7-Aikyl and cycloalkyl-substituted imidazotriazinones

Abstract
The present invention relates to 7-alkyl- and cycloalkyl-substituted imidazotriazinones, to processes for their preparation and to their use as medicaments, in particular as inhibitors of cGMP-metabolizing phosphodiesterases.
Description

The present invention relates to 7-alkyl- and cycloalkyl-substituted imidazotriazinones, to processes for their preparation and to their use as medicaments, in particular as inhibitors of cGMP-metabolizing phosphodiesterases.


The published specification DE-28 11 780 describes imidazotriazines as bronchodilators having spasmolytic activity and inhibitory activity against phosphodiesterases which metabolize cyclic adenosine monophosphate (cAMP-PDEs, nomenclature according to Beavo: PDE-III and PDE-IV). An inhibitory action against phosphodiesterases which metabolize cyclic guanosine monophosphate (cGMP-PDEs, nomenclature according to Beavo and Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) PDE-I, PDE-II and PDE-V) has not been described. Compounds having a sulphonamide group in the aryl radical in the 2 position are not claimed. Furthermore, FR 22 13 058, CH-59 46 71, DE-22 55 172, DE-23 64 076 and EP-000 9384 describe imidazotriazinones which do not have a substituted aryl radical in the 2 position and are likewise said to be bronchodilators having cAMP-PDE-inhibitory action.


The compounds according to the invention are potent inhibitors either of one or of more of the phosphodiesterases which metabolize cyclic guanosine 3′,5′-monophosphate (cGMP-PDEs). According to the nomenclature of Beavo and Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) these are the phosphodiesterase isoenzymes PDE-I, PDE-II and PDE-V.


An increase in the cGMP concentration can lead to beneficial antiaggregatory, antithrombotic, antiprolific, antivasospastic, vasodilative, natriuretic and diuretic effects. It can influence the short- or long-term modulation of muscular and cardiac inotropy, of the pulse and of cardiac conduction (J. C. Stoclet, T. Keravis, N. Komas and C. Lugnier, Exp. Opin. Invest. Drugs (1995), 4 (11), 1081-1100).


The present invention, accordingly, provides 7-alkyl- and cycloalkyl-substituted imidazotriazinones of the general formula (I)
embedded image

in which

  • R1 represents straight-chain or branched alkyl having up to 4 carbon atoms,
  • R2 represent straight-chain [lacuna] having at least 5 carbon atoms or branched alkyl having at least 3 carbon atoms, or
  •  represents cycloalkyl having 3 to 10 carbon atoms,
  • R3 and R4 are identical or different and represent hydrogen, or
  •  represent straight-chain or branched alkenyl having up to 8 carbon atoms, or represent a straight-chain or branched alkyl chain having up to 10 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of trifluoromethyl, trifluoromethoxy, hydroxyl, halogen carboxyl, benzyloxycarbonyl, straight-chain or branched alkoxy, alkoxycarbonyl and alkylthio having in each case up to 6 carbon atoms and/or by radicals of the formulae —SO3H, -(A)a-NR7R8, —O—CO—NR7′R8′, —S(O)b—R9, HN═SO—R9′, —P(O)(OR10)(OR11),
    embedded image
  •  in which
    • a and b are identical or different and represent a number 0 or 1,
    • A represents a radical CO or SO2,
    • R7, R7′, R8 and R8′ are identical or different and represent hydrogen, or
    •  represent cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms, a 5- to 6-membered unsaturated, partially unsaturated or saturated, optionally benzo-fused heterocycle having up to 3 heteroatoms from the group consisting of S, N and/or O, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 6 carbon atoms or by a group of the formula —(SO2)c—NR12R13,
    •  in which
      • c represents a number 0 or 1,
      • R12 and R13 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms, or
    • R7, R7′, R8 and R8′ represent straight-chain or branched alkoxy having up to 6 carbon atoms, or
    •  represent straight-chain or branched alkyl having up to 8 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, halogen, aryl having from 6 to 10 carbon atoms, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 6 carbon atoms or by a group of the formula —(CO)d—NR14R15,
    •  in which
      • R14 and R15 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms, and
      • d represents a number 0 or 1, or
    • R7 and R8 and/or R7′ and R8′ together with the nitrogen atom form a 5- to 7-membered saturated heterocycle which may optionally contain a further heteroatom from the group consisting of S and O or a radical of the formula —NR16,
    •  in which
      • R16 represents hydrogen, aryl having 6 to 10 carbon atoms, or straight-chain or branched alkyl having up to 6 carbon atoms, which is optionally substituted by hydroxyl,
    • R9 and R9′ are identical or different and represent aryl having 6 to 10 carbon atoms or benzyl, or
    •  represent straight-chain or branched alkyl having up to 4 carbon atoms,
    • R10 and R11 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
    • and/or the alkyl chain listed above under R3/R4 is optionally substituted by cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or by a 5- to 7-membered partially unsaturated, saturated or unsaturated, optionally benzo-fused heterocycle which may contain up to 4 ring heteroatoms from the group consisting of S, N, O or a radical of the formula —NR7, where the alkyl chain may optionally also be attached via a ring nitrogen atom,
    •  in which
      • R17 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl or alkoxy having in each case up to 4 carbon atoms,
      •  or represents straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to polysubstituted by identical or different substituents from the group consisting of hydroxyl and straight-chain or branched alkoxy having up to 6 carbon atoms,
  • and where aryl and the heterocycle are optionally mono- to trisubstituted by identical or different substituents from the group consisting of nitro, halogen, —SO3H, straight-chain or branched monohydroxy-substituted alkyl, alkylthio or alkoxy having in each case up to 6 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy and/or by a radical of the formula —(SO2)e—R18R19,
  •  in which
    • e represents a number 0 or 1,
    • R18 and R19 are identical or different and represent hydrogen, phenyl, benzyl or straight-chain or branched alkyl or acyl having in each case up to 6 carbon atoms, and/or
  • R3 or R4 represent radicals of the formulae —NR20R21 or —(O)-E-NR22R23,
  •  in which
    • R20 and R21 have the meaning of R18 and R19 given above and are identical to or different from this meaning, or
    •  together with the nitrogen atom form a 5- or 6-membered saturated heterocycle having a further ring heterocycle from the group consisting of S and O or a radical —NR24,
    •  in which
      • R24 has the meaning of R16 given above and is identical to or different from this meaning,
    • E is a straight-chain alkylene group having up to 5 carbon atoms,
    • R22 and R23 have the meaning of R18 and R19 given above and are identical to or different from this meaning, and/or
  • R3 or R4 represent radicals of the formulae
    embedded image
  •  or represent cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or represent a 5- to 7-membered partially unsaturated, saturated and unsaturated, optionally benzo-fused heterocycle which may contain up to 4 heteroatoms from the group consisting of S, N, O or a radical of the formula —NR25 which may optionally also be attached via a ring nitrogen atom,
  •  in which
    • R25 has the meaning of R16 given above and is identical to or different from this meaning, or
    •  represents carboxyl, formyl or straight-chain or branched acyl having up to 5 carbon atoms,
  •  and where cycloalkyl, aryl and/or the heterocycle are optionally mono- to trisubstituted by identical or different substituents from the group consisting of halogen, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 6 carbon atoms, nitro and/or by groups of the formulae —SO3H, —OR26, (SO2)fNR27R28, —P(O)(OR29)(OR30),
  •  in which
    • R26 represents a radical of the formula
      embedded image

      or
    •  represents cycloalkyl having 3 to 7 carbon atoms, or hydrogen or straight-chain or branched alkyl having up to 5 carbon atoms which is optionally substituted by cycloalkyl having 3 to 7 carbon atoms, straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 6 carbon atoms, hydroxyl, carboxyl or phenyl, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 4 carbon atoms, hydroxyl and halogen,
      • f is a number 0 or 1,
      • R27 and R28 have the meaning of R18 and R19 given above and are identical to or different from this meaning or represent a radical of the formula —CO—NH2,
      • R29 and R30 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
  • and/or cycloalkyl, aryl and/or the heterocycle are optionally substituted by straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl, carboxyl, by a 5- to 7-membered heterocycle having up to 3 heteroatoms from the group consisting of S, N and/or O or by groups of the formulae —SO2—R31, P(O)(OR32)(OR33) or —NR34R35,
  •  in which
    • R31 is hydrogen or has the meaning of R9 given above and is identical to or different from this meaning,
    • R32 and R33 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • R34 and R35 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms, or
    • R34 and R35 together with the nitrogen atom form a 5- to 6-membered saturated heterocycle which may contain a further heteroatom from the group consisting of S and O or a radical of the formula —NR36,
    •  in which
      • R36 has the meaning of R16 given above and is identical to or different from this meaning, or
  • R3 and R4 together with the nitrogen atom form a 5- to 7-membered unsaturated or saturated or partially unsaturated, optionally benzo-fused heterocycle which may optionally contain up to 3 heteroatoms from the group consisting of S, N, O or a radical of the formula —NR37,
  •  in which
    • R37 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or
    •  represents cycloalkyl having 3 to 8 carbon atoms, or
    •  represents straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, pyridyl, carboxyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 6 carbon atoms, or
    • R37 represents a radical of the formula —(CO)g-G,
    •  in which
      • g represents a number 0 or 1,
      • G represents aryl having 6 to 10 carbon atoms or a 5- to 6-membered aromatic heterocycle having up to 4 heteroatoms from the group consisting of S, N and/or O, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of halogen, straight-chain or branched alkoxy, alkyl or alkylthio having in each case up to 6 carbon atoms, hydroxyl and trifluoromethyl,
  • and the heterocycle mentioned under R3 and R4, formed via the nitrogen, is optionally mono- to trisubstituted, optionally also geminally, by identical or different substituents from the group consisting of hydroxyl, formyl, carboxyl, straight-chain or branched acyl and alkoxycarbonyl having in each case up to 6 carbon atoms and groups of the formulae —P(O)(OR38)(OR39) and —(CO)g)—NR40R41,
  •  in which
    • R38 and R39 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • g represents a number 0 or 1, and
    • R40 and R41 are identical or different and have the meaning of R18 and R19 given above,
  • and/or the heterocycle mentioned under R3 and R4, formed via the nitrogen, is optionally substituted by straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, halogen, carboxyl, cycloalkyl or cycloalkyloxy having in each case 3 to 8 carbon atoms, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 6 carbon atoms or by a radical of the formula —SO3H, —NR42R43 or P(O)OR44OR45,
  •  in which
    • R42 and R43 are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straight-chain or branched alkyl or alkoxy having in each case up to 6 carbon atoms,
    • R44 and R45 are identical or different and have the meaning of R10 and R11 given above,
  • and/or the alkyl is optionally substituted by benzyloxy or aryl having 6 to 10 carbon atoms, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, straight-chain or branched alkoxy or alkylthio having in each case up to 6 carbon atoms, or by a group of the formula —NR42′R43′,
  •  in which
    • R42′ and R43′ have the meaning of R42 and R43 given above and are identical to or different from this meaning,
  • and/or the heterocycle mentioned under R3 and R4, formed via a nitrogen atom, is optionally substituted by aryl having 6 to 10 carbon atoms or by a 5- to 7-membered saturated, partially unsaturated or unsaturated heterocycle having up to 3 ring heteroatoms from the group consisting of S, N and/or O, optionally also attached via an N function, where the ring systems for their part may be substituted by halogen, hydroxyl or by straight-chain or branched alkyl, alkylthio or alkoxy having in each case up to 6 carbon atoms, or
  • R3 and R4 together with the nitrogen atom form radicals of the formulae
    embedded image
  •  in which
    • R44 represents hydrogen or straight-chain or branched alkyl or alkoxycarbonyl having in each case up to 6 carbon atoms,
    • R45 and R45′ are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
    • R46 represents hydroxyl or straight-chain or branched alkoxy having up to 6 carbon atoms,
  • R5 and R6 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, hydroxy or represents straight-chain or branched alkoxy having up to 6 carbon atoms,


    and their salts and isomeric forms.


The compounds according to the invention may exist in stereoisomeric forms which are either like image and mirror image (enantiomers), or which are not like image and mirror image (diastereomers). The invention relates both to the enantiomers or diastereomers and to their respective mixtures. The racemic forms can, just like the diastereomers, be separated in a known manner into the stereoisomerically uniform constituents.


The substances according to the invention may also be present as salts. In the context of the invention, preference is given to physiologically acceptable salts.


Physiologically acceptable salts can be salts of the compounds according to the invention with inorganic or organic acids. Preference is given to salts with inorganic acids, such as, for example, hydrochloric acid, hydrobromic acid, phosphoric acid or sulphuric acid, or to salts with organic carboxylic or sulphonic acids, such as, for example, acetic acid, maleic acid, fumaric acid, malic acid, citric acid, tartaric acid, lactic acid, benzoic acid, or methanesulphonic acid, ethanesulphonic acid, phenylsulphonic acid, toluenesulphonic acid or naphthalenedisulphonic acid.


Physiologically acceptable salts can also be metal or ammonium salts of the compounds according to the invention. Particular preference is given to, for example, sodium, potassium, magnesium or calcium salts, and also to ammonium salts which are derived from ammonia or organic amines, such as, for example, ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine, ethylenediamine or 2-phenylethylamine.


In the context of the invention and depending on the various substituents, optionally benzo-fused heterocycle generally represents an aromatic, saturated, partially unsaturated or unsaturated 5- to 7-membered or 5- to 6-membered heterocycle which may contain up to 4 heteroatoms from the group consisting of S, N and O. Examples which may be mentioned are: azepine, diazepine, indolyl, isoquinolyl, quinolyl, benzo[b]thiophene, benzo[b]furanyl, pyridyl, thienyl, tetrahydrofuranyl, tetrahydropyranyl, furyl, pyrrolyl, thiazolyl, triazolyl, tetrazolyl, isoxazolyl, imidazolyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperazinyl, N-methylpiperazinyl or piperidinyl. Preference is given to quinolyl, furyl, pyridyl, thienyl, piperidinyl, pyrrolidinyl, piperazinyl, azepine, diazepine, thiazolyl, triazolyl, tetrazolyl, tetrahydrofuranyl, tetrahydropyranyl, morphholinyl and thiomorpholinyl.


Preference is given to compounds of the general formula (I) according to the invention


in which




  • R1 represents straight-chain or branched alkyl having up to 3 carbon atoms,

  • R2 represents straight-chain [lacuna] having 5 to 15 carbon atoms or branched alkyl having 3 to 15 carbon atoms, or

  •  represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl,

  • R3 and R4 are identical or different and represent hydrogen, or

  •  represent straight-chain or branched alkenyl having up to 4 carbon atoms, or represent a straight-chain or branched alkyl chain having up to 6 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, carboxyl, straight-chain or branched alkoxy, alkoxycarbonyl and alkylthio having in each case up to 4 carbon atoms and/or by radicals of the formulae —SO3H, -(A)a—NR7R8, —O—CO—NR7′R8′, —S(O)b—R9, HN═SO—R9′, —P(O)(OR10)(OR11),
    embedded image

  •  in which
    • a and b are identical or different and represent a number 0 or 1,
    • A represents a radical CO or SO2,
    • R7, R7′, R8 and R8′ are identical or different and represent hydrogen, or represent phenyl, naphthyl, or pyridyl, where the ring systems listed above are optionally mono- to disubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or
    •  represent straight-chain or branched alkoxy having up to 4 carbon atoms, or
    •  represent straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, bromine, phenyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a group of the formula —(CO)d—NR14R15,
    •  in which
      • R14 and R15 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and
      • d represents a number 0 or 1, or
    • R7 and R8 and/or R7′ and R8′ together with the nitrogen atom form a pyrrolidinyl, piperidinyl or morpholinyl ring or a radical of the formula
      embedded image
    •  in which
      • R16 represents hydrogen, phenyl, naphthyl or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl,
    • R9 and R9′ are identical or different and represent phenyl or benzyl, or represent straight-chain or branched alkyl having up to 3 carbon atoms,
    • R10 and R11 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
    • and/or the alkyl chain mentioned above under R3/R4 is optionally substituted by phenyl, naphthyl, morpholinyl, pyridyl, tetrahydropyranyl, tetrahydrofuranyl or thienyl, where the radical may optionally also be attached to the alkyl chain via a ring nitrogen atom,

  • and where aryl and the heterocycle are optionally mono- to disubstituted by identical or different substituents from the group consisting of nitro, fluorine, chlorine, bromine, —SO3H, straight-chain or branched monohydroxy-substituted alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy and/or by a radical of the formula —(SO2)e—NR18R19,

  •  in which
    • e represents a number 0 or 1,
    • R18 and R19 are identical or different and represent hydrogen, phenyl, benzyl or straight-chain or branched alkyl or acyl having in each case up to 4 carbon atoms, and/or

  • R3 and R4 represent radicals of the formulae —NR20R21 or —(O)-E-NR22R23,

  •  in which
    • R20 and R21 have the meaning of R18 and R19 given above and are identical to or different from this meaning, or
    •  together with the nitrogen atom form a morpholinyl ring, pyrrolidinyl ring or a radical of the formula
      embedded image
    •  in which
      • R24 has the meaning of R16 given above and is identical to or different from this meaning,
    • E represents a straight-chain alkylene group having up to 4 carbon atoms,
    • R22 and R23 have the meaning of R18 and R19 given above and are identical to or different from this meaning, and/or

