The present invention relates to the general field of wireless telecommunications transceivers, and more particularly to shrouds for concealing such transceivers and their antennas.
5G transceivers frequently have antennas which are integrated into the transceiver itself. It is usually desirable to conceal the transceivers/antennas from view for aesthetic reasons. But because 5G often uses millimeter wave technology, it is particularly susceptible to attenuation and dispersion by standard radio shrouds, which typically comprise ridged composite panels. Such panels can be one half to six or more wavelengths thick, causing 5G signal attenuation and dispersion. Therefore, there is a need for a very thin 5G shroud.
The present invention is a pole-mountable shroud assembly enclosing one or more wireless telecommunications transceivers and antennas. The shroud assembly is attached to the pole by a pole bracket, which is an elongated rectangular prism frame. The outer face of the pole bracket is open, so as to expose at least one intake fan supported by the pole bracket. The top and bottom ends of the pole bracket support top and bottom panels, respectively, with the bottom panel having multiple holes and/or vents, through which the intake fan(s) draw ambient air to cool the transceivers. A jacking means, such as a screw jack, connects the bottom panel to the pole bracket bottom end so that the panel separation distance is adjustable. A very thin (not more than one-tenth the minimum transmission wavelength) fabric membrane wraps around the top and bottom panels to the longitudinal sides of the pole bracket, so as to form a generally rectangular prism shaped shroud enclosure which surrounds the transceivers/antennas. The jacking means is operative to tension the fabric membrane around the shroud enclosure.
The foregoing summarizes the general design features of the present invention. In the following sections, specific embodiments of the present invention will be described in some detail. These specific embodiments are intended to demonstrate the feasibility of implementing the present invention in accordance with the general design features discussed above. Therefore, the detailed descriptions of these embodiments are offered for illustrative and exemplary purposes only, and they are not intended to limit the scope either of the foregoing summary description or of the claims which follow.
Referring to
As best seen in
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that many additions, modifications and substitutions are possible, without departing from the scope and spirit of the present invention as defined by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
5742653 | Erbes et al. | Apr 1998 | A |
9357886 | Duncan et al. | Jun 2016 | B2 |
9698477 | Jabara et al. | Jul 2017 | B1 |
10135130 | Bouchard | Nov 2018 | B1 |
10347979 | Boyle | Jul 2019 | B1 |
10476138 | Gonsowski | Nov 2019 | B2 |
20150371571 | Hager | Dec 2015 | A1 |
20180254545 | Hendrix | Sep 2018 | A1 |