1. Field of the Invention
The present invention relates generally to a swivel mechanism, and more specifically to 60 GHz data transmission through a mechanical swivel connection.
2. Discussion of the Related Art
Completely freely movable swivel connections are difficult to transmit signals through. Continuous rotating in the same direction will eventually twist any connected wires until they break. It is possible to have one wire going through the middle of the swivel junction if it too swivels. However, if you need high bandwidth, a single connector may not be sufficient.
One solution is to limit how far a swivel can actually turn, (perhaps −/+400 degrees), which would allows more than 2 full turns, but would not allow continuous free rotation. This is implemented with multiple flexible wires through the center of the swivel. The −/+400 degrees limitation means that the wires will have a limited number of turns, and will not allow indefinite rotation in the same direction.
Another approach that actually gives the freedom of continuous rotation in the same direction is to have concentric contacts on a flat surface rotation. Each contact may support one signal on the surface of rotation. However, this method has the disadvantage of signal loss due to the varying contact as it rotates. These mechanical contacts also wear out.
Several embodiments of the invention advantageously address the needs above as well as other needs by providing a swivel mechanism comprising a first swivel portion having a first coupling portion and a first electrically conductive portion and a second swivel portion having a second coupling portion and a second electrically conductive portion, the second swivel portion dimensioned for mechanically engaging with the first swivel portion to provide at least a first mechanical coupling position and at least a first data communication channel, wherein the first electrically conductive portion is in electrical contact with the second electrically conductive portion when the first swivel portion and the second swivel portion are in the first mechanical coupling position and the first data communication channel configured to convey 60 GHz data signals when the first swivel portion and the second swivel portion are in the first mechanical coupling position.
In one embodiment, the invention can be characterized as a method for providing data communication means for a device, comprising providing a first swivel portion having a first coupling portion and providing a second swivel portion having a second coupling portion, the second swivel portion dimensioned for mechanically engaging with the first swivel portion to provide at least a first mechanical coupling position and at least a first data communication channel, wherein the first data communication channel is provided through a hollow cavity formed when the first swivel portion and the second swivel portion are in the first mechanical coupling position and wherein the first data communication channel is configured to convey 60 GHz data signals when the first swivel portion and the second swivel portion are in the first mechanical coupling position.
The above and other aspects, features and advantages of several embodiments of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of exemplary embodiments. The scope of the invention should be determined with reference to the claims.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
In some embodiments, the swivel mechanism of the current invention provides a method of transmitting data through the core of a swivel using a 60 GHz wireless transmission. The swivel mechanism provides for very high bandwidth secure communication of data. The mechanism is robust because it allows the communication of data without the use of a mechanical connection and wires. As 60 GHz signals, unlike wireless and other RF signals do not pass through walls, the system provides a secure data communication as it will be encapsulated inside the swivel, and therefore wouldn't be receivable outside the connection. The mechanism is robust because it allows the communication of data without the use of a mechanical connection and wires, therefore, limiting the number of mechanical connections. Additionally, the mechanism allows for the freedom of continuous rotation in the same direction by limiting the number of wires and mechanical contacts needed.
In one or more embodiments, the swivel mechanism provides a swivel connection through a center contact of the swivel. This center contact is used to deliver power to the swiveling component from the external stationary component. In some embodiments, the center component is further used to send data at a lower speed, at a frequency above that used by the power. In one embodiment, the center contact may act as a low speed data channel that travels (along with transmitted power) over the mechanical/electrical swivel and possibly center rod. In one embodiment, the power connector may be insulated to improve the ability to send data, the insulator may be used as a transmission line for the 60 GHz signal.
In one embodiment, the swivel mechanism further provides a center hollow portion through which 60 GHz signal transmission is performed. That is, in one or more embodiments, high speed data transmission is provided through the hollow center of the swivel. In one embodiment, the data communication channel may carry up to 5 Gbps of data. In one embodiment, the 5 Gbps channel can carry uncompressed high definition video signals.