  • R3 or R4 represent radicals of the formulae
    embedded image

  •  or represent cyclopentyl, cyclohexyl, naphthyl, phenyl, pyridyl, or quinolyl or tetrazolyl attached via the phenyl ring,

  •  and where the ring systems given above are optionally mono- to disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl and alkoxycarbonyl having in each case up to 4 carbon atoms and/or by groups of the formulae —SO3H, —OR26, (SO2)fNR27R28, —P(O)(OR29)(OR30),

  •  in which
    • R26 represents a radical of the formula
      embedded image

      or
    •  represents cyclopentyl or cyclohexyl, or
    •  represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, hydroxyl, carboxyl or phenyl, which for its part may be mono- to disubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 3 carbon atoms, hydroxyl and halogen,
    • f represents a number 0 or 1,
    • R27 and R28 have the meaning of R18 and R19 given above and are identical to or different from this meaning or represent a radical of the formula —CO—NH2,
    • R29 and R30 have the meaning of R10 and R11 given above and are identical to or different from this meaning,

  • and/or the ring systems given above are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms, which are optionally substituted by hydroxyl, carboxyl, morpholine, pyridyl or by groups of the formula —SO2—R31, P(O)(OR32)(OR33) or —NR34R31,

  •  in which
    • R31 represents hydrogen or has the meaning of R9 given above and is identical to or different from this meaning,
    • R32 and R33 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • R34 and R35 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms, or
    • R34 and R35 together with the nitrogen atom form a morpholinyl, pyrrolidinyl, piperidinyl ring or a radical of the formula
      embedded image
    •  in which
      • R36 has the meaning of R16 given above and is identical to or different from this meaning, or

  • R3 and R4 together with the nitrogen atom form a piperidinyl, pyrrolidinyl or morpholinyl ring, or a radical of the formula
    embedded image

  •  in which
    • R37 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or
    •  represents cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, or represents straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, pyridyl, carboxyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or
    • R37 represents a radical of the formula —(CO)g-G,
    •  in which
      • g represents a number 0 or 1,
      • G represents naphthyl, phenyl, pyridyl or pyrimidyl, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, straight-chain or branched alkoxy, alkyl or alkylthio having in each case up to 4 carbon atoms, hydroxyl and trifluoromethyl,

  • and the heterocycles listed above under R3 and R4 are optionally mono- to trisubstituted, optionally also geminally, by identical or different substituents from the group consisting of hydroxyl, formyl, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 4 carbon atoms and groups of the formulae —P(O)(OR38)(OR39) or —(CO)g)—NR40R41,

  •  in which
    • R38 and R39 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • g represents a number 0 or 1, and
    • R40 and R41 are identical or different and have the meaning of R18 and R19 given above,

  • and/or the heterocycles listed under R3 and R4 are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, carboxyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyloxy, cyclohexyloxy, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a radical of the formula —SO3H, —NR42R43 or P(O)OR44OR45,

  •  in which
    • R42 and R43 are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straight-chain or branched alkyl or alkoxy having in each case up to 4 carbon atoms,
    • R44 and R45 are identical or different and have the meaning of R10 and R11 given above,

  • and/or the alkyl is optionally substituted by benzyloxy, naphtyl or phenyl, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, hydroxyl, straight-chain or branched alkoxy and alkylthio having in each case up to 4 carbon atoms, or by a group of the formula —NR42R43,

  •  in which
    • R42′ and R43′ have the meaning of R42 and R43 given above and are identical to or different from this meaning,

  • and/or the heterocycles listed under R3 and R4 are optionally substituted by phenyl, naphthyl or by radicals of the formulae
    embedded image

  •  where the ring systems for their part may be substituted by fluorine, chlorine, hydroxyl or by straight-chain or branched alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, or

  • R3 and R4 together with the nitrogen atom form radicals of the formulae
    embedded image

  •  in which
    • R44 represents hydrogen or straight-chain or branched alkyl or alkoxycarbonyl having in each case up to 3 carbon atoms,
    • R45 and R45′ are identical or different and represent hydrogen or methyl,
    • R46 represents hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms,

  • R5 and R6 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, hydroxyl or represent straight-chain or branched alkoxy having up to 4 carbon atoms,


    and their salts and isomeric forms.



Particular preference is given to compounds of the general formula (I) according to the invention,


in which




  • R1 represents straight-chain or branched alkyl having up to 3 carbon atoms,

  • R2 represents straight-chain [lacuna] having 5 to 12 carbon atoms or branched alkyl having 3 to 12 carbon atoms, or

  •  represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl,

  • R3 and R4 are identical or different and represent hydrogen, or

  •  represent straight-chain or branched alkenyl having up to 4 carbon atoms, or

  •  represent a straight-chain or branched alkyl chain having up to 6 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, carboxyl, straight-chain or branched alkoxy, alkoxycarbonyl and alkylthio having in each case up to 4 carbon atoms and/or by radicals of the formulae —SO3H, -(A)a-NR7R8, —O—CO—NR7′R8′, —S(O)b—R9, HN═SO—R9′, —P(O)(OR10)(OR11),
    embedded image

  •  in which
    • a and b are identical or different and represent a number 0 or 1,
    • A represents a radical CO or SO2,
    • R7, R7′, R8 and R8′ are identical or different and represent hydrogen, or represent phenyl, naphthyl, or pyridyl, where the ring systems listed above are optionally mono- to disubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or
    •  represent straight-chain or branched alkoxy having up to 4 carbon atoms, or
    •  represent straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, bromine, phenyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a group of the formula —(CO)d—NR14R15,
    •  in which
      • R14 and R15 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and
      • d represents a number 0 or 1, or
    • R7 and R8 and/or R7′ and R8′ together with the nitrogen atom form a pyrrolidinyl, piperidinyl or morpholinyl ring or a radical of the formula
      embedded image
    •  in which
      • R16 represents hydrogen, phenyl, naphthyl or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl,
    • R9 and R9′ are identical or different and represent phenyl or benzyl, or represent straight-chain or branched alkyl having up to 3 carbon atoms,
    • R10 and R11 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms,
    • and/or the alkyl chain listed above under R3/R4 is optionally substituted by phenyl, naphthyl, morpholinyl, pyridyl, tetrahydropyranyl, tetrahydrofuranyl or thienyl, where the attachment to the alkyl chain may optionally also take place via a ring nitrogen atom,

  • and where aryl and the heterocycle are optionally mono- to disubstituted by identical or different substituents from the group consisting of nitro, fluorine, chlorine, bromine, —SO3H, straight-chain or branched monohydroxy-substituted alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy and/or by a radical of the formula —(SO2)e—NR18R19,

  •  in which
    • e represents a number 0 or 1,
    • R18 and R19 are identical or different and represent hydrogen, phenyl, benzyl or straight-chain or branched alkyl or acyl having in each case up to 4 carbon atoms, and/or

  • R3 or R4 represents radicals of the formulae —NR20R21 or —(O)-E-NR22R23,

  •  in which
    • R20 and R21 have the meaning of R18 and R19 given above and are identical to or different from this meaning, or
    •  together with the nitrogen atom form a morpholinyl ring, pyrrolidinyl ring or a radical of the formula
      embedded image
    •  in which
      • R24 has the meaning of R16 given above and is identical to or different from this meaning,
    • E represents a straight-chain alkylene group having up to 4 carbon atoms,
    • R22 and R23 have the meaning of R18 and R19 given above and are identical to or different from this meaning and/or

  • R3 or R4 represent the radicals of the formulae
    embedded image

  •  or represent cyclopentyl, cyclohexyl, naphthyl, phenyl, pyridyl, or quinolinyl or tetrazolyl attached via the phenyl ring,

  •  and where the ring systems given above are optionally mono- to disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl and alkoxycarbonyl having in each case up to 4 carbon atoms and/or by groups of the formulae —SO3H, —OR26, (SO2)fNR27R28, —P(O)(OR29)(OR30),

  •  in which
    • R26 represents a radical of the formula
      embedded image

      or
    •  represents cyclopentyl or cyclohexyl, or
    •  represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, hydroxyl, carboxyl or phenyl, which for its part may be mono- to disubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 3 carbon atoms, hydroxyl and halogen,
    • f represents a number 0 or 1,
    • R27 and R28 have the meaning of R18 and R19 given above and are identical to or different from this meaning or represent a radical of the formula —CO—NH2,
    • R29 and R30 have the meaning of R10 and R11 given above and are identical to or different from this meaning,

  • and/or the ring systems given above are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which are optionally substituted by hydroxyl, carboxyl, morpholine, pyridyl or by groups of the formula —SO2—R31, P(O)(OR32)(OR33) or —NR34R35,

  •  in which
    • R31 represents hydrogen or has the meaning of R9 given above and is identical to or different from this meaning,
    • R32 and R33 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • R34 and R35 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms, or
    • R34 and R35 together with the nitrogen atom form a morpholinyl, pyrrolidinyl, piperidinyl ring or a radical of the formula
      embedded image
    •  in which
      • R36 has the meaning of R16 given above and is identical to or different from this meaning, or

  • R3 and R4 together with the nitrogen atom form a piperidinyl, pyrrolidinyl or morpholinyl ring, or a radical of the formula
    embedded image

  •  in which
    • R37 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or
    •  represents cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, or represents straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, pyridyl, carboxyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or
    • R37 represents a radical of the formula —(CO)g-G,
    •  in which
      • g represents a number 0 or 1,
      • G represents naphthyl, phenyl, pyridyl or pyrimidyl, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, straight-chain or branched alkoxy, alkyl or alkylthio having in each case up to 4 carbon atoms, hydroxyl and trifluoromethyl,

  • and the heterocycles listed under R3 and R4 are optionally mono- to trisubstituted, optionally also geminally, by identical or different substituents from the group consisting of hydroxyl, formyl, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 4 carbon atoms and groups of the formulae —P(O)(OR38)(OR39) or —(CO)g)—NR40R41,

  •  in which
    • R38 and R39 have the meaning of R10 and R11 given above and are identical to or different from this meaning,
    • g represents a number 0 or 1, and
    • R40 and R41 are identical or different and have the meaning of R18 and R19 given above,

  • and/or the heterocycles listed under R3 and R4 are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, carboxyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyloxy, cyclohexyloxy, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a radical of the formula —SO3H, —NR42R43 or P(O)OR44OR45,

  •  in which
    • R42 and R43 are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straight-chain or branched alkyl or alkoxy having in each case up to 4 carbon atoms,
    • R44 and R45 are identical or different and have the meaning of R10 and R11 given above,
    • and/or the alkyl is optionally substituted by benzyloxy, naphtyl or phenyl, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, hydroxyl, straight-chain or branched alkoxy or alkylthio having in each case up to 4 carbon atoms, or by a group of the formula NR42′R43′
    • in which
    • R42′ and R43′ have the meaning of R42 and R43 given above and are identical to or different from this meaning,

  • and/or the heterocycles listed under R3 and R4 are optionally substituted by phenyl, naphthyl or by radicals of the formulae
    embedded image

  •  where the ring systems for their part may be substituted by fluorine, chlorine, hydroxyl or by straight-chain or branched alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, or

  • R3 and R4 together with the nitrogen atom form radicals of the formulae
    embedded image

  •  in which
    • R44 represents hydrogen or straight-chain or branched alkyl or alkoxycarbonyl having in each case up to 3 carbon atoms,
    • R45 and R45′ are identical or different and represent hydrogen or methyl,
    • R46 represents hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms,

  • R5 and R6 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, hydroxyl or represent straight-chain or branched alkoxy having up to 4 carbon atoms,


    and their salts and isomeric forms.



Particular preference is also given to compounds of the general formula (I) in which

  • R1 represents methyl or ethyl,
  • R2 represents straight-chain [lacuna] having 5 to 11 carbon atoms or branched alkyl having 3 to 11 carbon atoms, or represents cyclopentyl, cyclohexyl, cycloheptyl,
  • R3 and R4 are identical or different and represent straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl, morpholinyl, methoxy, ethoxy, N,N-dimethylamino, N,N-diethylamine or phenyl, which for its part may be substituted up to 3 times by identical or different substituents from the group consisting of methoxy, or
  •  represents cyclopropyl, or
  •  or represents phenyl which is optionally substituted up to 3 times by identical or different substituents from the group consisting of fluorine, chlorine or hydroxyl, methoxy, ethoxy, fluorine or by straight-chain or branched alkyl having up to 3 carbon atoms, which for its part may be substituted by hydroxyl, or
  • R3 and R4 together with the nitrogen atom form a morpholinyl, pyrrolidinyl or piperidinyl ring which are optionally substituted by hydroxyl or by radicals of the formulae —P(O)(OC2H5)2 or —CH2—P(O)OH(OC2H5) or by straight-chain or branched alkyl having up to 3 carbon atoms, which for its part may be substituted by hydroxyl or methoxy, or or
  • R3 and R4 together with the nitrogen atom form a radical of the formula
    embedded image
  •  in which
    • R37 represents pyrimidyl, ethoxycarbonyl or a radical of the formula —CH2—P(O)(OCH3)2 or represents straight-chain or branched alkyl having up to 3 carbon atoms which is optionally substituted by hydroxyl or methoxy,
  • R5 represents hydrogen, and
  • R6 represents ethoxy,


    and their salts and isomeric forms.


Particular preference is furthermore given to compounds of the general formula (I) according to the invention in which R5 represents hydrogen and the ethoxy group is in the O position to the point of attachment of the heterocycle.


Very particular preference is given to compounds according to the invention having the following structures:
embedded imageembedded imageembedded imageembedded imageembedded image

Moreover, we have found a process for preparing the compounds of the general formula (I) according to the invention, characterized in that


[A] initially compounds of the general formula (II)
embedded image

in which

  • R1 and R2 are as defined above and
  • L represents straight-chain or branched alkyl having up to 4 carbon atoms,


    are converted with compounds of the general formula (III)
    embedded image

    in which
  • R5 and R6 are as defined above


    in a two-step reaction, preferably using the system ethanol and then phosphorus oxytrichloride/dichloroethane, into the compounds of the general formula (IV)
    embedded image

    in which
  • R1, R2, R5 and R6 are as defined above,


    in a further step reacted with chlorosulphonic acid to give the compounds of the general formula (V)
    embedded image

    in which
  • R1, R2, R1 and R6 are as defined above,


    and then reacted with amines of the general formula (VI)

    HN3R4  (VI)

    in which
  • R3 and R4 are as defined above


    in inert solvents.


The process according to the invention can be illustrated in an exemplary manner by the equations below:
embedded image


Solvents which are suitable for the individual steps are the customary organic solvents which do not change under the reaction conditions. These preferably include ethers, such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether, or hydrocarbons, such as benzene, toluene, xylene, hexane, cyclohexane or mineral oil fractions, or halogenated hydrocarbons, such as dichloromethane, trichloromethane, carbon tetrachloride, dichloroethane, trichloroethylene or chlorobenzene, or ethyl acetate, dimethylformamide, hexamethylphosphoric triamide, acetonitrile, acetone, dimethoxyethane or pyridine. It is also possible to use mixtures of the above-mentioned solvents. Particular preference is given to ethanol for the first step and dichloroethane for the second step.


The reaction temperature can generally be varied within a relatively wide range. In general, the reaction is carried out in a range of from −20° C. to 200° C., preferably of from 0° C. to 70° C.


The process steps according to the invention are generally carried out under atmospheric pressure. However, it is also possible to operate under superatmospheric pressure or under reduced pressure (for example, in a range of from 0.5 to 5 bar).


The reaction to give the compounds of the general formula (V) is carried out in a temperature range of from 0° C. to room temperature, and at atmospheric pressure.


The reaction with the amines of the general formula (VI) is carried out in one of the abovementioned chlorinated hydrocarbons, preferably in dichloromethane.


The reaction temperature can generally be varied within a relatively wide range. In general, the reaction is carried out at temperatures in a range of from −20° C. to 200° C., preferably of from 0° C. to room temperature.


The reaction is generally carried out at atmospheric pressure. However, it is also possible to operate under superatmospheric pressure or under reduced pressure (for example in a range of from 0.5 to 5 bar).


Some of the compounds of the general formula (II) are known, or they are novel, and they can then be prepared by


converting compounds of the general formula (VII)

R2—CO-T  (VII)

in which

  • R2 is as defined above and
  • T represents halogen, preferably represents chlorine,


    initially by reaction with compounds of the general formula (VIII)
    embedded image

    in which
  • R1 is as defined above


    in inert solvents, if appropriate in the presence of a base and trimethylsilyl chloride, into the compounds of the general formula (IX)
    embedded image

    in which
  • R1 and R2 are each as defined above,


    and finally reacting with the compound of the formula (X)
    embedded image

    in inert solvents, if appropriate in the presence of a base.


Suitable solvents for the individual steps of the process are the customary organic solvents which do not change under the reaction conditions. These preferably include ethers, such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether, or hydrocarbons, such as benzene, toluene, xylene, hexane, cyclohexane or mineral oil fractions, or halogenated hydrocarbons, such as dichloromethane, trichloromethane, carbon tetrachloride, dichloroethylene, trichloroethylene or chlorobenzene, or ethyl acetate, dimethylformamide, hexaamethylphosphoric triamide, acetonitrile, acetone, dimethoxyethane or pyridine. It is also possible to use mixtures of the above-mentioned solvents. Particular preference is given to dichloromethane for the first step and to a mixture of tetrahydrofuran and pyridine for the second step.


