optimum location/orientation for installing a 5G FWA device. The self-installation application may be executed on a mobile device. The user may traverse one or more areas with the 5G FWA device and the mobile device running the self-installation application. The 5G FWA device may determine signal strength or take/derive other measurements indicative of connection quality to one or more 5G cells with which the 5G FWA device may connect to effectuate wireless broadband service. This information can be relayed to the user by way of the self-installation application so that the user can be made aware of locations/orientations that may be appropriate for installation of the 5G FWA device. Moreover, the self-installation application may run diagnostic tests such as determining signal strength, signal quality, performance rating, actual throughput (upload/download speed) and/or latency associated with such locations/orientations to again, assist a user in determining optimal placement of the 5G FWA device.
It should be understood that some embodiments described herein are presented in the context of an end-user self-installation application. However, the guided installation can also be applied in other contexts and/or for other users. For example, professional installers may leverage the disclosed functionality (or a subset thereof) to facilitate installation of a 5G FWA device on behalf of end-users, such as consumer end-users. That is, a consumer end-user may be presented with more detailed instructions/guiding steps and/or more simplistic instructions, for example. On the other hand, a professional installer may still benefit from location surveying/optimized location/orientation estimations and the like that various embodiments can provide, albeit with less instruction, e.g., less guided steps may be presented, or certain steps can be assumed to be performed by the professional installer, and guided step screens can be skipped or bypassed. In some embodiments, the information/guidance presented by the self-installation application can differ depending on the user.
In some embodiments, the self-installation application may initially request self-identification from a user as either a consumer user or a professional user. In some embodiments, the user may enter a provided code or identifier to inform the self-installation application. In some embodiments, the flow or sequence of guidance/presentation of steps or information can adapt depending on user responses or input. For example, in some embodiments, options may be presented to a user via the self-installation application user interface to bypass or skip certain screens or information. If such options are leveraged, the self-installation application may assume a professional or more experienced user is performing self-installation of a 5G FWA device, and thus, may adapt information/guidance that is presented thereafter.
In some embodiments, the user may determine what location(s)/orientation(s) to try. In some embodiments, the self-installation application may provide at least some direction or guidance, e.g., cues, to the user. Guidance can be provided via graphics, textual cues, audio/visual communications/notifications on one or more devices, e.g., a mobile device, a cloud-based interactive application/mechanism, and the like.
It should be noted that the terms “optimize,” “optimal” and the like as used herein can be used to mean making or achieving performance as effective or perfect as possible. However, as one of ordinary skill in the art reading this document will recognize, perfection cannot always be achieved. Accordingly, these terms can also encompass making or achieving performance as good or effective as possible or practical under the given circumstances, or making or achieving performance better than that which can be achieved with other settings or parameters. In the context of the present disclosure, optimal may be used to describe a location, orientation, or positioning of a 5G FWA device that provides a desired level of service or connection quality. In some embodiments, the optimal location, orientation, or positioning of a 5G FWA device may be realized relative to a threshold for such a level of service or connection quality. In other embodiments the optimal location, orientation, or positioning of a 5G FWA device may be the best out of some set of locations, orientations, or positions.
In still other embodiments, the self-installation application alluded to above may be enhanced with or may be part of a broader device management suite of tools/applications that can be implemented via a Web Browser-based user interface (UI), a mobile device application, and/or a cloud-based software service. In accordance with some embodiments, subsequent to installing a 5G FWA device, a device management application or function/tool provided with or in addition to the self-installation application may be used to monitor operating characteristics of the installed 5G FWA device, and/or manage one or more aspects of the operating characteristics of the installed 5G FWA device. In some embodiments, the device management functionality of such applications/tools may be utilized prior to or during the self-installation process.
The device management and self-installation applications may be different aspects of a single mobile device application. In some embodiments, they may be separate mobile device applications, where relevant information regarding the installed 5G FWA device can be passed to the device management application. In some embodiments, a user may monitor and/or manage an installed 5G FWA device via a direct connection between a computer-hosted web UI and the installed 5G FWA device. In some embodiments, a user may monitor and/or manage the installed 5G FWA device via one or more cloud-based applications/interfaces. In some embodiments, one or more of the aforementioned cloud-based service(s), direct web UI(s), and mobile device application(s) may share relevant information and/or inter-operate such that a user may move between one or more of the service(s), UI(s), application(s) to provide continuous/consistent functionality across all platforms. It should be understood that in some embodiments, one or more of the above-described applications or tools may be used to monitor and/or manage multiple installed 5G FWA devices (as well as end user or client devices/user equipment) operatively connected to the one or more installed 5G FWA devices.
Before describing the details of the various embodiments contemplated herein, it would be beneficial to describe a 5G network to which the aforementioned 5G FWA device may connect.
A mobile network's RAN may include various infrastructure, e.g., base stations/cell towers, masts, in-home/in-building infrastructure, and the like. The RAN allows users of mobile devices (also referred to as User Equipment (UE), e.g., smartphones, tablet computers, laptops, vehicle-implemented communication devices (e.g., vehicles having vehicle-to-vehicle (V2V) capabilities), to connect to the core network.