Referring first to
In one embodiment, the first swivel portion comprises a first coupling portion and the second swivel portion comprises a second coupling portion, the second coupling portion dimensioned for mechanically engaging with the first coupling portion to provide at least a first mechanical coupling position and at least a first data communication channel. In some embodiments, for example, the first conduit 140 is configured to have a diameter that is approximately equal to the outer diameter of the second swivel portion.
As shown in
In one embodiment, the first electrically conductive portion 114 of the first swivel portion 110 forms an inner wall of the first swivel portion, and the second electrical conductive portion 124 of the second swivel portion 120 forms an outer wall of the second swivel portion. In one embodiment the first electrically conductive portion 114 is positioned on the inner portion outer wall 112 of the first swivel portion, the first electrically conductive portion 114 having an inner diameter. Further, in some embodiments, the second electrically conductive portion 124 is positioned around at least a portion of the outer surface of the inner wall of the second swivel portion 120, the second electrically conductive portion having an outer diameter dimensioned to match the inner diameter of the first electrically conductive portion 114.
In one embodiment, the first swivel portion and the second swivel portion are coupled such that the first electrically conductive portion is in electrical contact with the second electrically conductive portion. According to one embodiment, as shown in
In some embodiments, the data communication channel 210 is configured to convey 60 GHz data signals when the first coupling section and the second coupling section are in the first mechanical coupling position.
In some embodiments, the swivel mechanism may comprise a cylindrical rod swivel used to provide power and data communication for a swiveling device. In such embodiment, the first swivel portion 110 and/or the second swivel portion 120 may each comprise a cylindrical rod having a hollow portion and/or having a circular cross section similar to that of
In several embodiments, the first swivel portion and the second swivel portion are configured to be coupled to a first device having a first device component and a second device component, wherein the first swivel portion is configured to be mechanically coupled to the first device component and the second swivel portion is configured to be mechanically coupled to the second device component, such that the first and second device parts are mechanically coupled to one another and the first and second device parts are movable relative to one another. In several embodiments, the swivel mechanism enables the first device component and the second device component to rotate relative to one another with a degree of freedom that is equal to or greater than 360 degrees. In one embodiment, the swivel mechanism allows continuous rotational freedom by reducing the number of wires and mechanical connections needed to convey signals while providing power to the swiveling device component.
In one embodiment, while the first swivel portion and the second swivel portion are in the first mechanical position, and engaged with the device 300, the first device component 310 and the second device component 320 can receive electrical power and send and receive 60 GHz data signals to and/or from one another. In one embodiment, the swivel mechanism 100 will allow one or both of the first device component 310 and the second device component 320 of device 300 to freely rotate with respect to one another. In several embodiments, the swivel mechanism enables the first device component and the second device component to rotate relative to one another with a degree of freedom that is equal to or greater than 360 degrees. In one embodiment, the swivel mechanism allows continuous rotational freedom by reducing the number of wires and mechanical connections needed to convey signals and provides power to the swiveling device component.
In one embodiment, the swivel mechanism of
The camera of
In one embodiment, the camera portion 410 and the base 430 are able to transmit and receive 60 GHz data signals to and from one another through the data communication channel. The system provides for very high bandwidth secure communication of data. The system is robust because it allows the communication of data without the use of a mechanical connection and wires. As 60 GHz signals, unlike wireless and other RF signals do not pass through walls, in several embodiments, the swivel mechanism provides a secure data communication as it will be encapsulated inside the swivel, and therefore would not be receivable outside the connection. In one embodiment, the high frequency 60 GHz data transmission channel enables the camera portion 410 to transmit uncompressed video signals to the base 430.
In several embodiments, the swivel mechanism enables the camera portion 410 and the base 430 to rotate relative to one another with a degree of freedom that is equal to or greater than 360 degrees. In one embodiment, the swivel mechanism allows continuous rotational freedom by reducing the number of wires and mechanical connections needed to convey signals and provides power to the swiveling device.