Suitable bases are generally alkali metal hydrides or alkali metal alkoxides, such as, for example, sodium hydride or potassium tert-butoxide, or cyclic amines, such as, for example, piperidine, pyridine, dimethylaminopyridine or C1-C4 alkylamines, such as, for example, triethylamine. Preference is given to triethylamine, pyridine and/or dimethylaminopyridine.


The base is generally employed in an amount of from 1 mol to 4 mol, preferably from 1.2 mol to 3 mol, in each case based on 1 mol of the compound of the formula (X).


The reaction temperature can generally be varied within a relatively wide range. In general, the reaction is carried out in a range of from −20° C. to 200° C., preferably of from 0° C. to 100° C.


The compounds of the general formulae (VII), (VIII), (IX) and (X) are known per se, or they can be prepared by customary methods.


The compounds of the general formula (II) can be prepared by


reacting compounds of the general formula (XI)
embedded image

in which

  • R5 and R6 are each as defined above


    with ammonium chloride in toluene and in the presence of trimethylaluminium in hexane in a temperature range of from −20° C. to room temperature, preferably at 0° C. and atmospheric pressure, and reacting the resulting amidine, if appropriate in situ, with hydrazine hydrate, to give the compounds of the general formula (III).


The compounds of the general formula (XI) are known per se, or they can be prepared by customary methods.


Most of the compounds of the general formula (IV) and (V) are novel, and they can be prepared as described above.


The amines of the general formula (VI) are known or can be prepared by customary methods.


The compounds of the general formula (I) according to the invention have an unforeseeable useful pharmacological activity spectrum.


They inhibit either one or more of the cGMP-metabolizing phosphodiesterases (PDE I, PDE II and PDE V). This results in an increase of cGMP. The differentiated expression of the phosphodiesterases in different cells, tissues and organs, as well as the differentiated subcellular localization of these enzymes, in combination with the selective inhibitors according to the invention make it possible to selectively address the various cGMP-regulated processes.


Moreover, the compounds according to the invention enhance the activity of substances such as, for example EDRF (endothelium derived relaxing factor), ANP (atrial natriuretic peptide), of nitrovasodilators and all other substances which increase the cGMP concentration in a manner different from that of phosphodiesterase inhibitors.


They can therefore be employed in pharmaceuticals for treating cardiovascular disorders, such as, for example, for treating hypertension, neuronal hypertonia, stable and unstable angina, peripheral and cardial vasculopathies, arrhythmiae, for treating thromboembolic disorders and ischaemias such as myocardial infarction, stroke, transistory and ischaemic attacks, angina pectoris, obstruction of peripheral circulation, prevention of restenoses after thrombolysis therapy, percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasties (PTCA) and bypass. Furthermore, they may also be of significance for cerebrovascular disorders.


They are also suitable for treating all disorders in which a relaxing action on smooth muscles is of importance, such as, for example, erectile dysfunction and female sexual dysfunction.


Activity of the Phosphodiesterases (PDEs)


The cGMP-stimulated PDE II, the cGMP-inhibited PDE III and the cAMP-specific PDE IV were isolated either from porcine or bovine heart myocardium. The Ca2+ -calmodulin-stimulated PDE I was isolated from porcine aorta, porcine brain or, preferably, from bovine aorta. The cGMP-specific PDE V was obtained from porcine small intestine, porcine aorta, human platelets and, preferably, from bovine aorta.


Purification was carried out by anion exchange chromatography over MonoQ® Pharmacia, essentially following the method of M. Hoey and Miles D. Houslay, Biochemical Pharmacology, Vol. 40, 193-202 (1990) and C. Lugman et al., Biochemical Pharmacology, Vol. 35, 1743-1751 (1986).


The “phosphodiesterase [3H] cAMP-SPA enzyme assay” and the “phosphodiesterase [3H] cGMP-SPA enzyme assay” from Amersham Life Science were used for determining enzyme activity and IC50 values of the various substances. The test was carried out according to the test protocol of the manufacturer. To determine the activity of PDE2, the [3H]cAMP SPA assay was used, and 106 M cGMP were added to the reaction mixture to activate the enzyme. To measure PDE1, 10−7 M calmodulin and 1 mM CaCl2 were added to the reaction mixture. PDE5 was measured using the [3H]cGMP SPA assay.


The substances preferably inhibit phosphodiesterases I and V. For both enzymes, the IC50 values are in the range from 500 [lacuna] to 1 mM for PDE V preferably in the range from 1 to 100, for PDE I preferably in the range from 10 to 300 mM.


In principle, inhibition of one or more phosphodiesterases of this type results in an increase of the cGMP concentration. Thus, the compounds are of interest for all therapies in which an increase in the cGMP concentration is considered to be beneficial.


The cardiovascular effects were investigated using SH rats and dogs. The substances were administered intravenously or orally.


The novel active compounds and their physiologically acceptable salts (for example hydrochlorides, maleates or lactates) can be converted in a known manner into the customary formulations, such as tablets, coated tablets, pills, granules, aerosols, syrups, emulsions, suspensions and solutions, using inert non-toxic, pharmaceutically suitable excipients or solvents. In this case the therapeutically active compound should in each case be present in a concentration of from approximately 0.5 to 90% by weight of the total mixture, i.e. in amounts which are sufficient in order to achieve the dosage range indicated.


The formulations are prepared, for example, by extending the active compounds using solvents and/or excipients, if appropriate using emulsifiers and/or dispersants, it optionally being possible, for example, to use organic solvents as auxiliary solvents if the diluent used is water.


Administration is carried out in a customary manner, preferably orally, transdermally or parenterally, for example perlingually, buccally, intravenously, nasally, rectally or inhalatively.


In spite of this, if appropriate it may be necessary to depart from the amounts mentioned, namely depending on the body weight or the type of administration route, on the individual response towards the medicament, the manner of its formulation and the time or interval at which administration takes place. Thus, in some cases it may be adequate to manage with less than the abovementioned minimum amounts, while in other cases the upper limit mentioned has to be exceeded. In the case of the administration of relatively large amounts, it may be advisable to divide these into several individual doses over the course of the day.


For human use, in the case of oral administration, doses of from 0.001 to 30 mg/kg, preferably of 0.01 mg/kg-10 mg/kg are administered. In the case of parenteral administration, it is good practice to use doses of 0.001 mg/kg-/2 mg/kg.


The compounds according to the invention are also suitable for use in veterinary medicine. For use in veterinary medicine, the compounds or their non-toxic salts can be administered in a suitable formulation in accordance with general veterinary practice. Depending on the kind of animal to be treated, the veterinary surgeon can determine the nature of use and the dosage.


Starting Materials







EXAMPLE 1A

2-Cyclopentanoylamino-propionic acid
embedded image


16.8 g (0.189 mol) of D,L-alanine and 41.98 g (0.415 mol) of triethylamine are initially charged in 200 ml of dichloromethane. At 0° C., 45.07 g (0.415 mol) of trimethylsilyl chloride are added dropwise, and the mixture is then stirred at room temperature for 1 h and then at 40° C. for 1 h. The solution is cooled to −10° C. and 25 g (0.189 mol) of cyclopentanecarbonyl chloride are added dropwise. The mixture is stirred at −10° C. for 2 h and at room temperature for 1 h. With ice-cooling, 100 ml of water are added, and the mixture is then stirred for 10 min and the resulting precipitate is filtered off with suction. The precipitate is washed with 300 ml of water and then with 300 ml of diethyl ether and subsequently dried at 60° C.


Yield: 25.8 g (73.9% of theory)



1H-NMR (CD3OD): 1.35 (d, 3H); 1.5-1.9 (m, 8H); 2.7 (quin, 1H); 4.5 (quar., 1H):


EXAMPLE 2A

2-Cyclopentanoylamino-butyric acid
embedded image


10.31 g of 2-aminobutyric acid (100 mmol) and 22.26 g (220 mmol) of triethylamine are dissolved in 100 ml of dichloromethane, and the solution is cooled to 0° C. 23.90 g (220 mmol) of trimethylsilyl chloride are added dropwise, and the solution is stirred at room temperature for 1 hour and at 40° C. for 1 hour. After cooling to −10° C., 13.26 g (100 mmol) of cyclopentanecarbonyl chloride are added dropwise, and the resulting mixture is stirred at −10° C. for 2 hours and at room temperature for 1 hour.


With ice-cooling, 50 ml of water are added dropwise and the reaction mixture is stirred at room temperature for 15 minutes. The mixture is diluted with water and dichloromethane and the resulting precipitate is filtered off with suction: 11.1 g (55%) of a colourless solid. The dichloromethane phase is dried over sodium sulphate and the solvent is removed under reduced pressure. The residue is stirred with toluene and the precipitate is filtered off with suction: 5.75 g (28%) of a colourless solid:


200 MHz 1H-NMR (DMSO-d6): 0.88 (t, 3H); 1.61 (m, 10H); 2.66 (m, 1H); 4.09 (hex., 1H); 7.97 (d, 1H); 12.44 (s, 1H).


EXAMPLE 3A

2-(2-Ethyl)-butanoylaminopropionic acid
embedded image


24.5 g (0.275 mol) of D,L-alanine are initially charge in 250 ml of dichloromethane, and 61.2 g (0.605 mol) of triethylamine are added. The mixture is cooled to 0° C. and 65.7 g (0.605 mol) of trimethylsilyl chloride are added. The mixture is stirred at room temperature for 1 hour and at 40° C. for 1 hour. The mixture is cooled to −10° C., and 37 g (0.275 mol) of 2-ethylbutyryl chloride are added dropwise. The mixture is stirred at −100C for 2 hours and at room temperature overnight. The mixture is cooled in an ice-bath and 150 ml of water are added dropwise. 50 g (1.25 mol) of NaOH dissolved in 100 ml of water, are added, and the aqueous phase is separated off and concentrated. The residue is again taken up in water and acidified with concentrated hydrochloric acid, the aqueous solution is extracted repeatedly with dichloromethane and the organic phase is dried over Na2SO4 and concentrated.


Yield: 43.55 g (84.6% of theory)


200 MHz 1H-NMR (CDCl3): 0.91 (t, 6H); 1.5 (d, 3H); 1.52-1.73 (m, 4H); 1.99 (m, 1H); 4.61 (p, 1H); 6.25 (d, 1H); 6.76 (bs, 1H).


EXAMPLE 4A

2-(2-Ethyl)-octanoylamino-propionic acid
embedded image


18.6 g (0.211 mol) of D,L-alanine and 46.6 g (0.41 mol) of triethylamine are initially charged in 300 ml of dichloromethane. at 0° C., 50.09 g (0.461 mol) of trimethylsilyl chloride are added dropwise, and the mixture is stirred at room temperature for 1 h and then at 40° C. for 1 h. The solution is cooled to −10° C., and 40 g (0.21 mol) of 2-ethyloctanoyl chloride in 50 ml of dichloromethane are added dropwise. The mixture is stirred at room temperature overnight, and 100 ml of water are then added dropwise with ice-cooling, and the mixture is stirred for another 10 minutes. The phases are separated, the aqueous phase is extracted twice with in each case 100 ml of dichloromethane and the combined organic phases are dried over sodium sulphate and evaporated under reduced pressure. The residue is recrystallized from toluene by adding n-hexane and dried at 60° C.


Yield: 3.9 g (78.2%)



1H-NMR (CDCl3): 0.9 (m, 6h); 1.25 (pseudo s, 8H); 1.45 (d, 3H); 1.4-1.7 (m, 4H); 2.0 (m, 1H); 4.6 (quin. 1H); 6.1 (d, 1H).


EXAMPLE 5A

2-Hexanoylamino-propionic acid
embedded image


The preparation is carried out analogously to the procedure of Example 4A using 16.5 g (0.185 mol) of D,L-alanine, 41.23 g (0.407 mol) of triethylamine, 44.27 g (0.407 mol) of trimethylsilyl chloride and 24.93 g (0.185 mol) of hexanoyl chloride. The product crystallizes from toluene/n-hexane.


Yield: 33 g (95.2%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.2-1.4 (m, 7H); 1.6 (quin, 2H); 2.2 (t, 2H); 4.35 (quin, 1H).


EXAMPLE 6A

2-Octanoylamino-propionic acid
embedded image


The preparation is carried out analogously to the procedure of Example 4A using 16.5 g (0.185 mol) of D,L-alanine, 41.23 g (0.407 mol) of triethylamine, 44.27 g (0.407 mol) of trimethylsilyl chloride and 30.12 g (0.185 mol) of octanoyl chloride. The product crystallizes from toluene/n-hexane.


Yield: 34.3 g (86%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.2-1.4 (m, 11H); 1.6 (quin. 2H); 2.2 (t, 2H); 4.35 (quin. 1H).


EXAMPLE 7A

2-Heptanoylamino-propionic acid
embedded image


30 g (291 mmol) of methyl D,L-alaninate hydrochloride and 64.77 g (640 mmol) of triethylamine are initially charged in 300 ml of dry methylene chloride, at 0° C. 43.24 g (291 mmol) of heptanoyl chloride in 50 ml of methylene chloride are added dropwise. The mixture is allowed to warm to room temperature and stirred at this temperature for 2 h. The precipitate is filtered off, and the methylene chloride phase is extracted with saturated sodium bicarbonate solution and with saturated sodium chloride solution and dried over sodium sulphate. The solvent is removed under reduced pressure and the residue is dissolved in 300 ml of methanol. 300 ml of water, in which 46.55 g (1164 mmol) of sodium hydroxide are dissolved, is added to this solution, and the mixture is stirred at RT for 2 h. The mixture is filtered, the methanol is removed using a rotary evaporator and the aqueous phase that remains is acidified with conc. Hcl to pH 1-2. The precipitated product is filtered off and dried. A second product fraction is obtained by extracting the aqueous phase with ethyl acetate.


Yield: 50 g (85.4%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.2-1.4 (m, 9H); 1.6 (quin., 2H); 2.2 (t, 2H); 4.38 (quar., 1H).


EXAMPLE 8A

2-Decanoylamino-propionic acid
embedded image


The preparation is carried out analogously to the procedure of Example 7A using 19.0 g (184 mmol) of methyl D,L-alaninate hydrochloride and 35.14 g (184 mmol) of decanoyl chloride.


Yield: 37.3 g (83.2%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.2-1.4 (m, 15H); 1.6 (m, 2H); 2.2 (t, 2H); 4.35 (quar., 1H).


EXAMPLE 9A

2-(2-n-Propyl)-pentanoylamino-propionic acid
embedded image


The preparation is carried out analogously to the procedure of Example 7A using 20.94 g (150 mmol) of methyl D,L-alaninate hydrochloride and 24.4 g (150 mmol) of 2-n-propylpentanoyl chloride.


Yield: 21.7 g (88.9%)



1H-NMR (CD3OD): 0.9 (t, 6H); 1.2-1.4 (m, 9H); 1.55 (m, 2H); 2.25 (m, 1H); 4.4 (quar., 1H).


EXAMPLE 10A

2-Cycloheptanoylamino-propionic acid
embedded image


The preparation is carried out analogously to the procedure of Example 7A using 20 g (143 mmol) of methyl D,L-alaninate hydrochloride and 23.02 g (143 mmol) of cycloheptanoyl chloride.


Yield: 16 g (52.4%)



1H-NMR (CD3OD): 1.35 (d, 3H); 1.45-1.65 (m, 8H); 1.7-1.95 (m, 4H); 2.35 (m, 1H); 4.25 (quar., 1H).


EXAMPLE 11A

2-Ethoxy-benzonitrile
embedded image


25 g (210 mmol) of 2-hydroxybenzonitrile, 87 g of potassium carbonate and 34.3 g (314.8 mmol) of ethyl bromide in 500 ml of acetone are refluxed overnight. The solid is filtered off, the solvent is removed under reduced pressure and the residue is distilled under reduced pressure. This gives 30.0 g (97%) of a colourless liquid.


200 MHz 1H-NMR (DMSO-d6): 1.48 (t, 3H); 4.15 (quart., 2H); 6.99 (dt, 2H); 7.51 (dt, 2H).


EXAMPLE 12A

2-Ethoxy-benzamidine hydrochloride
embedded image


21.4 g (400 mmol) of ammonium chloride are suspended in 375 ml of toluene, and the suspension is cooled to 0° C. 200 ml of a 2M solution of trimethylaluminium in hexane are added dropwise, and the mixture is stirred at room temperature until evolution of gas has ceased. 29.44 g (200 mmol) of 2-ethoxybenzonitrile are added, and the reaction mixture is then stirred at 80° C. (bath) overnight. The cooled reaction mixture is, with ice-cooling, added to a suspension of 100 g of silica gel and 950 ml of chloroform, and the mixture is stirred at room temperature for 30 minutes. The mixture is filtered off with suction and the filter residue is washed with the same amount of methanol. The mother liquor is evaporated, the resulting residue is stirred with a mixture of dichloromethane and methanol (9:1), the solid is filtered off with suction and the mother liquor is evaporated. This gives 30.4 g (76%) of a colourless solid.


200 MHz 1H-NMR (DMSO-d6): 1.36 (t, 3H); 4.12 (quart., 2H); 7.10 (t, 1H); 7.21 (d, 1H); 7.52 (m, 2H); 9.30 (s, broad, 4H).