Macro cells can refer to (tall, high-powered) “macro” base stations/cell towers that are able to maintain network signal strength across long/large distances. 5G macro cells may use Multiple Input, Multiple Output (MIMO) antennas that may have various components that allow data to be sent and/or received simultaneously. In the example 5G network 100 of
5G small cells can refer to wireless transmitters/receivers implemented as micro base stations designed to provide coverage to areas smaller than those afforded coverage by 5G macro cells, e.g., on the order of about 100 m to 200 m for outdoor 5G small cells. Indoor 5G small cell deployments may provide coverage on the order about 10 m. 5G small cells can be mounted or integrated into/onto streetlights, utility poles, buildings, etc., and like 5G macro cells, may also leverage massive MIMO antennas. In the example 5G network 100 of
The core network may comprise the mobile exchange and data network used to manage the connections made to/from/via the RAN. As illustrated in
In some implementations, wireless access point 203 may be implemented as a Wi-Fi router for communications with devices within or within some proximity of the outside of building 201. Although various embodiments may be described in terms of this example environment, the technology disclosed herein can be implemented in any of a number of different environments.
Referring now to
As described above, when relying on a 5G small cell to achieve 5G broadband coverage, the location and orientation of a 5G FWA device relative to the 5G small cell is an important consideration because mmWave and high-band sub-6 GHz signals are significantly attenuated by wall and window materials, may experience air loss, etc. In accordance with various embodiments, the self-installation application relay information from 5G FWA device 304 to user 300 so that user 300 can determine, with assistance from the self-installation application, optimal placement of 5G FWA device 304. As illustrated in
As an example,
For example, 5G FWA device 304 may attempt to initiate a connection to 5G small cell 340. It should be noted that 5G FWA device 304 may first undergo an authentication and/or authorization process with 5G small cell 340. Thereafter, 5G FWA device 304 may begin receiving signals from 5G small cell 340, and the 5G FWA device 304 can begin measuring the strength of the signals being received. In some embodiments, signal strength can be measured in dBm. A wireless receiver of the 5G FWA device 304 may receive such signals via an antenna, and determine the associated signal strength.
For example, 5G FWA device 304 may measure the Reference Signal Received Power (RSRP) Reference Signal Received Quality (RSRQ), Signal to Interference Plus Noise Ratio (SINR) parameters of a reference signal from 5G small cell 340. The signal strength can be translated into and presented as a graphical indication that the user may understand, e.g., graphical bars or other indications reflecting an approximate representation of signal strength. Such graphical indications can be presented by way of the self-installation application running on mobile device 302.
Additionally, the self-installation application may further perform diagnostics, e.g., determine upload speeds, download speeds, latency, and/or qualitative performance rating. One skilled in the art would understand how to implement the requisite functionality on 5G FWA device 304. This information could also be graphically or visually presented to the user via the self-installation application. In this way, the user can be made aware of any information relevant to the strength of the signal(s) received from 5G small cell 340, and the user can understand the relative strength/weakness of locating/orienting 5G FWA device 304 in that particular area. For example, in a Non-Standalone (NSA) 4G/5G RAN, a 5G FWA device, such as 5G FW 304, may ping a 5G small cell (also referred to as next generation NodeB (gNB)), and initially lock onto the 4G Long-Term Evolution (LTE) network for signaling information. It should be noted that 4G and 5G services may co-exist, e.g., 4G base stations/cells may be present in the same/nearby geographical area(s) in which 5G service is provided. If 5G network capacity is available, and there is a request for high throughput data, the data will be sent over the 5G network. The 5G FWA device and/or the self-installation application via the 5G FWA device will assess the 5G signal characteristics, and make a quantitative determination to translate the 5G signal characteristics into an appropriate number of representative signal bars (e.g., one to five bars) to display within the self-installation application. In some embodiments, the self-installation application may also display a performance rating (e.g., a value from one to four) for more precise, signal strength quality and performance representation in one location/orientation relative to another.
As described herein, location and orientation can both be taken into account when considering optimal positioning of a 5G FWA device relative to a 5G small cell/gNB. Accordingly, in some embodiments, the self-installation application may, e.g., by audible prompts or signals, visual prompts or signals, or some other type of prompt/signal or combination thereof, inform the user of the relative performance differences and/or suggestions regarding location and/or orientation of a 5G FWA device. In other embodiments, a user may be directed through other directions/notifications (e.g., separate documentation) to position the 5G FWA device in different locations/orientations at a particular location. In some embodiments, resident navigational functionality (GPS, compass, etc.) of a mobile device may be used by the self-installation application to determine location/orientation. In some embodiments, potential locations/orientations may be presented on a graphical map along with associated predicted/estimated performance ratings at those locations/orientations. For example, a user may be directed to position the mobile device on which the self-installation application is running near the 5G FWA device, and point or orient the mobile device in a particular direction that is indicative/representative of the direction/orientation in which, e.g., a front face of the 5G FWA device is directed/oriented to achieve a “baseline” orientation. In some embodiments, location-based functionality may be implemented and leveraged in the 5G FWA device itself. It should be understood that these are examples and not meant to be limiting.