In some embodiments, the support structures 414 comprises two arms 416a and 416b. In one embodiment, each arm may comprise a swivel portion similar to the first swivel portion 110 depicted in
In another embodiment, the mechanical swivel mechanism of
The method 500 begins in step 510 where a first swivel portion is provided having an outer wall, a first conduit and a first electrically conductive portion. Next, in step 520, a second swivel portion having a second conduit, an inner wall and a second electrically conductive portion is provided. In some embodiments, the second swivel portion is dimensioned for mechanically engaging with the first swivel portion to provide at least a first mechanical coupling position and at least a first data communication channel. For example, in one embodiment, the second swivel portion is dimensioned to fit within the first conduit of the first swivel portion.
In one embodiment, the first electrical conductive portion of the first swivel portion forms an inner wall of the first swivel portion, and the second electrical conductive portion of the second swivel portion forms an outer wall of the second swivel portion. According to one embodiment, the first electrically conductive portion is positioned on the inner portion of the outer wall of the first swivel portion, the first electrically conductive portion having an inner diameter. Further, in some embodiments, the second electrically conductive portion is positioned around at least a portion of the outer surface of the inner wall of the second swivel portion, the second electrically conductive portion having an outer diameter dimensioned to match the inner diameter of the first electrically conductive portion.
In step 530, the first swivel portion and the second swivel portion are coupled together to provide at least a first mechanical coupling position. In some embodiments, the mechanical coupling position is configured to provide a contact between the electrically conductive portions of the first swivel portion and the second swivel portion to provide a means of conveying power through the swivel mechanism. In one embodiment, the second swivel portion is inserted into the first swivel portion. In some embodiments, the first conduit of the first swivel portion is dimensioned to receive the second swivel portion.
In some embodiments, the first swivel portion and the second swivel portion are coupled such that the first electrically conductive portion is in electrical contact with the second electrically conductive portion when the first coupling section and the second coupling section are in the first mechanical coupling position. In one embodiment, once the first swivel portion is coupled with the second swivel portion, the first electrically conductive portion and the second electrically conductive portion come into contact, and provide means for delivering power from a first component of a device to another component of the device.
In one embodiment, the first mechanical coupling position further provides a data communication channel. In one embodiment, in step 530, the first swivel portion and the second swivel portion are coupled, a first data communication channel is formed through the conduit of the second swivel portion. In one embodiment, the first data communication channel is configured to convey 60 GHz data signals when the first swivel portion and the second swivel portion are in the first mechanical coupling position.
Next, in step 540, the first swivel portion and the second swivel portion are each coupled to a first and second component of a device. In one embodiment, the first swivel portion is coupled to a first device component of the device and the second swivel portion is coupled to a second device component of the device. In one embodiment, the first component of the device comprises a stationary component and the second component of the device comprises a swiveling component. In one embodiment, coupling the swivel portions to device components comprises mechanically coupling the first swivel portion to the first device component, and mechanically coupling the second swivel portion to the second device component such that the first and second device components are mechanically coupled and are movable relative to one another.
Next, in step 550, 60 GHz signals and power is delivered between the stationary device component and the swiveling device component. In several embodiments, the swivel mechanism enables the first device component and the second device component to rotate relative to one another with a degree of freedom that is equal to or greater than 360 degrees. In one embodiment, the swivel mechanism allows continuous rotational freedom by reducing the number of wires and mechanical connections needed to convey signals.
While the invention herein disclosed has been described by means of specific embodiments, examples and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2644028 | Bernet | Jun 1953 | A |
3585564 | Skjervoll | Jun 1971 | A |
6830456 | Obermeyer | Dec 2004 | B2 |
7223917 | Marszalek et al. | May 2007 | B1 |
7374424 | Nurmi et al. | May 2008 | B1 |
20080171456 | Vanzo et al. | Jul 2008 | A1 |
20090056972 | Dlugas et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1187261 | Mar 2002 | EP |
2001154760 | Jun 2001 | JP |
WO-2006128239 | Dec 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110244696 A1 | Oct 2011 | US |