EXAMPLE 13A

2-Propoxybenzonitrile
embedded image


75 g (630 mmol) of 2-hydroxybenzonitrile, 174 g (1.26 mol) of potassium carbonate and 232.3 g (1.89 mol) of n-propyl bromide in 111 of acetone are refluxed overnight.


The solid is filtered off, the solvent is removed under reduced pressure and the residue is distilled under reduced pressure.


B.p.: 89° C. (0.7 mbar)


Yield: 95.1 g (93.7% of theory)


EXAMPLE 14A

2-Propoxybenzamidine hydrochloride
embedded image


21.41 g (400 ml) of ammonium chloride are suspended in 400 ml of toluene and cooled to from 0 to 5° C. 200 ml of a 2M solution of triethylaluminium in hexane are added dropwise, and the mixture is stirred at room temperature until evolution of gas has ceased. 32.2 g (200 mmol) of 2-propoxybenzonitrile are added, and the reaction mixture is then stirred at 80° C. (bath) overnight. The cooled reaction mixture is, with ice-cooling, added to a suspension of 300 g of silica gel and 2.85 ml of ice-cold chloroform and stirred for 30 minutes. The mixture is filtered off with suction and the filter residue is washed with the same amount of methanol. The solvent is distilled off under reduced pressure, the residue is stirred with 500 ml of a mixture of dichloromethane and methanol (9:1), the solid is filtered off and the mother liquor is evaporated. The residue is stirred with petroleum ether and filtered off with suction. This gives 22.3 g (52%) of product.


200 MHz 1H-NMR (CD3OD): 1.05 (t, 3H); 1.85 (sex, 2H); 4.1 (t, 2H); 7.0-7.2 (m, 2H); 7.5-7.65 (m, 2H).


EXAMPLE 15A

2-(2-Ethoxyphenyl)-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


19.9 g (0.1 mol) of 2-cyclopentanoylamino-propionic acid (Example 1A), 24 ml of pyridine and 0.5 g of 4-dimethylaminopyridine are refluxed in 100 ml of absolute tetrahydrofuran, and 27.27 g (0.2 mol) of ethyl oxalyl chloride are added dropwise. The mixture is boiled at reflux for 90 minutes, cooled and put into 200 ml of ice-water. The mixture is extracted 3 times with ethyl acetate and the combined ethyl acetate phases are dried over sodium sulphate and evaporated. The residue is taken up in 30 ml of methanol and, after addition of 4.75 g of sodium bicarbonate, refluxed for 2.5 h. The mixture is filtered off and the resulting methanolic solution of the α-keto ester is directly reacted further, without further purification.


With ice-cooling, 4.99 g (0.1 mol) of hydrazine monohydrate are added dropwise to a solution of 20 g (0.1 mol) of 2-ethoxy-benzamidine hydrochloride (Example 12A) in 120 ml of ethanol, and the mixture is stirred at room temperature for 10 minutes. The methanolic solution of the α-keto ester described above is added dropwise to the suspension, and the mixture is stirred at 70° C. for 4 h. Following filtration, the solution is evaporated, the residue is partitioned between dichloromethane and water and the organic phase is, after drying over sodium sulphate, evaporated.


The residue is taken up in 150 ml of 1,2-dichloroethane, and 17 ml of phosphorus oxychloride are added dropwise. The mixture is stirred under reflux for 2 h and then cooled, washed twice with saturated sodium bicarbonate solution and dried over sodium sulphate. The organic phase is evaporated and the residue is chromatographed over silica gel using the mobile phase dichloromethane/methanol 50:1. The product-containing fractions are combined and evaporated. The product can be crystallized from ethyl acetate/petroleum ether.


Yield: 7.1 g (20.9%), white solid



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-1.8 (m, 2H); 1.8-2.0 (m, 4H); 2.05-2.2 (m, 2H); 2.6 (s, 3H); 3.65 (quin., 1H); 4.2 (quar, 2H); 7.1 (t, 1H); 7.15 (d, 1H); 7.5 (t, 1H); 7.7 (d, 1H).


EXAMPLE 16A

2-(2-Ethoxyphenyl)-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 8.77 g (44 mmol) of 2-cyclopentanoylamino-butyric acid (Example 2A) and 8.83 g (44 mmol) of 2-ethoxy-benzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase cyclohexane/ethyl acetate (6:4).


Yield: 0.355 g (6.7%), white solid



1H-NMR (CDCl3): 1.32 (t, 3H); 1.57 (t, 3H); 1.94 (m, 8H); 3.03 (quar, 2H); 3.64 (quin, 1H); 4.27 (quar, 2H), 7.06 8d, 1H); 7.12 (t, 1H); 7.50 (t, 1H); 8.16 (dd, 1H); 9.91 (s, 1H).


EXAMPLE 17A

2-(2-Propoxyphenyl)-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 8.33 g (45 mmol) of 2-cyclopentanoylamino-propionic acid (Example 1A) and 9.65 g (45 mmol) of 2-propoxybenzamidine hydrochloride (Example 14A). The product is purified by silica gel chromatography using the mobile phase dichloromethane/methanol (50:1). The product can be crystallized from ethyl acetate/petroleum ether.


Yield: 1.82 g (11.5%), white solid



1H-NMR (CDCl3): 1.15 (t, 3H); 1.7 (m, 2H); 1.95 (m, 4H); 2.15 (m, 2H); 2.65 (s, 3H); 3.65 (quin, 1H); 4.15 (t, 2H); 7.05 (d, 1H); 7.1 (t, 1H); 7.5 (td, 1H); 8.2 (dd, 1H).


EXAMPLE 18A

2-(2-Ethoxyphenyl)-5-methyl-7-(2-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 21.45 g (0.1 mol) of 2-(2-ethyl)-butyrylamino-propionic acid (Example 3A) and 20.6 g (0.1 mol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase dichloromethane/methanol 60:1.


Yield: 7.22 g (21.3%)


200 MHz 1H-NMR (CDCl3): 0.87 (t, 6H); 1.57 (t, 3H); 1.88 (m, 4H); 2.67 (s, 3H); 3.28 (m, 1 h); 4.28 (q, 2H); 7.05 (d, 1H); 7.13 (dt, 1H); 8.15 (dd, 1H).


EXAMPLE 19A

2-(2-Ethoxyphenyl)-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 10.95 g (45 mmol) of 2-(2-ethyl)octanoylamino-propionic acid (Example 4A) and 9.03 g (45 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase dichloromethane/methanol 100:1.


Yield: 2.76 g (15.5%), yellow oil



1H-NMR (CDCl3): 0.75-0.9 (m, 6H); 1.1-1.4 (m, 8H); 1.5 (t, 3h); 1.8-2.05 (m, 4h); 2.7 (s, 3H); 3.4 (quin, 1H); 4.3 (t, 2H); 7.05-7.2 (pseudo quar 2h); 7.5 (td, 1H); 8.2 (dd, 1H); 10.4 (broad, 1H).


EXAMPLE 20A

2-(2-Propoxyphenyl)-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 10.95 g (45 mmol of 2-(2-ethyl)-octanoylamino-propionic acid (Example 4A) and 9.66 g (45 mmol) of 2-propoxybenzamidine hydrochloride (Example 14A). The product is purified by silica gel chromatography using the mobile phase dichloro-methane/methanol 60:1.


Yield: 3.7 g (20%), yellow oil



1H-NMR (CDCl3): 0.75-0.9 (m, 6H); 1.15 (t, 3h); 1.1-1.35 (m, 8H); 1.75-2.1 (m, 6h); 2.7 (s, 3H); 3.4 (quin, 1H); 4.2 (t, 2H); 7.05-7.2 (pseudo quar, 2H); 7.5 (td, 1H), 8.2 (dd, 1H); 10.2 (broad, 1H).


EXAMPLE 21A

2-(2-Ethoxyphenyl)-5-methyl-7-pentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 9.36 g (50 mmol of 2-hexanoylamino-propionic acid (Example 5A) and 10.1 g (50 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase dichloromethane/methanol 50:1.


Yield: 3.1 g (18.3%), oil



1H-NMR (CD3OD): 0.9 (t, 3H); 1.3-1.4 (m, 4h); 1.45 (t, 3H); 1.8 (quin, 2H); 2.1 (s, 3H); 3.0 (t, 2H); 4.2 (quar, 2H); 7.1 (t, 1H); 7.15 (d, 1H); 7.5 (td, 1H); 7.7 (dd, 1H).


EXAMPLE 22A

2-(2-Ethoxyphenyl)-5-methyl-7-heptyl-3H-imdazo-[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 14.7 g (68.1 mmol) of 2-octanoylamino-propionic acid (Example 6A) and 13.66 g (68.1 mmol) of 2-ethoxybenzamidine hdyrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase dichloromethane/methanol 50:1.


Yield: 4.65 g (18.5%), oil



1H-NMR (CD3OD): 0.85 (t, 3H); 1.2-1.4 (m, 8H); 1.45 (t, 3H); 2.8 (quin, 2H); 2.6 (s, 3H); 3.0 (t, 2H); 4.2 (quar, 2H); 7.1 (t, 1H); 7.2 (d, 1H); 7.55 (td, 1H), 7.7 (dd, 1H).


EXAMPLE 23A



embedded image


The preparation is carried out analogously to the procedure of Example 15A using 14.1 g (70 mmol) of 2-heptanoylamino-propionic acid (Example 7A) and 14.05 g (70 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase petroleum ether/ethyl acetate 1:1.


Yield: 3.5 g (14.1%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.3-1.45 (m, 6H); 1.4 (t, 3H); 1.7-1.9 (m, 2H); 2.15 (s, 3H); 3.1 (t, 2H); 4.2 (quar., 2H); 7.1 (t, 1H); 7.15 (d, 1H); 7.05 (td, 1H); 7.7 (dd, 1H).


EXAMPLE 24A

2-(2-Ethoxyphenyl)-5-methyl-7-n-3H-imidazo[5,1-f]-[1,2,4-]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 17.0 g (70 mmol) of 2-decanoylamino-propionic acid (Example 8A) and 14.05 g (70 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase petroleum ether/ethyl acetate 1:1.


Yield: 3.5 g (14.1%)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.3-1.45 (m, 6H); 1.4 (t, 3H); 1.7-1.9 (m, 2H); 2.15 (s, 3H); 3.1 (t, 2H); 4.2 (quar., 2H); 7.1 (t, 1H); 7.15 (d, 1H); 7.05 (td, 1H), 7.7 (dd, 1H).


EXAMPLE 24B

2-(2-Ethoxyphenyl)-5-methyl-7-n-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 17.0 g (70 mmol) of 2-decanoylamino-propionic acid (Example 8A) and 14.05 g (70 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase methylene chloride/methanol 50:1. The product can then be crystallized from petroleum ether.


Yield: 4.64 g (16.7%)



1H-NMR (CD3OD): 0.85 (t, 3H); 1.2-1.4 (m, 12H), 1.45 (t, 3H); 1.86 (quin., 2H); 2.6 (s, 3H); 3.0 (t, 2H); 4.2 (quar., 2H); 7.05 (t, 1H); 7.15 (d, 1H); 7.5 (td, 1H); 7.7 (dd, 1H).


EXAMPLE 25A

2-(2-Ethoxyphenyl)-5-methyl-7-(2-n-propylbutyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 10.72 g (49.8 mmol) of 2-(2-n-propyl)-pentanoylamino-propionic acid (Example 9A) and 10.0 g (49.8 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase methylene chloride/methanol 100:1, then 50:1. The product can be recrystallized from diethyl ether.


Yield: 1.8 g (9.8%)


M.p.: 150° C.


EXAMPLE 26A

2-(Ethoxyphenyl)-5-methyl-7-cycloheptyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 15A using 14.9 g (70 mmol) of 2-cycloheptanoylamino-propionic acid (Example 10A) and 14 g (70 mmol) of 2-ethoxybenzamidine hydrochloride (Example 12A). The product is purified by silica gel chromatography using the mobile phase methylene chloride/methanol 10:1, and then 50:1.


Yield: 5.35 g (20.9%)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.6-2.0 (m, 10H); 2.1-2.2 (m, 2H); 2.7 (s, 3H); 3.65 (quin., 1H); 4.2 (quar., 2H); 7.1 (t, 1H); 7.2 (d, 1H); 7.6 (td, 1H); 7.75 (dd, 1H).


EXAMPLE 27A

4-Ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


At 0° C., 7.0 g (20.7 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one (Example 15A) are added carefully to 24.1 g (207 mmol) of chlorosulphuric acid. The mixture is allowed to warm to room temperature and stirred overnight. The solution is carefully added to 200 ml of ice-water and extracted twice with dichloromethane. The combined organic phases are dried over sodium sulphate and the solvent is distilled off under reduced pressure.


The sulphonyl chloride is dried under reduced pressure and reacted further to the sulphonamides without further purification.


Yield: 7.95 g (88%), white foam



1H-NMR (CDCl3): 1.6 (t, 3H); 1.7 (m, 2H); 1.95 (m, 4H); 2.15 (m, 2H); 2.65 (s, 3H); 3.71 (quin, 1H); 4.4 (quar, 2H); 7.25 (d, 1H); 8.2 (dd, 1H); 8.7 (d, 1H); 9.9 (s, 1H).


EXAMPLE 28A

4-Ethoxy-3-(5-ethyl-4-oxo-7-cyclopentyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 0.34 g (0.96 mmol) of 2-(2-ethoxyphenyl)-5-ethyl-7-cyclopentyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-one (Example 16A). This gives 0.43 g (98%) of sulphonyl chloride as a colourless foam which is directly reacted further.


EXAMPLE 29A

4-Propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 0.7 g (2 mmol) of 2-(2-propoxyphenyl)-5-methyl-7-cyclopentyl-3H-imidazo-[5,1-f][12,4]triazin-4-one (Example 17A). This gives 0.8 g (89.3%) of sulphonyl chloride as a white foam which is directly reacted further.


EXAMPLE 30A

4-Ethoxy-3-(5-methyl-4-oxo-7-(2-ethylpropyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 7.23 g (0.12 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-(2-ethylpropyl)-3H-imidazo-[5,1-f][1,2,4]-triazin-4-one (Example 18A). This gives 8.56 g (91.9%) of sulphonyl chloride as a white solid which is directly reacted further.


EXAMPLE 31A

4-Ethoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-imidazo[5,1f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 5.6 g (14.1 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-(2-ethylheptyl)-3H-imidazo-[5,1-f][1,2,4]-triazin-4-one (Example 19A). This gives 3.7 g (52.9%) of sulphonyl chloride as a slightly yellow foam which is directly reacted further.


EXAMPLE 32A

4-Propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 1.4 g (3.41 mmol) of 2-(2-propoxyphenyl)-5-methyl-7-(2-ethylheptyl)-3H-imidazo-[5,1-f]-[1,2,4]-triazin-4-one (Example 20A). This gives 1.4 g (80.6%) of sulphonyl chloride as a white foam which is directly reacted further.


EXAMPLE 33A

4-Ethoxy-3-(5-methyl-4-oxo-7-pentyl-3H-imidazo-[5,1f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 0.3 g (0.88 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-pentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one (Example 21A). This gives 0.3 g (77.6%) of sulphonyl chloride as a white foam which is directly reacted further.


EXAMPLE 34A

4-Ethoxy-3-(5-methyl-4-oxo-7-heptyl-3H-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 0.3 g (0.81 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-heptyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-one (Example 22A). This gives 0.3 g (78.9%) of sulphonyl chloride as a white foam which is directly reacted further.


EXAMPLE 35A

4-Ethoxy-3-(5-methyl-4-oxo-7-n-hexyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 300 mg (0.84 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-n-hexyl-3H-imidazo-[5,1-f][1,2,4]-triazin-4-one (Example 23A) and 0.98 g (8.4 mmol) of chlorosulphuric acid. This gives 300 mg (78.7%) of sulphonyl chloride which is directly reacted further.


EXAMPLE 36A

4-Ethoxy-3-(5-methyl-4-oxo-7-n-nonyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 400 mg (1 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-n-nonyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-one (Example 24A) and 1.18 g (10 mmol) of chlorosulphuric acid. This gives 402 mg (80.1%) of sulphonyl chloride which is directly reacted further.


EXAMPLE 37A

4-Ethoxy-3-(5-methyl-4-oxo-7-(2-n-propylbutyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 300 mg (0.81 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-(2-n-propylbutyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one (Example 25A) and 950 mg (8.1 mmol) of chlorosulphuric acid. This gives 300 g (78.9%) of sulphonyl chloride which is directly reacted further.


EXAMPLE 38A

4-Ethoxy-(5-methyl-4-oxo-7-cycloheptyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride
embedded image


The preparation is carried out analogously to the procedure of Example 27A using 400 mg (1.1 mmol) of 2-(2-ethoxyphenyl)-5-methyl-7-cycloheptyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-one (Example 26A) and 1.27 g (11 mmol) of chlorosulphuric acid. This gives 402 mg (78.6%) of sulphonyl chloride which is directly reacted further.


PREPARATION EXAMPLES
Example 1

2-[2-Ethoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


60 mg (0.137 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f]-[1,2,4]triazin-2-yl)-benzenesulphonyl chloride are dissolved in 10 ml of dichloromethane. 30 mg (0.343 mmol) of N-methylpiperazine are added, and the mixture is stirred at room temperature overnight. The mixture is washed twice with saturated ammonium chloride solution, dried over sodium sulphate and evaporated. The residue is purified by silica gel flash chromatography (dichloro-methane/methanol 50:1).