As further illustrated in
In some embodiments, the above-mentioned RSRP/diagnostics information or data may be compiled and used to generate an RSRP heat map of structure 301. For example, as part of the installation process, the self-installation application may prompt the user to traverse one or more areas of structure 301 (inside, outside, or both) so that RSRP/diagnostics information can be gathered. The self-installation application may store such information until a time that the user wishes to see the RSRP heat map and/or the self-installation application has reached some determined threshold number of locations/orientations/positions for which RSRP/diagnostics information has been gathered. For example, in some embodiments, user 300 may specify, via the self-installation application, the dimensions of structure 301, the number of rooms/areas contained in structure 301 (or other relevant information specifying an area of interest). The self-installation application may determine a number of RSRP/diagnostics readings or measurements to take based on the aforementioned information. In some embodiments, a listing of correlation between structure size/number of areas, location information for each measurement, and number or amount of RSRP/diagnostic measurements may be accessed by the self-installation application. In some embodiments, the type of structure and/or relevant characteristics relating to the structure, surrounding environment, etc. may be considered. For example, in an area with a dense concentration of small cells, e.g., 5G small cells such as 5G small cell 340 (
In some embodiments, multiple RSRP/diagnostics information may be collected at a particular location and the location/orientation associated with the “best” or “strongest” RSRP measurements may be used to generate the RSRP heat map. In some embodiments, all collected information can be presented to the user vis-a-visa the RSRP heat map. In some embodiments, the self-installation application may continuously assess the locations/orientations associated with collected RSRP/diagnostics information, and may automatically weed out less-favorable locations/orientations based on continually/periodically updated RSRP/diagnostics assessments.
In some embodiments, the self-install application (or other implementations for device management) may collect or store the collected RSRP/diagnostics information, and may automatically prompt a re-installation process, or notify a user of a recommendation to perform re-installation of a previously installed 5G FWA device. In some embodiments, the collected RSRP/diagnostics information may be compared to one or more thresholds indicative of values, characteristics, etc., setting forth minimum or maximum operating values, characteristics, and the like. Upon a determination that the collected RSRP/diagnostics information meets or exceeds such a threshold(s), a notification to re-install a 5G FWA device may be generated and transmitted to a user, e.g., through the self-install/device management application, through an associated email account, etc. In some embodiments, the comparison of the collected RSRP/diagnostics information to the aforementioned threshold(s) may be tracked such that one or more trends regarding RSRP/diagnostics information can be identified. If such a trend(s) is projected to meet/exceed a relevant threshold, re-installation or notification prompting/suggesting re-installation can be triggered. It should be understood that during 5G network buildouts, as new 5G small cells are deployed, and 5G network connectivity densifies, the performance of a previously-installed 5G FWA devices at an original/previous location and/or orientation can change. Accordingly, the self-install/device management application may determine that with current network information, the 5G FWA device may get better performance in a different location/position within a particular structure.
This example of 5G FWA device 304 includes a processor 421, memory 422, modem circuits 428, power supply circuits 438, and a 5G wireless communication circuit 413. In some embodiments, 5G FWA device 304 may also include user interfaces in the form of a display device 433 and an input device 435. In some embodiments, 5G FWA device 304 may be adapted to store the above-described self-installation application in memory 422, and a processor 421 may execute the self-installation application. In this way, the need to use mobile device 302 as a mechanism for relaying data, e.g., signal strength data, between 5G FWA device 304 and user 300, may be negated. For example, user 300 may traverse one or more areas of structure 301 with only 5G FWA device 304, where 5G FWA device 304 internally executes the self-installation application, and provides the requisite signal strength information, diagnostic information directly to user 300.
Processor 421 may be implemented as a dedicated or general-purpose processor or combination of processors or computing devices to carry out instructions and process data. For example, processor 421 accesses memory 422 to carry out instructions, including routines 425, using data including data 423. For example, routines 425 may include routines to measure received signal strength of signals received from 5G FWA device 304 and/or run diagnostics, such as determining upload/download speeds and latency, or assigning a performance rating based on multiple signal/channel parameters. That information may be stored as data/as part of data 423. In some embodiments, routines 425 may include routines to automatically and periodically perform such measurements and/run such diagnostics. Routines 425 may include routines for responding to commands/instructions received from the self-installation application regarding when to initiate measuring of received signal strength. In some embodiments, routines 425 may include routines to transfer such received signal strength measurement information to wireless radio 447 to be transmitted to the self-installation application running on mobile device 302. In an embodiment where the self-installation application is executing on 5G FWA device 304, routines 425 may comprise routines for transferring, e.g., received signal strength information and/or processing such received signal strength information into visual and/or auditory data that can be presented to user 300 via user interface 431. In such embodiments, user 300 may input certain information and/or commands via user interface 431, wherein some or more of the input information and/or commands may be sent to memory 422 and used/incorporated into routines 425 for controlling or managing one or more operational aspects of 5G FWA device 304. In some embodiments, routines 425 may include routines effectuating operative connectivity and interactions with self-installation application running on mobile device 302 or running on 5G FWA device 304 itself. For example, the self-installation application may require user 300 to scan a code, e.g., a QR code, or input identification information associated with 5G FWA device 304. In some embodiments, routines 425 may include routines for periodically or aperiodically saving measurement and/or diagnostic information as a log, cache, buffering such information, etc.
In still other embodiments, routines 425 may comprise routines for directing users to traverse an area, e.g., structure 361, randomly or in some other directed fashion, so that RSRP/diagnostics measurements may be taken with which an RSRP heat map can be generated. Accordingly, routines 425 may comprise routines to generate such an RSRP heat map (or multiple RSRP heat maps), and present the RSRP heat map to user 300. In this way, user 300 may be provided with at least an initial “overview” of the structure 301, and can attempt locate/orient 5G FWA device 304 optimally.
In some embodiments, routines 425 may comprise routines to access Geographic Information Systems (GIS) data from one or more GIS data repositories. Such GIS data may be used on its own to generate a gNB heat map and/or may be used to augment the aforementioned RSRP heat map. In some embodiments, routines 425 may comprise routines that estimate an area (e.g., one or more sides) of a location, such as structure 301, that is likely to get the best or better 5G performance by virtue of the surrounding environment (as alluded to above) and the location(s) of nearby 5G small cells. The generation and presentation of the gNB heat map may be similar to that of an RSRP heat map. It should be understood that the self-installation application may access information repositories maintaining information regarding the location of 5G small cells, e.g., from mobile network operators (MNOs) or other entities having such information.
In some embodiments, routines 425 may comprise routines to present RSRP and/or gNB heat maps in an augmented reality fashion. In other embodiments, routines 425 may comprise routines to present RSRP and/or gNB heat maps or information regarding/relevant thereto may include but are not limited using voice assisted mechanisms, e.g., leveraging mobile device-resident functionality. In still other embodiments, routines 425 may include routines to effectuate one or more interfaces using audible tones, beeps, and the like. In some embodiments, the use of such interfaces or input/output mechanisms may avoid the need for a user to view information on a mobile device, instead being guided/being presented information via audio.
Processor 421 may include one or more single core, dual core, quad core or other multi-core processors. Processor 421 may be implemented using any processor or logic device, such as a Complex Instruction Set Computer (CISC) microprocessor, a Reduced Instruction Set Computing (RISC) microprocessor, a Very Long Instruction Word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processing device. Other modem circuits 428 may be provided to perform other modem functions.
Memory 422 includes memory locations for storing instructions or other routines 425 and data 423. Memory 422 may be implemented using any machine-readable or computer-readable media to store data and instructions, including volatile and nonvolatile memory. Memory may be implemented, for example, as Read-Only Memory (ROM), Random-Access Memory (RAM), Dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), Synchronous DRAM (SDRAM), Static RAM (SRAM), Programmable ROM (PROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), flash memory or other solid state memory, polymer memory, ferroelectric memory, Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) memory, holographic or other optical storage, or other memory structures. Although memory 422 is illustrated as a separate component in
Wireless communication circuit 413 includes a wireless transmitter 414, a wireless receiver 415, communication circuitry 416 and antenna 417. Communication circuitry 416 may be implemented as a communications processor using any suitable processor logic device to provide appropriate communications operations such as, for example, baseband processing, modulation and demodulation, and other wireless communication operations. Where certain operations such as modulation and demodulation are performed in the digital domain, analog-to-digital and digital-to-analog conversion circuitry can be included to provide the appropriate interfaces between communication circuitry 416 and wireless transmitter 414 and wireless receiver 415.
In this example, wireless radio 447 that includes a wireless transmitter 448, a wireless receiver 449, antenna 446, and associated circuitry allows for wireless communications between 5G FWA device 304 and mobile device 302 over Wi-Fi. In some embodiments, wireless radio 447 may include or alternatively comprise other wireless communication mechanisms, e.g., the requisite circuitry/componentry that allow for Bluetooth® communications, Near Field Communications (NFC), Zigbee, other short-range communications, or wired communications between 5G FWA device 304 and mobile device 302.
Wireless radio 447 may, for example, receive signal strength information from wireless communications circuit 413 (by way of 5G FWA device 304's connection to 5G small cell 340), which it can transmit via wireless transmitter 448 to mobile device 302, where the self-installation application running on mobile device 302 may modify, translate, and/or otherwise present that information in the form of signal strength data/graphics, performance rating, upload/download speeds, and/or latency information.
In the event 5G FWA device 304 incorporates user interface 431 (whether for allowing user 300 the ability to interact with 5G FWA device 304 for signal strength testing purposes, configuration/troubleshooting purposes, etc.), user interface 431 in this example, may include a display device 433 and an input device 435. Display device may include, for example, one or more LEDs; display screens, touch screens, or other alphanumeric displays, or other display devices to communicate data or other information to a user. Input device 435 may include buttons, a keypad, a touchscreen display, or other input device to accept input from a user. For example, in some embodiments, voice commands from user 300 may be used to control the self-installation application (if being executed on 5G FWA device 304), and/or audio prompts or other information regarding, e.g., information that might otherwise (or in addition) be presented visually, can be provided to user 300. Display device 433 and input device 435 may include attendant circuitry such as drivers, receivers and processing or control circuitry to enable operation of the devices with 5G FWA device 304.