Yield: 52 mg (75.6%)


Rf=0.52 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.6-1.75 (m, 2H); 1.8-2.0 (m, 4H); 2.05-2.2 (m, 2H); 2.3 (s, 3H); 2.5-2.55 (m, 4H); 2.6 (m, 3H); 3.0 (s broad, 3H); 3.6 (quin, 1H); 4.3 (quar, 2H); 7.4 (d, 1H); 7.6 (dd, 1H); 8.0 (d, 1H).


Example 2

2-[2-Ethoxy-5-(N,N-bis-2-hydroxyethyl-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 800 mg (1.83 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 420 mg (4.03 mmol) of N,N-bis-2-hydroxyethylamine. This gives 530 mg (57.3%) of sulphonamide.


Rf=0.51 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-1.75 (m, 2H); 1.8-1.95 (m, 4H); 2.05-2.2 (m, 2H); 2.6 (s, 3H); 3.2-3.3 (m, 4H); 3.6 (quin 1H); 3.7 (t, 4H); 4.3 (quar, 2H); 7.35 (d, H); 8.0 (dd, 1H); 8.13 (d, 1H).


Example 3

2-[2-Ethoxy-5-(3-(4-morpholino)-propyl)-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 2.0 g (4.58 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f]-[1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 2.2 g (10.07 mmol) of 4-(3-aminopropyl)-morpholine. This gives 1.67 g (67%) of sulphonamide.


Rf=0.45 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.55-2.2 (m, 10H); 2.3-2.45 (m, 4H); 2.6 (s, 3H); 2.9 (t, 2H); 3.55-3.7 (m, 4H); 4.3 (quar. 2H); 7.3 (d, 1H); 8.0 (dd,); 8.1 (d, 1H).


Example 4

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 2.0 g (4.58 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 2.2 g (10.1 mmol) of N-(2-hydroxyethyl)piperazine. This gives 1.8 g (74.1%) of sulphonamide.


Rf=0.51 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.6-2.2 (m, 8H); 2.5 (t, 2H); 2.55-2.65 (m, 7H); 3.0-3.1 (m, 4H); 3.6 (t, +quin. 3H); 4.3 (quar. 2H); 7.35 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 5

2-[2-Ethoxy-5-(4-N-ethoxycarbonylmethyl-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.23 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 90 mg (0.504 mmol) of N-(carboethoxymethyl)piperazine. This gives 57 mg (43.5%) of sulphonamide.


Rf=0.53 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.25 (t, 3H); 1.45 (t, 3H); 1.65-2.2 (m, 8H); 2.5 (s, 3H); 2.6-2.7 (m, 4H); 3.0-3.1 (m, 4H); 3.25 (s, 2H); 3.6 (quin., 1H); 4.15 (quar, 2h); 4.3 (quar, 2H); 7.35 (d, 1H); 7.95 (dd, 1H); 8.0 (d, 1H).


Example 6

2-[2-Ethoxy-5-(4-N-carboxymethyl-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


50 mg (0.084 mmol) of the ester from Example 5 and 10 mg (0.335 mmol) of sodium hydride are stirred at room temperature in 4 ml of methanol/water 3:1 for 30 minutes.


The mixture is evaporated and the residue is purified by silica gel chromatography (mobile phase: methanol/dichloromethane 10:1).


Yield: 39 mg (85.4%)


Rf=0.671 (CH2Cl2/MeOH 10:1+1% AcOH)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-2.2 (m, 2H); 2.1 (s, 3H); 2.15-2.25 (m, 4H); 3.05 (s, 2H); 3.05-3.15 (m, 4H); 3.6 (quin, 1H); 4.3 (quar, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.05 (d, 1H).


Example 7

2-[2-Ethoxy-5-(N-methyl-N-(2-dimethylaminoethyl)-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 60 mg (0.137 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 40 mg (0.343 mmol) of N-methyl-N-(2-dimethylamino-ethyl)-amine. This gives 52 mg (75.3%) of sulphonamide.


Rf=0.29 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-2.2 (m, 8H); 2.3 (s, 6H); 2.55 (t, 2H); 2.6 (s, 3H); 2.8 (s, 3H); 3.15 (t, 2H); 3.6 (quin, 1H); 4.3 (quar, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.1 (d, 1H).


Example 8

2-[2-Ethoxy-5-(4-ethoxycarbonylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 200 mg (0.458 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 160 mg (1 mmol) of methyl piperidine-4-carboxylate. This gives 190 mg (74.4%) of sulphonamide.



1H-NMR (CD3OD): 1.2 (t, 3H); 1.45 (t, 3H); 1.65-2.2 (m, 10H); 2.3 (m, 1H); 2.5-2.6 (m, 2H); 2.6 (s, 3H); 3.55-3.7 (m, 3H); 4.1 (quar, 2H); 4.3 (quar, 2H); 7.4 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 9

2-[2-Ethoxy-5-(4-carboxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


180 mg (0.323 mmol) of the ester from Example 8 and 50 mg (1.29 mmol) of sodium hydroxide are stirred at room temperature in 20 ml of methanol/water 3:1 for 30 minutes. 10 ml of water are added and the mixture is extracted once with dichloromethane. The aqueous phase is acidified using 2 n HCl and extracted twice with dichloromethane. The combined dichloromethane phases are dried over sodium sulphate and evaporated. The residue is recrystallized from diethyl ether.


Yield: 120 mg (70.2%)


M.p.: 170° C. (decomp.)


Example 10

2-[2-Ethoxy-5-(4-hydroxymethylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 60 mg (0.137 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 30 mg (0.302 mmol) of 4-hydroxymethylpiperidine. This gives 55 mg (77.7%) of sulphonamide.


Rf=0.46 (toluene/acetone 1:1)


Example 11

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)ethyl)-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 60 mg (0.137 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 60 mg (0.302 mml) of N-methyl-N-(2-(3,4-dimethoxyphenyl)ethylamine. This gives 66 mg (80.9%) of sulphonamide.


Rf=0.64 (toluene/acetone 1:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.6-2.15 (m, 8H); 2.55 (s, 3H); 2.75 (s, 3H); 2.8 (t, 2H); 3.3 (t, 2H); 3.55 (quin, 1H); 3.8 (s, 6H); 4.25 (quar, 2H); 6.7-6.85 (m, 3H); 7.3 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 12

2-[2-Ethoxy-5-(4-ethoxyphenyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 70 mg (0.504 mmol) of 4-ethoxy-aniline. This gives 62 mg (50.4%) of sulphonamide which is purified by recrystallization from ethyl acetate/petroleum ether.


Yield: 62 mg (50.4%)


M.p.: 245° C.


Example 13

2-[2-Ethoxy-5-(3-fluoro-4-methoxyphenyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 70 mg (0.5 mmol) of 3-fluoro-4-methoxyaniline. This gives 73 mg (58.9%) of sulphonamide which is purified by recrystallization from diethyl ether.


Yield: 73 mg (58.9%)


M.p.: 180° C. (decomp.)


Example 14

2-[2-Ethoxy-5-(2-methoxyethyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 37.5 mg (0.05 mmol) of 2-methoxy-ethylamine. This gives 80 mg (73.2%) of sulphonamide.


Rf=0.47 (toluene/acetone 4:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-2.2 (m, 8H); 2.6 (s, 3H); 3.05 (t, 2H); 3.25 (s, 3H); 3.4 (t, 2H); 3.65 (quin, 1H); 4.3 (quin, 2H); 7.3 (d, 1H); 8.0 (dd, 1H); 8.1 (d, 1H).


Example 15

2-[2-Ethoxy-5-(N-(4-morpholinyl)-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.5 mmol) of 4-aminomorpholine. This gives 108 mg (93.9%) of sulphonamide.


Rf=0.24 (toluene/acetone 4:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-2.2 (m, 8H); 2.6 (s, 3H); 2.9-3,0 (m, 4H); 3.65 (quin, 1H); 3.65-3.75 (m, 4H); 4.3 (quar, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.05 (d, 1H).


Example 16

2-[2-Ethoxy-5-(4-methoxybenzyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 400 mg (0.915 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 310 mg (2.29 mmol) of 4-methoxybenzylamine. This gives 260 mg (52.8%) of sulphonamide.


Rf=0.25 (toluene/acetone 4:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-1.75 (m, 2H); 1.8-1.95 (m, 4H); 2.1-2.2 (m, 2H); 2.55 (s, 3H); 3.63 (quin, 1H); 3.67 (s, 3H); 4.05 (s, 2H); 4.25 (quar, 2H); 6.75 (d, 2H); 7.1 (d, 2H); 7.25 (d, 1H); 7.9 (dd, 1H); 7.95 (d, 1H).


Example 17

2-[2-Ethoxy-5-(3-ethoxypropyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 300 mg (0.687 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 180 mg (1.717 mmol) of 3-ethoxy-propylamine. This gives 230 mg (66.5%) of sulphonamide.


Rf=0.19 (toluene/acetone)



1H-NMR (CD3OD): 1.1 (t, 3H); 1.45 (t, 3H); 1.65-2.2 (m 10H); 2.6 (s, 3H; 2.95 (t, 2H); 3.35-3.5 (m, 4H); 3.65 (quin, 1H); 4.25 (quar, 2H); 7.3 (d, 1H); 7.95 (dd, 1H); 8.1 (d, 1H).


Example 18

2-[2-Ethoxy-5-(3,4-dimethoxyphenyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 80 mg (0.5 mmol) of 3,4-dimethoxyaniline. This gives 70 mg (55.2%) of sulphonamide.


Rf=0.17 (toluene/acetone 4:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.75-1.95 (m, 6H); 2.15-2.3 (m, 2H), 2.7 (s, 3H); 3.65-3.8 (m, 7H); 4.2 (quar, 2H); 6.55 (dd, 1H); 6.7-6.8 (m, 2H); 7.3 (d, 1H); 7.9-8.0 (m, 2H).


Example 19

2-[2-Ethoxy-5-(2,3,4-trimethoxyphenyl-sulphonamido)-phenyl]-5-methyl-7-cyclo-pentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 90 mg (0.5 mmol) of 2,3,4-trimethoxyaniline. This gives 61 mg (45.7%) of sulphonamide.


Rf=0.25 (toluene/acetone 4:1)



1H-NMR (CD3OD): 1.4 (t, 3H); 1.65-1.95 (m, 6H); 2.05-2.2 (m, 2H); 2.55 (s, 3H); 3.5 (s, 3H); 36 (quin, 1H); 3.7 (s, 3H); 3.8 (s, 3H); 4.2 (quar, 2H); 6.7 (d, 1H); 7.15 (d, 1H); 7.2 (d, 1H); 7.8 (dd, 1H); 8.0 (d, 1H).


Example 20

2-[2-Ethoxy-5-(3-picolyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.5 mmol) of 3-picolylamine. This gives 50 mg (43%) of sulphonamide which is purified by recrystallization from ethyl acetate/diethyl ether.


M.p.: 128-130° C. (decomp.)


Example 21

2-[2-Ethoxy-5-(2-(2,6-dichlorophenyl)ethyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 400 mg (0.915 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 440 mg (2.29 mmol) of 2-(2,6-dichlorophenyl)ethylamine. This gives 380 mg (70.3%) of sulphonamide which is purified by recrystallization from ethyl acetate/diethyl ether.


M.p.: 202° C.


Example 22

2-[2-Ethoxy-5-(N-ethyl-N-(2-hydroxyethyl)-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.57 mmol) of N-ethyl-N-(2-hydroxyethyl)amine. This gives 57 mg (50.9%) of sulphonamide which is recrystallization from ethyl acetate/diethyl ether.


M.p.: 193° C.


Example 23

2-[2-Ethoxy-5-(2-(4-sulphonamidophenyl)-ethyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 110 mg (0.572 mmol) of 2-(4-sulphonamidophenyl)-ethylamine. This gives 67 mg (48.7%) of sulphonamide which is purified by recrystallization from ethyl acetate/diethyl ether.


M.p.: 141-143° C. (decomp.)


Example 24

2-[2-Ethoxy-5-(7-quinolinyl-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 400 mg (0.915 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 290.4 mg (2.014 mmol) of 7-aminoquinoline. This gives 264 mg (52.9%) of sulphonamide which is purified by recrystallization from ethyl acetate.


M.p.: 184° C.


Example 25

2-[2-Ethoxy-5-(1-(4-diethoxyphosphonylmethyl-piperidinyl)-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 120 mg (0.5 mmol) of 4-dimethoxyphosphonyl-methyl-piperidine. This gives 62 mg (42.6%) of sulphonamide.



1H-NMR (CD3OD): 1.25 (t, 6H); 1.45 (t, 3H); 1.5-2.2 (m, 15H); 2.3 (t, 2H); 2.6 (s, 3H); 3.5-3.8 (m, 3H); 4.05 (m, 4H); 4.8 (quar, 2H); 7.35 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 26

2-[2-Ethoxy-5-(1-(4-dimethoxyphosphonylmethyl-piperazinyl-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.229 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 100 mg (0.5 mmol) of (4-dimethoxyphosphonylmethyl)-piperazine. This gives 53 mg (38%) of sulphonamide.


Rf=0.57 (dichloromethane/methanol 10:1)



1H-NMR (CD3OD): 1.45 (t, 3H); 1.65-2.0 (m, 6H); 2.05-2.2 (m, 2H); 2.55 (s, 3H); 2.65-2.75 (m, 4H); 2.9 (d, 3H); 3.0-3.1 (m, 4H); 3.6 (quin, 1H); 3.7 (s, 3H); 3.75 (s, 6H); 4.3 (quar, 2H); 7.35 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 27

2-[2-Ethoxy-5-(methylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1f][1,2,4]-triazin-4-one hydrochloride
embedded image


220 mg (0.42 mmol) of 2-[2-ethoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,-f][1,2,4]-triazin-4-one (Example 1) are suspended in 20 ml of diethyl ether and, after addition of 20 mg (0.462 mmol) of 1 molar ethereal HCl solution, stirred at room temperature for 30 minutes. The solvent is distilled off under reduced pressure and the residue is dried under high vacuum.


Yield: 236 mg (99%)


Example 28

2-[2-Ethoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image

0.42 g (0.92 mmol) of 3-(7-cyclopentyl-5-ethyl-4-oxo-3,4-dihydroimidazo-[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzenesulphonyl chloride are dissolved in 15 ml of dichloromethane and cooled to 0° C. After addition of a spatula tip of 4-dimethylaminopyridine, 0.28 g (2.76 mmol) of N-methylpiperazine are added, and the reaction mixture is stirred at room temperature overnight. The mixture is diluted with dichloromethane, the organic phase is washed with ammonium chloride solution and dried over sodium sulphate and the solvent is removed under reduced pressure. Crystallization from ether gives 0.395 g (80%) of a colourless solid.


200 MHz 1H-NMR (DMSO-d6): 1.21 (t, 3H); 1.32 (t, 3H); 1.79 (m, 8H); 2.13 (s, 3H); 2.48 (s, 4H); 2.86 (m, 6H); 4.21 (quart., 2H); 7.48 (m, 1H); 7.85 (m, 2H); 11.70 (s, 1H).


Example 29

2-[2-Ethoxy-5-N-ethyl-N-(2-hydroxyethyl)-amino-1-sulphonyl)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 1.35 g (3 mmol) of 3-(7-cyclopentyl-5-ethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzene-sulphonyl chloride and 800 mg (9 mmol) of N-ethyl-N-(2-hydroxyethyl)-amine, 1.07 g (71%) of 2-[2-ethoxy-5-N-ethyl-N-(2-hydroxyethyl)-amino-1-sulphonyl)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.31 (dichloromethane/methanol=19:1)


200 MHz 1H-NMR (CDCl3): 1.20 (t, 3H); 1.32 (t, 3H); 1.61 (t, 3H); 1.95 (m, 9H); 2.41 (m, 1H); 3.02 (quart., 2H); 3.35 (m, 4H); 3.65 (m, 1H); 3.80 (m, 2H); 4.33 (quart., 2H); 7.15 (d, 1H); 7.95 (dd, 1H); 8.50 (d, 1H); 9.81 (s, 1H).


Example 30

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine)-1-sulphonyl)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 1.35 g (3 mmol) of 3-(7-cyclopentyl-5-ethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzenesulphonyl chloride and 1.17 g (9 mmol) of 4-(2-hydroxyethyl)-piperazine, 1.21 g (74%) of 2-[2-ethoxy-5-(4-(2-hydroxyethyl)-piperazine)-1-sulphonyl)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.21 (dichloromethane/methanol=19:1)


200 MHz 1H-NMR (CDCl3): 1.31 (t, 3H); 1.60 (t, 3H); 1.96 (m, 9H); 2.58 (m, 7H); 3.02 (quart., 2H); 3.10 (m, 4H); 3.61 (m, 3H); 4.35 (quart., 2H); 7.19 (d, 1H); 7.89 (dd, 1H); 8.45 (d, 1H); 9.75 (s, 1H).


Example 31

2-[2-Ethoxy-5-(3-(4-morpholino)-propyl)-sulphonamido)-phenyl]-5-ethyl-3H-7-cyclopentyl-imidazo[5,1-j][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 1.35 g (3 mmol) of 3-(7-cyclopentyl-5-ethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxybenzenesulphonyl chloride and 1.30 g (9 mmol) of 4-(3-aminopropyl)-morpholine, 1.44 g (86%) of 2-[2-ethoxy-5-(3-(1-morpholino)-propyl)-sulphonamido)-phenyl]-5-ethyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.29 (dichloromethane/methanol=19:1)


200 MHz 1H-NMR (CDCl,): 1.31 (t, 3H); 1.60 (t, 3H); 2.02 (m, 12H); 2.46 (m, 8H); 3.02 (quart., 2H); 3.13 (t, 2H); 3.62 (m, 5H); 4.35 (quart., 2H); 7.15 (d, 1H); 7.89 (dd, 1H); 8.55 (d, 1H); 9.82 (s).


Example 32

2-[2-Propoxy-5-(4-hydroxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 28 mg (0.227 mmol) of 4-hydroxypiperidine. This gives 46 mg (80.5%) of sulphonamide.


Rf=0.53 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H);1.5-1.6 (m, 2H); 1.65-1.75 (m, 2H); 1.8-2.0 (m, 8H); 1.05-2.2 (m, 2H); 2.6 (s, 3H); 2.8-2.9 (m, 2H); 3.3-3.4 (m, 2H); 3.6-3.7 (m, 2H); 4.15 (t, 2H); 7.35 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 33

2-[2-Propoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.1111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 32.4 mg (0.249 mmol) of N-(2-hydroxyethyl)-piperazine. This gives 40 mg (73.6%) of sulphonamide which is purified by recrystallization from ethyl acetate/diethyl ether.


M.p.: 210° C.


Example 34

2-[2-Propoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 24.9 mg (0.249 mmol) of N-methylpiperazine. This gives 49 mg (95.4%) of sulphonamide.


Rf=0.49 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H); 1.65-2.2 (m, 2H); 2.3 (s, 3H); 2.45-2.55 (m, 4H); 2.6 (s, 3H); 3.0-3.1 (m, 4H); 3.6 (quin, 1H); 4.2 (t, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.0 (d, 1H).


Example 35

2-[2-Propoxy-5-(3-(4-morpholino)-propyl-sulphonamido)-phenyl]-5-methyl-7-cyclo-pentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 36.7 mg (0.255 mmol) of 3-(4-morpholino)-propylamine. This gives 16 mg (28.1%) of sulphonamide.


Rf=0.41 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H); 1.6-2.2 (m, 12H); 2.3-2.45 (m, 6H); 2.6 (s, 3H); 2.95 (t, 2H); 3.6-3.7 (m, 5H); 4.15 (t, 2H); 7.35 (d, 1H); 8.0 (d, 1H); 8.1 (d, 1H).


Example 36

2-[2-Propoxy-5-(4-hydroxymethylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 29.3 mg (0.255 mmol) of 4-hydroxymethylpiperidine. This gives 46 mg (85.1%) of sulphonamide.


Rf=0.46 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H); 1.65-2.0 (m, 13H); 2.05-2.15 (m, 2H); 2.3 (t, 2H); 2.6 (s, 3H); 3.4 (d, 2H); 3.65 (m, 1H); 3.8 (d, 2H); 4.2 (t, 2H); 7.4 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 37

2-[2-Propoxy-5-(N,N-bis-2-hydroxyethyl-sulphonamide)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 26.8 mg (0.255 mmol) of diethanolamine. This gives 30 mg (56.6%) of sulphonamide.


Rf=0.43 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H); 1.65-2.2 (m, 10H); 2.6 (s, 3H); 3.3 (m, 4H); 3.65 (quin, 1H); 3.7 (t, 4H); 4.2 (t, 2H); 7.35 (d, 1H); 8.0 (dd, 1H); 8.1 (d, 1H).


Example 38

2-[2-Propoxy-5-(N-methyl-N-(2-dimethylaminoethyl)-sulphonamido)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 26 mg (0.255 mmol) of N-methyl-N-(2-dimethylaminoethyl)-amine. This gives 26 mg (49.3%) of sulphonamide.


Rf=0.3 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H);, 165-2.2 (m, 10H); 2.3 (s, 6H); 2.55 (t, 2H); 2.6 (s, 3H); 2.8 (s, 3h); 3.15 (t, 2H); 3.65 (quin., 1H); 4.2 (t, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.05 (d, 1H).


Example 39

2-[2-Propoxy-5-(4-ethoxycarbonylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.111 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-cyclopentyl-3,4-dihydro-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 48.7 mg (0.31 mmol) of ethyl 4-piperidinecarboxylate. This gives 80 mg (90.1%) of sulphonamide.



1H-NMR (CD3OD): 1.05 (t, 2H); 1.2 (t, 2H); 1.65-2.0 (m, 12H); 2.15-2.35 (m, 3H); 2.6 (td, 2H); 2.7 (s, 3H); 3.5-3.6 (, 2H); 3.75 (quin., 1H); 4.1 (quar., 2H); 4.2 (quar., 2H); 7.4 (d, 1H); 7.95 dd, 1H); 8.05 (d, 1H).


Example 40

2-[2-Propoxy-5-(4-carboxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-cyclopentyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


80 mg (0.14 mmol) of the ester from Example 39 are stirred at room temperature in a mixture of 5 ml of methanol and 1 ml of 4 n NaOH for 30 minutes. 10 ml of dichloromethane are added, the mixture is extracted with 10 ml of 2 n HCl solution and the organic phase is separated off, dried over sodium sulphate and evaporated. The residue is recrystallized from diethyl ether.


Yield: 50 mg (65.7%)


Rf=0.47 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.05 (t, 3H); 1.65-2.0 (m, 12H); 2.2-2.35 (m, 3h); 2.6 (td, 2H); 2.7 (s, 3H); 3.55-3.6 (m, 2H); 3.75 (quin., 1H); 4.2 (t, 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.05 (d, 1H).


Example 41

2-[2-Ethoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


50 mg (0.114 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride are initially charged in 5 ml of dichloromethane and a spatula tip of 4 dimethylaminopyridine is added, followed by 30 mg (0.342 mmol) of N-methylpiperazine. The mixture is stirred at room temperature overnight, diluted with dichloromethane, washed twice with saturated ammonium chloride solution, dried over sodium sulphate, concentrated and filtered through silica gel (methanol).


Yield: 45 mg (78.6% of theory)


200 MHz 1H-NMR (CDCl3): 0.85 (t, 6H); 1.63 (t, 3H); 1.85 (m, 4H); 2.39 (s, 3H); 2.65 (m, 7H); 3.17 (m, 5H); 4.35 (q, 2H); 7.18 (d, 1H); 7.88 (dd, 1H); 8.49 (d, 1H); 9.64 (bs, 1H).


Example 42

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 100 mg (0.221 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 90 mg (0.662 mmol) of N-(2-hydroxyethyl)-piperazine, 99 mg (84.2% of theory) of 2-[2-ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f]-[1,2,4]triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.87 (t, 6H); 1.62 (t, 3H); 1.84 (m, 4H); 2.56-2.74 (m, 9H); 3.08-3.32 (m, 5H); 3.63 (t, 2H); 4.37 (q, 2H); 7.18 (d, 1H); 7.9 (dd, 1H); 8.5 (d, 1H); 9.67 (bs, 1H).


Example 43

2-[2-Ethoxy-5-(4-(2,2,2-trifluoroethyl)-piperazine-1-sulphonyl)-phenyl]-7-(1-ethyl-propyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 100 mg (0.228 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 120 mg (0.69 mmol) of (2,2,2-trifluoroethyl)-piperazine, 72 mg (18.2% of theory) of 2-[2-ethoxy-5-(4-(2,2,2-trifluoroethyl)-piperazine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo-[5,1-f][1,2,4]triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.87 (t, 6H); 1.63 (t, 3H); 1.89 (m, 4H); 2.71 (s, 3H); 2.8 (m, 4H); 2.97 (q, 2H); 3.1 (m, 4H); 3.25 (m, 1H); 4.38 (q, 2H); 7.19 (s, 1H); 7.89 (dd, 1H); 8.49 (d, 1H); 9.71 (bs, 1H).


Example 44

2-[2-Ethoxy-5-(1-(4-diethoxyphosphonylmethylpiperidinyl)-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imid-azo[5,1-f]-[1,2,4]-triazin-4-one
embedded image


Analogously, using 100 mg (0.228 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 161 mg (0.683 mmol) of 4-diethoxyphosphonylmethyl-piperidine, 96.2 mg (66.2% of theory) of 2-[2-ethoxy-5-(1-(4-diethoxyphosphonylmethyl-piperidine)-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.86 (t, 6H); 1.3 (t, 6H); 1.38-2.02 (m, 14H); 2.35 (dt, 2H); 2.68 (s, 3H); 3.23 (m, 1H); 3.8 (d, 2H); 4.08 (m, 4H); 4.36 (q, 2H); 7.17 (d, 1H); 7.88 (dd, 1H); 8.49 (d, 1H); 9.7 (bs, 1H).


Example 45

2-[2-Ethoxy-5-(1-(4-monoethoxyphosphonylmethylpiperidinyl)-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


61.4 mg (96.2 μmol) of 2-[2-ethoxy-5-(1-(4-diethoxyphosphonylmethylpiperidinyl)-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one are heated under reflux with 21.6 mg (0.385 mmol) of KOH powder in 5 ml of ethanol overnight. The mixture is concentrated, taken up in water, acidified with 1N hydrochloric acid and extracted three times with dichloromethane. The extracts are dried and concentrated.


Yield: 42 mg (71.6% of theory)


Example 46

2-[2-Ethoxy-5-(4-oxopiperidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imid-azo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously using 300 mg (0.683 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 310 mg (2.05 mmol) of 4,4-dihydroxipiperidine hydrochloride, 18 mg (5.2% of theory) of 2-[2-ethoxy-5-(4-oxopiperidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Example 47

2-[2-Ethoxy-5-(3-hydroxypyrrolidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 100 mg (0.228 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 60 mg (0.683 mmol) of 3-hydroxypyrrolidine, 55 mg (49.1% of theory) of 2-[2-ethoxy-5-(3-hydroxy-pyrrolidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.85 (t, 6H); 1.61 (t, 3H); 1.72-2.1 (m, 7H); 2.69 (s, 3H); 3.22-3.55 (m, 5H); 4.35 (q, 2H); 4.45 (m, 1H); 7.18 (d, 1H); 7.99 (dd, 1H); 8.57 (d, 1H); 9.8 (bs, 1H).


Example 48

2-[2-Ethoxy-5-(N,N-diethyl-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 100 mg (0.228 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.683 mmol) of diethylamine, 78 mg (72.3% of theory) of 2-[2-ethoxy-5-(N,N-diethyl-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.87 (t, 6H); 1.2 (t, 6H); 1.62 (t, 3H); 1.88 (m, 4H); 2.69 (s, 3H); 3.3 (m, 5H); 4.35 (q, 2H); 7.14 (d, 1H); 7.96 (dd, 1H); 8.57 (d, 1H); 9.78 (bs, 1H).


Example 49

2-[2-Ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 100 mg (0.228 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 90 mg (0.683 mmol) of 3-hydroxy-3-methoxymethylpyrrolidine, 89 mg (72.9% of theory) of 2-[2-ethoxy-5-(3-hydroxy-3-methoxymethylpyrrolidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.88 (t, 6H); 1.62 (t, 3H); 1.72-2.08 (m, 6H); 2.47 (s, 1H); 2.7 (s, 3H); 3.13-3.63 (m, 10H); 4.36 (q, 2H); 7.17 (d, 1H); 7.98 (dd, 1H); 8.57 d, 1H); 9.78 (bs, 1H).


Example 50

2-[2-Ethoxy-5-(N-2-methoxyethyl-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


Analogously, using 350 mg (0.797 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 180 mg (2.392 mmol) of methoxyethylamine, 251 mg (66% of theory) of 2-[2-ethoxy-5-(N-2-methoxyethyl-sulphonamide)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one are obtained.


200 MHz 1H-NMR (DMSO-d6): 0.75 (t, 6H); 1.32 (t, 3H); 1.61-1.72 (m, 4H); 2.93 (q, 2H); 3.1 (m, 1H); 3.18 (s, 3H); 3.26-3.4 (m, 5H); 4.19 (q, 2H); 7.35 (d, 1H); 7.76 t, 1H); 7.86-7.96 (m, 2H); 11.7 (bs, 1H).


Example 51

2-[2-Ethoxy-5-(N-ethyl-N-(2-hydroxyethyl)-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


Analogously, using 400 mg (0.911 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 240 mg (2.734 mmol) of 2-(ethylamino)-ethanol, 261 mg (58.3% of theory) of 2-[2-ethoxy-5-(N-2-ethyl-N-(2-hydroxyethyl)-sulphonamide)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one are obtained.


200 MHz 1H-NMR (DMSO-d6): 0.78 (t, 6H); 1.08 (t, 3H); 1.33 (t, 3H); 1.6-1.88 (m, 4H); 2.99-3.28 (m, 7H); 3.38 (m, 1H); 3.52 (q, 2H); 4.2 (q, 2H); 4.81 (t, 1H); 7.34 (d, 1H); 7.86-8.0 (m, 2H); 11.69 (bs, 1H).


Example 52

2-[2-Ethoxy-5-(N-(4-morpholinyl)sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


Analogously, using 400 mg (0.911 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 280 mg (2.734 mmol) of 4-aminomorpholine, 109 mg (21.1% of theory) of 2-[2-ethoxy-5-(N-(4-morpholinyl)sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one are obtained.


200 MHz 1H-NMR (CDCl3): 0.88 (t, 6H); 1.63 (t, 3H); 1.85-2.28 (m, 4H); 2.88 (s, 3H); 3.05 (m, 4H); 3.45 (m, 1H); 3.76 (m, 4H); 4.42 (q, 2H); 7.2-7.35 (m, 2H); 7.96 (m, 1H); 8.45 (m, 1H); 10.23 (bs, 1H).


Example 53

2-[2-Ethoxy-5-(4-hydroxymethylpiperidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


Analogously, using 400 mg (0.911 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(1-ethylpropyl)-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 310 mg (2.734 mmol) of 4-hydroxymethylpiperidine, 270 mg (57.3% of theory) of 2-[2-ethoxy-5-(4-hydroxy-methylpiperidine-1-sulphonyl)-phenyl]-7-(1-ethylpropyl)-5-methyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one.


200 MHz 1H-NMR (DMSO-d6): 0.77 (t, 6H); 1.05-1.43 (m, 6H); 1.58-1.85 (m, 6H); 2.12-2.38 (m, 2H); 2.52 (s, 3H); 3.08 (m, 1H); 3.22 (t, 2H); 3.55-3.72 (m, 2H); 4.2 (q, 2H); 4.51 (t, 1H); 7.38 (d, 1H); 7.78-7.92 (m, 2H); 11.7 (bs, 1H).


Example 54

2-[2-Ethoxy-5-(3-(1-morpholino)-propyl)-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 0.44 g (1 mmol) of 3-(1-ethylpropyl)-5-methyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzenesulphonyl chloride and 0.43 g (3 mmol) of 4-(3-aminopropyl)-morpholine 0.45 g (81%) of 2-[2-ethoxy-5-(3-(1-morpholino)-propyl)-sulphonamido)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.18 (dichloromethane/methanol=19:1)


200 MHz 1H-NMR (CDCl3): 1.31 (t, 3H); 1.61 (t, 3H); 1.87 (m, 14H); 2.66 (s, 3H); 3.00 (m 2H); 3.28 (m, 3H); 3.85 (m, 1H); 4.35 (quart., 2H); 7.17 (d, 1H); 7.90 (dd, 1H); 8.50 (d, 1H); 9.72 (s, 1H).


Example 55

2-[2-Ethoxy-5-(4-hydroxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-j][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 0.44 g (1 mmol) of 3-(7-(1-ethylpropyl)-5-methyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzene-sulphonyl chloride and 0.30 g (3 mmol) of 4-hydroxypiperidine, 0.33 g (65%) of 2-[2-ethoxy-5-(4-hydroxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.25 (dichloromethane/methanol=19:1)


Example 56

2-[2-Ethoxy-5-(bishydroxyethylamino-1-sulphonyl)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo-[5,1-f][1,2,4]triazin-4-one
embedded image


In an analogous manner, starting from 0.3 g (0.68 mmol) of 3-(7-(1-ethylpropyl)-5-ethyl-4-oxo-3,4-dihydroimidazo[5,1-f][1,2,4]triazin-2-yl)-4-ethoxy-benzenesulphonyl chloride and 0.22 g (2.01 mmol) of diethanolamine, 0.147 g (42%) of 2-[2-ethoxy-5-(bishydroxyethylamino-1-sulphonyl)-phenyl]-5-methyl-7-(1-ethylpropyl)-3H-imidazo-[5,1-f][1,2,4]triazin-4-one are obtained.


Rf=0.57 (dichloromethane/methanol=9:1)


200 MHz 1H-NMR (CDCl3): 0.98 (t, 6H); 1.62 (t, 3H); 1.89 (m, 4H); 2.67 (s, 3H); 3.23 (m, 3H); 3.36 (t, 4H); 3.90 (t, 4H); 4.36 (quart., 2H); 7.18 (d, 1H); 7.96 (dd, 1H); 8.55 (d, 1H); 9.68 (s, 1H).


Example 57

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 500 mg (1.01 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 290 mg (2.2 mmol) of 4-(2-hydroxyethyl)-piperazine. This gives 170 mg (28.6%) of sulphonamide.