Power supply circuit 438 can be included to provide power conditioning or power conversion for components of 5G FWA device 304. For example, power supply can supply power to different components of 5G FWA device 304 at specific voltage and current levels appropriate for those components. Power supply circuit 438 in this example, may receive power from a wired or wireless power source operatively connected to 5G FWA device 304. In some embodiments power supply 438 may be a battery power supply. In some embodiments, power supply 438 may be Power-over-Ethernet (PoE), where power can be carried over Ethernet wires (IEEE 802.3bt), where in some embodiments a PoE power injector can be built into a connected router/gateway, or can be a separate component with an AC adaptor that can be connected to the building mains. As alluded to above, user 300 may traverse one or more areas of structure 301 to determine received signal strength at 5G FWA device 304. Accordingly, 5G FWA device 304 must be powered on and operative. Therefore, user 300 may connect an external power supply, such as an external battery pack (not shown in
At operation 475, a check for ping ponging between 5G EARF CNs is performed, e.g., when a device/user equipment switches between networks attaches to different 5G EARF CNs and/or due to device/user equipment handovers between multiple 5G EARF CNs. If the ping pong effect is occurring, at operation 477, a lowest rank is assigned to the location. At operation 476, the RSRP, RSRQ, and SINR measurements are obtained from the modem of 5G FWA device 304 at a given sampling rate and extreme peak measurements are discarded (to rid, e.g., anomalous measurements, from the dataset comprising signal strength measurements). For example, the SINR/RSRP measurement or reading can be discarded if SINR_current−SINR_previous>±V_sinrFR1 and/or RSRP_current−RSRP_previous>±V_rsrpFR1, where V refers to a constants value.
At operation 478A, a check is performed to determine if the moving average window criteria is met. In particular, a moving average window may be discarded, and a new one started if standard deviation (SD)_mavgwin_SINR>SD_sinrFR1 AND SD_mavgwin_RSRP>SD_rsrpFR1. A moving average window may also be discarded if the 5G EARFCN switch frequency exceeds a threshold i.e., f_5 gearfcn>=F_SGEARFCN. It should be noted that if more than two moving average windows are discarded (checked at operation 478B), the lowest RF ranking can be assigned to the corresponding location. Likewise, if ping ponging occurs between 5G EARF CNs within a moving average window, the lowest RF rank can be assigned to this location. It should be noted that if there are multiple locations/orientations “tied” as having the same RF rank, the location with the higher average RSRP is ranked higher. It should also be understood that different ways of ranking, breaking ranking ties, etc. may be implemented. For example, different metrics/criteria for breaking ties between measured RF characteristics can be applied to different rankings ties. For example, lowest RF rank ties may be broken using a first tie-break metric, whereas a highest RF rank tie may be broken using a second tie-break metric. One of ordinary skill in the art would understand how to perform such tie-breaks, and when to implement such tie-breaks.
At operation 479, if the moving average window criteria is met at operation 478, a location “rank” (which in some embodiments can equate to MIN[rank(RSRP, rank(SINR)]) can be calculated. As illustrated in
It should further be understood that beam switching can be used as a criterion for window discarding. In FR2 (mmWave), the SSB_ID is used to identify a serving beam. Whenever there is a beam switch of the serving beam, a drop in the Modulation Coding Scheme (MCS) index is typically seen, and hence a drop in throughput. Accordingly, it would be preferable to stay on a given beam for as long as possible. Thus, when the frequency of beam switching exceeds the threshold F_BEAM, within the Moving Average Window, that window is discarded. In some embodiments, if the SSB_ID is not obtainable from the modem, a 5 dBM variation in 5G RSRP can be deemed an indication of the occurrence of a beam switch.
Further illustrated in
As further illustrated in
The self-installation application may provide an interactive element to user 300 allowing user 300 to save the location and/or any related measurement/diagnostic information regarding the characteristic operation of 5G FWA device 304 at that location. If user 300 chooses to save this location/information at this location,
In some embodiments, the self-installation application may be pre-loaded with information regarding 5G cells in the vicinity of the area(s) in which the user wishes to install the 5G FWA device. Therefore, the self-installation application may recommend certain locations/orientations that have a greater potential of providing the requisite connection quality. In some embodiments, the self-installation application may leverage the location-based services or functionality resident on the user's mobile device to aid in determining an optimal or preferred location/orientation of the 5G FWA device. For example, prior to or as part of initializing the self-installation application, user 300 may input or mobile device 302 may automatically input information regarding the user 300's current location and/or information regarding known 5G small cells. Accordingly, the self-installation application may provide some enhanced guidance as to the location and/or orientation that may be optimal for 5G FWA device 304. In some embodiments, the self-installation application may have previously stored information regarding previously-run measurements/diagnostic information, and the self-installation application may leverage that previous/historical information to again, provide enhanced guidance to user 300. For example, the self-installation application may analyze previously-run installation instances to determine if any locations/orientations would likely result in optimal performance of 5G FWA device 304. Alternatively, the self-installation application may filter out known locations/orientations that have already been tested and determined to result in poor or non-optimal operation of any 5G FWA device, including 5G FWA device 304. In some embodiments, as noted above, the identify of 5G FWA device may be obtained. Such information may be used to determine certain operating characteristics of 5G FWA device 304 that may impact determining a location/orientation for optimal operation. For example, 5G FWA device 304 may have a different antenna configuration from a previously-installed 5G FWA device 304. With this knowledge, the self-installation application may be able to provide guidance regarding location/orientation specifically tailored to 5G FWA device 304. In still other embodiments, the self-installation application may perform certain triangulation or similar techniques that analyze some or all the measurements/diagnostic information obtained for previously-visited locations/orientations so that the self-installation application may be able to better predict where user 300 should go/how user 300 should orient 5G FWA device 304 relative to a previous one(s) of locations/orientations.
As illustrated in
The above-described screenshots illustrated in
In accordance with another embodiment, a “pro-installation” version of the self-installation application may be provided, where the same/similar operations as those illustrated in
As alluded to and described above, orientation of 5G FWA device 304 in addition to location/placement can be considered to obtain optimal service. As illustrated in
Hardware processor 602 may be one or more Central Processing Units (CPUs), semiconductor-based microprocessors, and/or other hardware devices suitable for retrieval and execution of instructions stored in machine-readable storage medium, 604. Hardware processor 602 may fetch, decode, and execute instructions, such as instructions 606-612, to control processes or operations for guiding a user in self-installation of a 5G FWA device in accordance with one embodiment. As an alternative or in addition to retrieving and executing instructions, hardware processor 602 may include one or more electronic circuits that include electronic components for performing the functionality of one or more instructions, such as a Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), or other electronic circuits.
A machine-readable storage medium, such as machine-readable storage medium 604, may be any electronic, magnetic, optical, or other physical storage device that contains or stores executable instructions. Thus, machine-readable storage medium 604 may be, for example, Random Access Memory (RAM), Non-Volatile RAM (NVRAM), an Electrically Erasable Programmable Read-Only Memory (EEPROM), a storage device, an optical disc, and the like. In some embodiments, machine-readable storage medium 604 may be a non-transitory storage medium, where the term “non-transitory” does not encompass transitory propagating signals. As described in detail below, machine-readable storage medium 604 may be encoded with executable instructions, for example, instructions 606-612, which may be representative of an embodiment of the aforementioned self-installation application.
Hardware processor 602 may execute instruction 606 to pair a mobile device with a 5G FWA device. As alluded to above, hardware processor 602 may be an embodiment of a processor of mobile device 302a, and upon executing a self-installation application that a user may utilize to determine an optimal location(s)/orientation(s) of a 5G FWA device the user wishes to install, the self-installation application may pair the mobile device and the 5G FWA device to allow the exchange of information or data therebetween.
Hardware processor 602 may execute instruction 608 to provide guidance regarding optimal placement of the 5G FWA device relative to a 5G cell. As noted above, the placement (e.g., location and/or orientation of a 5G FWA device) relative to a 5G cell, such as a small cell can be critically important in receiving 5G broadband service. Again, the mmWave signals propagated through a 5G network by 5G small cells are of such high frequency that they are often or likely unable to penetrate structures, obstacles, and the like, thereby making their operation sensitive to their placement. The guidance that the self-installation application may provide can vary from providing a user with a mechanism for, e.g., randomly traversing an area and performing tests to determine how well the 5G FWA device would operate in a certain location and/or orientation within that area. In other embodiments, the guidance that the self-installation application can include using information learned from previous installations (whether self-installed or installed in a conventional manner). For example, information regarding the location/orientation of a previously-installed 5G FWA device(s) or information regarding attempts to previously install a 5G FWA device(s) may be used to predict optimal locations/orientations or used to filter out non-optimal locations/orientations, etc.
In still other embodiments, providing guidance regarding the optimal placement of the 5G FWA device may, as alluded to above, comprise generating and presenting one or more heat maps to a user, such as an RSRP and/or gNB heat map(s), or some combination thereof. That is, in accordance with some embodiments, locating a 5G FWA device may comprise a more iterative process, where a user utilizes the self-installation application to assess the viability of a location by moving to that location, performing measurements/diagnostics, and subsequently looking at a listing of each location/orientation (
Hardware processor 602 may execute instruction 610 to determine operating characteristics of the 5G FWA device relative to the 5G cell in one or more locations where the 5G FWA device is placed (temporarily during the testing/determining of optimal location/orientation). As noted above, an optimal or preferable location/orientation of the 5G FWA device may be premised on the operating characteristics, such as received signal strength, performance rating, data upload speed, data download speed, and/or latency experienced by the 5G FWA device at a particular location depending on its connectivity to the 5G cell. It should be understood that in some embodiments, the 5G FWA device may be able to potentially receive service from more than one 5G cell. Accordingly, the aforementioned testing, taking of measurements, running of diagnostic tests, etc. may be performed relative to each or some subset of the multiple 5G cells that could potentially service the 5G FWA device.