Rf=0.56 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75-0.85 (2t, 6H); 1.1-1.35 (m, 8H); 1.45 (t, 3H); 1.65-1.95 (m, 4H); 2.0 (t, 2H); 2.55-2.65 (m, 7H); 3.0-3.1 (m, 4H); 3.3 (quin., 1H); 3.6 (t, 2H); 4.3 (quar., 2H); 7.4 (d, 1H); 7.95 (dd, 1H); 8.0 (d, 1H).


Example 58

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)sulphonamido-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 500 mg (1.01 mol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 433 mg (2.2 mmol) of N-methyl-N-2-(3,4-dimethoxyphenyl)-ethylamine. This gives 153 mg (23.2%) of sulphonamide.


Rf=0.78 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.7-0.5 (t, 6H); 1.0-1.35 (m, 8H); 1.45 (t, 2H); 1.6-1.95 (m, 4H); 2.6 (s, 3h); 2.75 (s, 3H); 2.8 (t, 2H); 3.15-3.35 (m, 3H); 3.75 (s, 6H); 4.3 (quar. 2H); 6.7-6.85 (m, 3H); 7.3 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 59

2-[2-Ethoxy-5-(3-(4-morpholino)-propyl-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 500 mg (1.01 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 320 mg (2.2 mmol) of 3-(4-morpholino)-propylamine. This gives 175 mg (28.7%) of sulphonamide.


Rf=0.58 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.5-0.9 (t, 6H); 1.1-1.35 (m, 8H); 1.45 (t, 3H); 1.65 (quin., 2H); 1.7-1.9 (m, 4H); 2.3-2.45 (m, 6h); 2.6 (s, 3H); 2.95 (t, 2H); 3.35 (m, 1H); 3.665 (2t, 4H); 4.3 (quar., 2h); 7.35 (d, 1H); 8.0 (dd, 1H); 8.1 (D, 1H).


Example 60

2-[2-Propoxy-5-(N-methyl-N(2-(3,4-dimethoxyphenyl)-ethyl)-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.1 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.25 mmol) of N-methyl-N-2-(3,4-dimethoxyphenyl)-ethylamine. This gives 45 mg (66%) of sulphonamide.


Rf=0.74 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 3H); 0.8 (t, 3h);, 105 (t, 3H);, 10-1.3 (m, 8H); 1.6-1.9 (m, 6h); 2.6 (s, 3H); 2.8 (s, 3H); 2.85 (t, 2H); 3.2-3.4 (m, 3H); 3.8 (s, 6H); 4.2 (t, 2H); 6.7-6.85 (m, 3H); 7.3 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 61

2-[2-Propoxy-5-(4-pyridyl-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 100 mg (0.196 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 22 mg (0.236 mmol) of 4-aminopyridine in the presence of 40 mg (0.4 mmol) of triethylamine. This gives 35 mg (31.4%) of sulphonamide which can be recrystallized from ethyl acetate/diethyl ether.



1H-NMR (CD3OD): 0.8 (2t, 6h); 1.0 (t, 3H); 1.05-1.35 (m, 8); 1.7-1.9 (m, 6H); 2.6 s, 3H); 3.35 (m, 1H); 4.15 (t, 2H); 7.1 (d, 1 h); 7.3 (d, 1H); 8.0 (m, 2H); 8.05 (dd, 1H); 8.1 (d, 1H).


Example 62

2-[2-Propoxy-5-(4-hydroxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethyl-heptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.1 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 20 mg (0.2 mmol) of 4-hydroxypiperidine. This gives 43 mg (76.3%) of sulphonamide.


Rf=0.51 (CH2Cl2/MeOH 10:1)



1H-NMR (CDCl3): 0.7-0.85 (m, 6H); 1.05-1.3 (m, 11H); 1.35-2.05 (m, 14H); 2.65 (s, 3H); 2.85-3.0 (m, 2H); 3.15-3.35 (m, 3H); 3.6-3.7 (m, 1H); 4.2 (t, 2H); 7.1 (d, 1 h); 7.85 (dd, 1H); 7.95 (d, 1H); 9.8 (broad, 1H).


Example 63

2-[2-Propoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.1 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 26 mg (0.2 mmol) of N-(2-hydroxy-ethyl)-piperazine. This gives 13 mg (22%) of sulphonamide.


Rf=0.46 (CH2Cl2/MeOH 10:1)



1H-NMR (CDCl3): 0.7-0.85 (m, 6H); 1.0-1.3 (m, 11H); 1.6-2.0 (m, 6H); 2.55 (s, 3H); 2.5-2.7 (m, 4H); 3.0-3.1 (m, 3H); 3.15-3.3 (m, 1H); 3.6 (t, 2H); 4.2 (t, 2H); 7.15 (d, 1H); 7.7 (dd, 1H); 7.9 (d, 1H); 9.7 (broad, 1H).


Example 64

2-[2-Propoxy-5-(4-methylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethyl-heptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 50 mg (0.1 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 20 mg (0.2 mmol) of N-methyl-piperazine. This gives 42 mg (74.7%) of sulphonamide.


Rf=0.46 (CH2Cl2/MeOH 10:1)



1H-NMR (CDCl3): 0.75-0.9 (m, 6H); 1.1-1.35 (m, 11H); 1.6-2.1 (m, 10H); 2.4 (s, 3H); 2.65 (s, 3H); 2.6-2.75 (m, 2H); 3.1-3.4 (m, 4H); 4.25 (t, 2H); 7.2 (d, 1H); 7.9 (d, 1H); 8.5 (d, 1H); 9.7 (broad, 1H):


Example 65

2-[2-Propoxy-5-(4-ethoxycarbonylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 70 mg (0.138 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 43 mg of ethyl piperidinecarboxylate. This gives 55 mg (63.5%) of sulphonamide.



1H-NMR (CD3OD): 0.85 (t, 3H); 0.9 (t, 3H); 1.1 (t, 3H); 1.2 (t, 3H); 1.2-1.4 (m, 8H); 1.65-2.05 (m, 10H); 2.3 (m, 1H); 2.6 (td, 2H); 2.75 (s, 3H); 3.5 (quin., 1H); 3.6 (m, 2H); 4.1 (quar., 2H); 4.2 (t, 2H); 7.4 (d, 1H); 7.95-8.05 (m, 2H):


Example 66

2-[2-Propoxy-5-(4-carboxypiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethyl-heptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


62 mg (0.098 mmol) of the ester from Example 65 are stirred at room temperature in 6 ml of 4 n NaOH/H2O (1:5) for 30 minutes. 20 ml of dichloromethane are added, the mixture is extracted with 2 n HCl solution, the organic phase is dried with sodium sulphate and the solvent is removed under reduced pressure.


Rf=0.44 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.85 (t, 3H); 0.9 (t, 3H); 1.05 (t, 3H); 1.2-1.4 (m, 8H); 1.7-2.05 (m, 10H); 2.75-2.9 (m, 1H); 2.6 (td, 2H); 2.75 (s, 3H); 3.5 (quin., 1H); 3.55-3.65 (m, 2H); 4.2 (t, 2H); 7.4 (d, 1H); 7.95-8.0 (m, 2H).


Example 67

2-[2-Propoxy-5-(3-(4-morpholino)-propyl)-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 52 mg (0.102 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 37 mg (0.255 mmol) of 3-(4-morpholino)-propylamine. This gives 45 mg (71.4% of sulphonamide.


Rf=0.41 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75-0.95 (m, 6H); 1.05 (t, 3H); 1.05-1.35 (m, 8H); 1.65 (t, 2H); 1.6-1.95 (m, 6H); 2.3-2.45 (m, 6H); 2.6 (s, 3H); 2.95 (t, 2H); 3.25 (m, 1H); 3.6-3.7 m, 4H); 4.2 (t, 2H); 7.35 (d, 1H); 8.0 (dd, 1H); 8.1 (d, 1H).


Example 68

2-[2-Propoxy-5-(4-hydroxymethylpiperidine-1-sulphonyl)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 52 mg (0.102 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 29.3 mg (0.255 mmol) of 4-hydroxymethylpiperidine. This gives 45 mg (74.9%) of sulphonamide.


Rf=0.44 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75-0.9 (m, 6H); 1.05 (t, 3H); 1.0-1.45 (m, 10H); 1.7-1.95 (m, 8H); 2.35 (t, 2H; 2.6 (s, 3H); 3.2-3.4 (m, 2H); 3.8 (d, 2H); 4.2 (t, 2H); 7.4 (d, 1H); 7.9-8.0 (m, 2H).


Example 69

2-[2-Propoxy-5-(N,N-bis-2-hydroxyethyl-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 52 mg (0.102 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 27 mg (0.255 mmol) of diethanolamine. This gives 41 mg (69.5%) of sulphonamide.


Rf=0.36 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75-0.9 (m, 6H); 1.05 (t, 3H); 1.0-1.9 (m, 8H); 1.7-1.95 (m, 6H); 2.6 (s, 3H); 3.3 (t, 4H); 3.75 (t, 4H); 4.2 (t, 2H); 7.35 (d, 1H); 8.0 (dd, 1H); 8.1 (d, 1H).


Example 70

2-[2-Propoxy-5-(N-methyl-N-(2-dimethylaminoethyl)-sulphonamido)-phenyl]-5-methyl-7-(2-ethylheptyl)-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 52 mg (0.102 mmol) of 4-propoxy-3-(5-methyl-4-oxo-7-(2-ethylheptyl)-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 26 mg (0.255 mmol) of N-methyl-N-(2-dimethylaminoethyl)amine. This gives 42 mg (71.5%) of sulphonamide.


Rf=0.29 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75-0.85 (m, 6H); 1.05 (t, 3H); 1.1-1.35 (m, 8H); 1.7-1.95 (m, 6H); 2.3 (s, 6H); 2.55 (t, 2H); 2.6 (s, 3H); 2.8 (s, 3H); 3.15 (t, 2H); 3.3 (m, 1H); 4.2 (t, 2H); 7.4 (d, 1H); 8.0 (dd, 1H); 8.05 (d, 1H).


Example 71

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-sulphonamido)-phenyl]-5-methyl-7-pentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.342 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-pentyl-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 167 mg (0.854 mmol) of N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethylamine. This gives 195 mg (95.5%) of sulphonamide.


Rf=0.75 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 3H); 1.25-1.4 (m, 4H); 1.45 (t, 3H); 1.75 (quin., 2H); 2.55 (s, 3H); 2.75 (s, 3H); 2.8 (t, 2H); 2.95 (t, 2H); 3.75 (s, 6H); 4.25 (quar., 2H); 6.7 (dd, 1H); 6.8 (d, 1H); 6.85 (d, 1H); 7.3 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 72

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-pentyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.342 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-pentyl-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 111 mg (0.854 mmol) of 2-hydroxyethyl-piperazine. This gives 95 mg (52.4%) of sulphonamide.


Rf=0.55 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.9 (t, 3H); 1.3-1.4 (m, 4H); 1.45 (t, 3H); 2.95 (t, 2H); 3.05-3.1 (m, 4H); 3.6 (t, 2H); 4.3 (quar., 2H; 7.4 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 73

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-sulphonamido)-phenyl]-5-methyl-7-heptyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.321 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-heptyl-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 140 mg (0.707 mmol) of N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethylamine. This gives 112 mg (55.7%) of sulphonamide.


Rf=0.74 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.7-0.9 (t, 6H), 1.2-1.35 (m, 8H); 1.45 (t, 3H), 1.75 (quin., wH); 2.6 (s, 3H); 2.75 (s, 3H); 2.8 (t, 2H); 2.95 (t, 2H); 3.8 (s, 6H); 4.3 (quar., 2H); 6.7 (dd, 1H); 6.8-6.9 (m, 2H); 7.3 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).,


Example 74

2-[2-Ethoxy-5-(4-(2-hydroxyethyl)-piperazine-1-sulphonyl)-phenyl]-5-methyl-7-heptyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.321 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-heptyl-3,4-dihydro-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 92 mg (0.707 mmol) of 2-hydroxyethylpiperazine. This gives 160 mg (88.8%) of sulphonamide.


Rf=0.55 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.35 (t, 6H); 1.2-1.4 (m, 8H); 1.45 (t, 3H); 1.8 (quin., 2H); 2.5 (t, 2H); 3.0 (t, 2H); 3.05-3.1 (m, 4H); 3.3 (t, 2H); 3.6 (t, 2H); 4.3 (quar., 2H); 7.4 (d, 1H); 7.9 (dd, 1H); 8.0 (d, 1H).


Example 75

2-[2-Ethoxy-5-(4-(2-hydroxyethylpiperazine-1-sulphonyl)-phenyl]-S-methyl-7-hexyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.33 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-n-hexyl-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 90 mg (0.725 mmol) of 2-hydroxyethylpiperazine. This gives 90 mg (49.8%) of sulphonamide.


Rf=0.57 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 3H); 1.15-1.3 (m, 6H); 1.35 (t, 3H); 1.7 (quin., 2H); 2.4 (t, 2H); 2.5 (s, 3H) 2.5-2.55 (m, 4H); 2.9 (t, 2H); 2.95-3.0 (m, 4H); 3.5 (t, 2H);, 2 (quar., 2H); 7.3 (d, 1H); 7.85 (dd, 1H), 7.9 (d, 11H).


Example 76

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)sulphonamido)-phenyl]-5-methyl-7-hexyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.33 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-n-hexyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 140 mg (0.725 mmol) of N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethylamine. This gives 24.7%) of sulphonamide.


Rf=0.72 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 3H); 1.1-1.25 (m, 6H); 1.35 (t, 3H); 1.65 (quin., 2H); 2.5 (s, 3H); 2.65 (s, 3H); 2.7 (t, 2H); 2.85 (t, 2H); 3.65 (s, 6H); 4.15 (quar., 2H); 6.6-6.75 (m, 3H); 7.2 (d, 1H); 7.75 (dd, 1H); 7.9 (d, 1H).


Example 77

2-[2-Ethoxy-5-(4-(2-hydroxyethylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-nonyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 200 mg (0.4 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-n-nonyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 120 mg (0.89 mmol) of 2-hydroxyethyl-piperazine. This gives 85 mg (35.7%) of sulphonamide.


Rf=0.45 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 3H); 1.1-1.3 (m, 12H); 1.4 (t, 3H); 1.7 (quin., 2H); 2.4 (t, 2H); 2.5 (s, 3H); 2.5-2.6 (m, 4H); 2.9 (t, 2H); 2.95-3.05 (m, 4H); 3.5 (t, 2H); 4.3 (quar., 2H); 7.3 (d, 1H); 7.8 (dd, 1H); 7.9 (d, 1H).


Example 78

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl-ethyl)-sulphonamido)-phenyl]-5-methyl-7-nonyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 200 mg (0.4 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-n-nonyl-3,4-dihydro-imidazo-[5,1-f][1,2,4]triazin-2-yl)-benzenesulphonyl chloride and 170 mg (0.89 mmol) of N-methyl-N-(2-(3,4-dimethoxy)phenyl)-ethylamine. This gives 142 mg (52.8%) of sulphonamide.


Rf=0.74 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.7 (t, 3H); 1.1-1.3 (m, 12H); 1.4 (t, 3H); 1.7 (quin., 2H); 2.5 (s, 3H); 2.7 (s, 3H); 2.75 (t, 2H); 2.9 (t, 2H); 3.3 (t, 2H); 3.7 (s, 6H); 4.7 (quar., 2H); 6.6-6.8 (m, 3H); 7.2 (d, 1H), 7.7 (dd, 1H); 7.95 (d, 1H).


Example 79

2-[2-Ethoxy-5-(4-(2-hdyroxyethylpiperazine-1-sulphonyl)phenyl]-5-methyl-7-(2-n-propylbutyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.32 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(2-n-propylbutyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 50 mg (0.385 mmol) of 2-hydroxyethyl-piperazine. This gives 150 mg (83.3%) of sulphonamide.


Rf=0.62 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 0.75 (t, 6H); 1.1-1.25 (m, 4H); 1.4 (t, 3H); 1.6-1.7 (m, 2H); 1.75-1.85 (m, 2H); 2.45 (t, 2H); 2.5 (s, 3H); 2.5-2.55 (m, 4H); 3.0 (m, 4H); 3.4 (hept., 1H); 2.55 (t, 2H); 4.25 (quar., 2H); 7.35 (d, 1H); 7.85 (dd, 1H); 7.95 (d, 1H).


Example 80

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-sulphonamido)-phenyl]-5-methyl-7-(2-n-propylbutyl)-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 150 mg (0.32 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-(2-n-propylbutyl)-3,4-dihydro-imidazo[5,1-f][1,2,4]-triazin-2-yl)-benzenesulphonyl chloride and 80 mg (0.385 mmol) of N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethylamine. This gives 166 mg (82.6%) of sulphonamide.


M.p.: 131° C. (ethyl acetate/diethyl ether).


Example 81

2-[2-Ethoxy-5-(4-(2-hydroxyethylpiperazine-1-sulphonyl)-phenyl]-5-methyl-7-cycloheptyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 200 mg (0.43 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cycloheptyl-3,4-dihydro-imidazo[5,1-f]-[1,2,4]-triazin-2-yl-benzenesulphonyl chloride and 120 mg (0.946 mmol) of 2-hydroxyethyl-piperazine. This gives 158 mg (65.7%) of sulphonamide.