It should be understood that when a heat map is generated, instruction 610 to determine operating characteristics of the 5G FWA device may have already been accomplished or performed in multiple locations/orientations.
Hardware processor 602 may execute instruction 612 to present the operating characteristics of the 5G FWA device relative to the 5G CELL, e.g., to the user of the mobile device. In this way, a user of the self-installation application may be made aware of the operating characteristics of the 5G FWA device that may determine the optimal placement of the 5G FWA device. In some embodiments the user may be an end-consumer, or the user may be a professional installer. Although various embodiments have been described in the context of 5G wireless broadband services and/or devices, the self-installation application disclosed herein may be adapted for use in other contexts where location/orientation of a device requires or would benefit from determining optimal or preferred placement. As alluded to above, the presentation of the operating characteristics, when utilizing the aforementioned heat map functionality may comprise presenting a heat map (RSRP and/or gNB) to the user.
Accordingly, in some embodiments, as illustrated in
As discussed above, the self-installation application may be implemented on mobile device 302. In some embodiments, device management may also be performed through mobile device 302. As illustrated in
The 5G FWA device profile or information can be presented/organized in a variety of ways, one of which is illustrated in
It should be noted that some of the data or information listed above may be obtained during the installation process, but most tend to be dynamic and changing (sometimes constantly). These parameters can be extracted from the 5G FWA device and periodically pushed to the cloud service where they can be monitored and processed with cloud computing resources that can include the use of one or more AI, machine learning, or similar algorithms/mechanisms for determining preferred installation locations/positions.
Data usage information may comprise additional information regarding the installed 5G FWA device, and can include the amount of data uploaded and/or downloaded via the 5G FWA device, one or more statistics, trends or other data usage-specific information, such as times, days, weeks, etc. of heaviest/lightest usage, data usage maxima/minima, network/device performance trends, and so on. If available, data usage information may include types of data traffic traversed through the 5G FWA device. A user may set forth certain parameters regarding data usage and/or specify how data usage information can be presented.
It should be noted that in some embodiments, data usage information can be analyzed and further optimization information can be provided to a user. For example, it may be observed that data throughput through an installed 5G FWA device may fall below some threshold, and may prompt an option notifying a user to re-install/find another location/orientation of the installed 5G FWA device. That is, the location/orientation of the installed 5G FWA device may have shifted or otherwise changed, the operating environment may have changed, the performance of the 5G small cell to which the installed 5G FWA device connects may have changed, etc.
For example, as illustrated in
In some embodiments, as illustrated in
Returning to
In some embodiments, one or more cloud APIs may be used by MNO 720, mobile device 302, and computing device 303 to access the aforementioned cloud-based device management application(s)/functionality(ies)/tool(s). For example, cloud service 710 may expose a REST interface via such cloud APIs that can be called by MNO 720, computing device 303, and mobile device 302. It should be understood that use of the RESTful architecture is only an example, and other alternatives, e.g., GraphOL, Falcor, gRPC, JSON-Pure, oData APIs, etc. may be utilized. In some embodiments, such cloud APIs can be infrastructure APIs that can control the distribution of cloud services, e.g., device provisioning services (described above). In some embodiments such cloud APIs may be software as a service APIs that can refer to application level APIs that facilitate connectivity between 5G FWA device 304 and other network entities/devices, e.g., mobile device 302, computing device 303, and MNO 720. In some embodiments, platform as a service APIs may be used to provide integration with messaging systems (for transmitting/receiving relevant 5G FWA device-related notifications, for example), databases (for obtaining/storing 5G FWA device-relevant information), etc.
Hardware processor 602 may fetch, decode, and execute instructions, such as instructions 614, to control processes or operations for managing a 5G FWA device in accordance with one embodiment. As an alternative or in addition to retrieving and executing instructions, hardware processor 602 may include one or more electronic circuits that include electronic components for performing the functionality of one or more instructions, such as a Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), or other electronic circuits.
Hardware processor 602 may execute instruction 614 to, after installation of a 5G FWA device, pair managing device with the installed 5G FWA device. In some embodiments, and as described above, the managing device can be directly paired to or with the installed 5G FWA device, e.g., in the case of a mobile device executing a device management application thereon. Alternatively, or in addition, the managing device can be a computing device, server, etc. that operatively connects to and pairs with the installed 5G FWA device through a remote connection, such as through a cloud service. In this way, not only may a user, e.g., end-user/consumer, professional installer, network administrator, etc. install one or more 5G FWA devices in an optimized fashion, but may further subsequently manage one or more 5G FWA devices.
Hardware processor 602 may execute instruction 616 to retrieve at least one of performance, identifying, and data usage-related information related to the 5G FWA device. In some embodiments, the at least one of performance, identifying, and data usage-related information can be received/obtained from the 5G FWA device. It should be understood that some information can be received from the network and/or is network-specific, e.g., transport block size, number of resource blocks assigned by the network to the 5G FWA device, etc. However, irrespective of the source of the information, in some embodiments, the firmware of the 5G FWA device transmits such information (whether received from the network or the 5G FWA device) on to the managing device. As described above, such 5G FWA device-related information can be a myriad of data/types of data ranging from the modulation and coding scheme (MCS) value at the 5G FWA device to performance data regarding one or more connected devices, such as Wi-Fi-capable devices connected to and using the 5G FWA device to effectuate communications with one or more other networks. Information identifying the 5G FWA device can be retrieved along with firmware version information, serial number, health information, and so on. Moreover, data regarding the network on which the 5G FWA device is operating can also be retrieved for review, analysis, notifications, etc. When communicating directly with the 5G FWA device, the managing device can communicate over a wireless connection mechanism, e.g., BLE or Wi-Fi, or over a wired connection, e.g., via an Ethernet cable.
Hardware processor 602 may execute instruction 618 to receive and execute at least one instruction from a user of the managing device to at least one of present at least a subset of the at least one of the retrieved performance, identifying, and data usage-related information, and change a factor associated with the at least one of the retrieved performance, identifying, and data usage-related information. As noted above, management of a device, such as the installed 5G FWA device may comprise monitoring information relevant to the operation or use of the 5G FWA device, changing one or more operating aspects of the 5G FWA device (or related parameter(s)), specifying preferences regarding such operating aspects, and so on. For example, a user, upon reviewing presented performance data regarding the installed 5G FWA device, determines that data throughput is no longer optimal, or the needs of the user have changed, and so on, that user may change or update one or more factors associated with/having an impact on the data throughput. For example, a user may determine that an unauthorized device(s) has connected to the 5G FWA device, and the user may effectuate removal of/prevent service being provided to the unauthorized device.
In this way, from a carrier perspective, installation can be effectuated efficiently and easily, and in a way that operation of its 5G FWA devices can be optimized, enabling the best possible performance and service. Operating costs/expenditures can be reduced, vis-à-vis end-user installation and device management. User experience can be improved resulting in better customer satisfaction. Moreover, a carrier or MNO may provide a seamless interface to installed 5G FWA devices, e.g., through a cloud service for remote monitoring and management. From a consumer perspective, similarly, self-installation can be achieved, negating the need to schedule (often-times) large windows of time for 5G FWA device installation. Devices can be ordered and received from a MNO or vendor of 5G FWA devices conveniently. In some cases, a consumer need not be disturbed by installation professionals, especially in times where in-person/home/business visits may be difficult to schedule and perform. In cases where a 5G FWA device may need to be re-installed or upgraded (software, firmware, etc.), an end user, if he/she desires, can attend to such tasks. Moreover, automated notifications regarding any one or more aspects/characteristics/features of a 5G FWA device can be sent to a user for monitoring purposes, adjustment purposes, and so on. From an installers perspective, the use of various embodiments may reduce installation time, reduce manual paperwork, provide a detailed record of the installation, and can help ensure optimal operation of installed 5G FWA devices, any one or more of which may lead to better customer satisfaction, increased revenue, and so on.
The computer system 1000 also includes a main memory 1006, such as a Random Access Memory (RAM), cache and/or other dynamic storage devices, coupled to bus 1002 for storing information and instructions to be executed by processor 1004. Main memory 1006 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1004. Such instructions, when stored in storage media accessible to processor 1004, render computer system 1000 into a special-purpose machine that is customized to perform the operations specified in the instructions.
The computer system 1000 further includes a Read Only Memory (ROM) 1008 or other static storage device coupled to bus 1002 for storing static information and instructions for processor 1004. A storage device 1010, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 1002 for storing information and instructions. Also coupled to bus 1002 are a display 1012 for displaying various information, data, media, etc., input device(s) 1014 for allowing a user of computer system 1000 to control, manipulate, and/or interact with computer system 1000. One manner of interaction may be through a cursor control 1016, such as a computer mouse or similar control/navigation mechanism.
In general, the word “engine,” “component,” “system,” “database,” and the like, as used herein, can refer to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, C or C++. A software component may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software components may be callable from other components or from themselves, and/or may be invoked in response to detected events or interrupts. Software components configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware components may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors.
The computer system 1000 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 1000 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 1000 in response to processor(s) 1004 executing one or more sequences of one or more instructions contained in main memory 1006. Such instructions may be read into main memory 1006 from another storage medium, such as storage device 1010. Execution of the sequences of instructions contained in main memory 1006 causes processor(s) 1004 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 1010. Volatile media includes dynamic memory, such as main memory 1006. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 1002. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, the description of resources, operations, or structures in the singular shall not be read to exclude the plural. Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing, the term “including” should be read as meaning “including, without limitation” or the like. The term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof. The terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like. The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent.
The present disclosure is related to co-pending and co-owned U.S. application Ser. No. 17/028,197, which is incorporated herein by reference in its entirety.