Rf=0.55 (CH2Cl2/MeOH 10:1)


Example 82

2-[2-Ethoxy-5-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-sulphonamido)-phenyl]-5-methyl-7-cycloheptyl-3H-imidazo[5,1-f][1,2,4]-triazin-4-one
embedded image


The preparation is carried out analogously to the procedure of Example 1 using 300 mg (0.645 mmol) of 4-ethoxy-3-(5-methyl-4-oxo-7-cycloheptyl-3,4-dihydro-imidazo[5,1-f]-[1,2,4]-triazin-2-yl-benzenesulphonyl chloride and 280 mg (1.42 mmol) of N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethylamine. This gives 256 mg (63.6%) of sulphonamide.


Rf=0.66 (CH2Cl2/MeOH 10:1)



1H-NMR (CD3OD): 1.45 (t, 2H); 1.5-1.7 (m, 9H); 1.7-2.0 (m,6H); 2.55 (s, 3H); 2.75 (s, 3H); 2.8 (t, 2H); 3.35 (t, 2H); 3.45 (quin., 1H); 3.7 (s, 6H); 4.25 (quar., 2H): 6.65-6.8 (m, 3H); 7.25 (d, 1H); 7.85 (dd, 1H); 8.0 (d, 1H).


The sulphonamides listed in the tables below were prepared by automatic parallel synthesis from the corresponding sulphonyl chlorides and the corresponding amines using one of the three standard procedures below.


The purity of the final product was determined by means of HPLC, and they were characterized by LC-MS. The number given in the column % (HPLC) is the content of the end product characterized by the molecular peak. Standard procedure A was used with amines having acidic functionalities, standard procedure B was used with amines having neutral functionalities, standard procedure C was used with amines having additional basic functionalities.


Compounds listed in the tables below and having optically a free nitrogen valency are, in principle, to be understood as —NH— radical.


Standard procedure A: Reaction of Amines Having Acidic Functionalities


0.05 mmol of amine, 0.042 mmol of sulphonyl chloride and 0.10 mmol of Na2CO3 are initially charged, and 0.5 ml of a mixture of THF/H2O is pipetted in by hand. After 24 h at room temperature, the mixture is admixed with 0.5 ml of 1 M H2SO4 solution and filtered through a two-phase cartridge (500 mg of Extrelut (upper phase)) and 500 mg of SiO2, mobile phase ethyl acetate). The product is obtained after concentrating the filtrate under reduced pressure.


Standard Procedure B: Reaction of Amines Having Neutral Functionalities


0.125 mmol of amine are initially charged and 0.03 mmol of sulphonyl chloride as a solution in 1,2-dichloroethane is pipetted in by the synthesizer. After 24 h, the mixture is admixed with 0.5 ml of 1 M H2SO4 and filtered through a two-phase cartridge (500 mg of Extrelut (upper phase) and 500 mg of SiO2, mobile phase: ethyl acetate). The filtrate is concentrated under reduced pressure.


Standard Procedure C: Reaction of Amines Having Basic Functionalities


0.05 mmol of amine are initially charged and 0.038 mmol of sulphonyl chloride as a solution in 1,2-dichloroethane and 0.05 mmol of triethylamine as a solution in 1,2-dichloroethane are pipetted in by the synthesizer. After 24 h, the solution is initially admixed with 3 ml of saturated NaHCO3 solution and the reaction mixture is filtered through a two-phase cartridge. The product is obtained after concentrating the filtrate under reduced pressure.


All reactions are monitored by thin-layer chromatography. If the reaction is not complete after 24 h at room temperature, the mixture is heated at 60° C. for a further 12 h and the experiment is subsequently terminated.

TABLE 1Ex. No.StructureMW% (HPLC)*83embedded image505,67684embedded image583,718985embedded image491,575686embedded image570,766087embedded image539,668788embedded image569,698889embedded image567,678290embedded image555,669191embedded image569,697792embedded image553.665493embedded image551.736294embedded image609,736095embedded image537,668896embedded image477.599797embedded image611,745298embedded image533,658599embedded image602,11NMR100embedded image543,6288101embedded image546,6982102embedded image528.6882103embedded image530.6577104embedded image583,7191105embedded image540.6958106embedded image541,6338107embedded image559.6960108embedded image594,7488109embedded image548,6761110embedded image636.8285111embedded image504.6667112embedded image506,6357113embedded image562,7484114embedded image531,6861115embedded image475,6190116embedded image588.7382117embedded image573,6952118embedded image505,6492119embedded image487,54>58120embedded image609.7586121embedded image625.7798122embedded image560.6890123embedded image593,7746124embedded image610,864125embedded image593,7584126embedded image623,7885127embedded image503,6389128embedded image559,6558129embedded image569,6970130embedded image564,7176131embedded image591,7477132embedded image541,6566133embedded image489,683134embedded image595,7284135embedded image664.8770136embedded image517,6577137embedded image563,6331138embedded image559,6988139embedded image501,6581140embedded image607,6686141embedded image521,637142embedded image593,7582143embedded image517,6585144embedded image611,7467145embedded image614.1778146embedded image613,847147embedded image624,7852148embedded image645,869149embedded image583,7375150embedded image505.6478151embedded image491.6183152embedded image535.6781


The yields are based on the molecular peaks determined by mass spectroscopy.

Ex. No.StructureMW% (HPLC)*153embedded image578,770154embedded image580.775155embedded image508.662156embedded image489,672157embedded image565.776158embedded image485,542159embedded image531.688160embedded image537,680161embedded image553,678162embedded image607,775163embedded image561,680164embedded image523,683165embedded image523,684166embedded image565,781167embedded image562,563168embedded image590,582169embedded image581.781170embedded image535,679171embedded image567,755172embedded image605,681173embedded image595,779174embedded image623,879175embedded image597,759176embedded image653,841177embedded image653,882178embedded image557,783179embedded image529.683180embedded image529.686181embedded image560.782182embedded image562,781183embedded image526,760184embedded image592,780185embedded image608,880186embedded image634.877187embedded image528,671188embedded image533,787189embedded image558.788190embedded image593,773191embedded image515.680192embedded image612,281193embedded image591,783194embedded image621,879195embedded image501,678196embedded image557,657197embedded image605,780198embedded image591,780199embedded image607,778200embedded image499,683201embedded image487.682202embedded image501,666203embedded image609,779204embedded image530,782205embedded image489,680206embedded image537,663207embedded image537,675208embedded image537,672209embedded image607,750210embedded image489,664211embedded image551,777212embedded image581.785213embedded image475.645214embedded image528,687215embedded image503,674216embedded image517,776217embedded image503.684218embedded image551.774219embedded image503.670220embedded image551.773221embedded image489,657222embedded image475,677223embedded image593,868224embedded image551.777225embedded image615,878226embedded image503.652227embedded image529.759228embedded image515,650229embedded image584,742230embedded image557.782231embedded image487,649232embedded image533,780233embedded image537.681234embedded image565,782235embedded image565,756236embedded image669,882237embedded image551.777238embedded image517,791
*The yields are based on the molecular peaks determined by mass spectroscopy.





















MW




Ex. No.
Structure
[g/mol]
HPLC
Mz + H


























239


embedded image


531,723
77
532





240


embedded image


533,695
71
534





241


embedded image


595,767
65
596





242


embedded image


602,846
53
603





243


embedded image


634,848
64
635





244


embedded image


586,803
51
587





245


embedded image


574,792
61
575





246


embedded image


628,884
41
629





247


embedded image


602,846
42
603





248


embedded image


642,911
44
643





249


embedded image


652,863
66
653





250


embedded image


618,845
48
619





251


embedded image


660,883
71
661





252


embedded image


682,892
50
683





253


embedded image


600,83
60
601





254


embedded image


612,841
68
613





255


embedded image


622,836
66
623





256


embedded image


604,818
58
605





257


embedded image


590,791
56
591





258


embedded image


600,83
59
601





259


embedded image


612,841
54
613





260


embedded image


706,955
72
707





261


embedded image


574,792
56
575





262


embedded image


621,808
57
622





263


embedded image


588,819
52
589





264


embedded image


547,722
79
548





265


embedded image


561,749
30
562





266


embedded image


620,82
68
621





267


embedded image


626,868
56
627





268


embedded image


584,787
56
585





269


embedded image


640,895
69
641





270


embedded image


634,848
72
635





271


embedded image


634,848
54
635





272


embedded image


656,801
64
657





273


embedded image


638,811
65
639





274


embedded image


650,847
44
651





275


embedded image


545,706
60
546





276


embedded image


558,749
50
559





277


embedded image


591,776
70
592





278


embedded image


616,786
53
617





279


embedded image


588,775
49
589





280


embedded image


644,84
51
645





281


embedded image


609,75323
55
610





282


embedded image


581,73983
66
582





283


embedded image


581,73983
63
582





284


embedded image


595,76692
68
596





285


embedded image


 5,76692
68
596





286


embedded image


593,79461
70
594





287


embedded image


609,79401
68
610





288


embedded image


639,8205
63
640





289


embedded image


658,84499
61
659





290


embedded image


581,73983
59
582





291


embedded image


551,71334
71
552





292


embedded image


595,76692
69
596





293


embedded image


609,79401
65
610





294


embedded image


595,76692
56
596





295


embedded image


665,85874
54
666





296


embedded image


638,83577
64
639





297


embedded image


581,73983
66
582





298


embedded image


623,77747
63
624





299


embedded image


611,76632
65
612





300


embedded image


609,79401
61
610





301


embedded image


595,76692
65
596





302


embedded image


581,73983
71
582





303


embedded image


581,73983
72
582





304


embedded image


599,73026
69
600





305


embedded image


639,8205
65
640





306


embedded image


641,79281
68
642





307


embedded image


658,66355
75
658





308


embedded image


595,76692
72
596





309


embedded image


579,76752
74
580





310


embedded image


635,71112
69
636





311


embedded image


586,15837
64
586





312


embedded image


623,77747
55
624





313


embedded image


623,8211
69
624





314


embedded image


609,79401
72
610





315


embedded image


609,79401
72
610





316


embedded image


727,92766
65
728





317


embedded image


623,8211
54
624





318


embedded image


683,87408
68
684





319


embedded image


653,84759
71
654





320


embedded image


653,84759
68
654





321


embedded image


664,91764
84
665





322


embedded image


617,86062
60
618


























Ex.

MW




No.
Structure
HPLC
[g/mol]
Mz + H


























323


embedded image


650,84692
62
651





324


embedded image


477,5869
87
478





325


embedded image


505,6411
89
506





326


embedded image


539,6586
88
540





327


embedded image


567,7127
81
566





328


embedded image


553,6857
81
554





329


embedded image


553,6857
83
554





330


embedded image


519,6681
93
520





331


embedded image


579,7239
77
580





332


embedded image


502,6404
86
503





333


embedded image


489,598
83
490





334


embedded image


523,6592
89
524





335


embedded image


594,7822
85
595





336


embedded image


553,6857
85
554





337


embedded image


579,7675
80
580





338


embedded image


591,6575
84
592





339


embedded image


535,6675
89
536





340


embedded image


504,6563
91
505





341


embedded image


671,8193
79
672





342


embedded image


530,6509
89
531





343


embedded image


516,6238
85
517





344


embedded image


637,7411
78
638





345


embedded image


550,685
86
551





346


embedded image


597,7392
83
598





347


embedded image


636,6028
82
636





348


embedded image


611,7663
78
612





349


embedded image


567,7127
80
568





350


embedded image


596,7545
82
597





351


embedded image


594,7822
79
595





352


embedded image


608,8093
84
609





353


embedded image


566,728
82
567





354


embedded image


594,7386
85
595





355


embedded image


517,6522
85
518





356


embedded image


560,6774
83
561





357


embedded image


531,6793
84
532





358


embedded image


517,6522
85
518





359


embedded image


489,598
85
490





360


embedded image


517,6522
84
518





361


embedded image


593,751
81
594





362


embedded image


623,7775
50
624





363


embedded image


475,6146
90
476





364


embedded image


583,7121
76
584





365


embedded image


525,6315
69
526





366


embedded image


539,6586
71
540





367


embedded image


509,6321
56
510





368


embedded image


523,6592
86
524





369


embedded image


583,7121
80
584





370


embedded image


525,6315
72
526





371


embedded image


495,605
83
496





372


embedded image


560,0765
52
560





373


embedded image


511,6044
73
512





374


embedded image


537,6863
81
538





375


embedded image


538,6738
74
539





376


embedded image


567,7127
74
568





377


embedded image


566,6844
88
567





378


embedded image


531,5858
82
532





379


embedded image


537,6426
47
538





380


embedded image


513,5954
83
514





381


embedded image


544,0771
82
545





382


embedded image


592,5492
72
593





383


embedded image


580,7115
70
581





384


embedded image


555,658
81
556





385


embedded image


553,6857
80
554





386


embedded image


539,6586
75
540





387


embedded image


525,6315
86
526





388


embedded image


530,05
80
531





389


embedded image


525,6315
86
526





390


embedded image


543,6219
76
544





391


embedded image


563,6034
81
564





392


embedded image


583,7121
79
584





393


embedded image


585,6845
84
586





394


embedded image


539,6586
80
540





395


embedded image


477,5869
87
478





396


embedded image


530,6509
91
531





397


embedded image


503,6251
87
504





398


embedded image


505,6411
90
506





399


embedded image


530,6946
51
531





400


embedded image


539,6586
74
540





401


embedded image


532,6669
70
533





402


embedded image


545,6655
79
546





403


embedded image


539,6586
85
540





404


embedded image


525,6315
81
526





405


embedded image


564,495
90
565





406


embedded image


564,495
60
565





407


embedded image


611,7663
84
612





408


embedded image


553,6857
79
554





409


embedded image


567,7127
75
568





410


embedded image


537,6863
80
538





411


embedded image


551,7133
86
552





412


embedded image


630,7908
37
631





413


embedded image


553,6857
66
554





414


embedded image


523,6592
82
524





415


embedded image


588,1307
31
588





























HPLC



Ex.

MW
area % at



No.
Structure
[g/mol]
210 nm
Mz + H


























416


embedded image


539,6586
77
540





417


embedded image


565,7404
80
566





418


embedded image


566,728
68
567





419


embedded image


595,7669
84
596





420


embedded image


594,7386
77
595





421


embedded image


559,64
81
560





422


embedded image


565,6968
42
566





423


embedded image


541,6496
82
542





424


embedded image


572,1313
85
572





425


embedded image


620,6034
80
620





426


embedded image


608,7657
84
609





427


embedded image


583,7121
82
584





428


embedded image


581,7398
77
582





429


embedded image


567,7127
80
568





430


embedded image


553,6857
82
554





431


embedded image


558,1042
80
558





432


embedded image


553,6857
85
554





433


embedded image


571,6761
79
572





434


embedded image


591,6575
83
592





435


embedded image


613,7386
77
614





436


embedded image


613,7386
82
614





437


embedded image


567,7127
84
568





438


embedded image


505,6411
85
506





439


embedded image


558,7051
90
559





440


embedded image


531,6793
87
532





441


embedded image


533,6952
90
534





442


embedded image


558,7487
75
559





443


embedded image


576,7205
66
577





444


embedded image


567,7127
77
568





445


embedded image


560,7211
79
561





446


embedded image


573,7197
76
574





447


embedded image


567,7127
80
568





448


embedded image


553,6857
83
554





449


embedded image


592,5492
30
592





450


embedded image


592,5492
43
592





451


embedded image


609,750
78
610





452


embedded image


551,670
74
552





453


embedded image


565,697
65
566





454


embedded image


535,670
80
536





455


embedded image


549,697
79
550





456


embedded image


671,759
83
672





457


embedded image


551,670
69
552





458


embedded image


521,643
80
522





459


embedded image


586,115
34
586





460


embedded image


537,643
76
538





461


embedded image


563,724
67
564





462


embedded image


564,712
73
565





463


embedded image


593,751
79
594





464


embedded image


592,723
72
593





465


embedded image


557,624
78
558





466


embedded image


563,681
44
564





467


embedded image


539,634
67
540





468


embedded image


570,115
75
570





469


embedded image


618,587
65
618





470


embedded image


606,750
69
607





471


embedded image


581,696
80
582





472


embedded image


579,724
76
580





473


embedded image


565,697
72
566





474


embedded image


551,670
78
552





475


embedded image


556,088
67
556





476


embedded image


551,670
79
552





477


embedded image


569,660
77
570





478


embedded image


589,642
62
590





479


embedded image


611,723
66
612





480


embedded image


611,723
86
612





481


embedded image


565,697
80
566





482


embedded image


503,625
85
504





483


embedded image


556,689
88
557





484


embedded image


529,663
81
530





485


embedded image


531,679
86
532





486


embedded image


574,705
33
575





487


embedded image


565,697
61
566





488


embedded image


558,705
47
559





489


embedded image


571,704
59
572





490


embedded image


565,697
70
566





491


embedded image


551,670
65
552





492


embedded image


590,533
46
590





493


embedded image


590,533
83
590





494


embedded image


530,65
82
531





495


embedded image


489,60
49
490





496


embedded image


537,64
63
538





497


embedded image


537,64
44
538





498


embedded image


537,64
72
538





499


embedded image


607,73
50
608





500


embedded image


489,60
64
490





501


embedded image


551,67
70
552





502


embedded image


551,67
77
552





503


embedded image


581,70
85
582





504


embedded image


475,57
45
476





505


embedded image


503,63
74
504





506


embedded image


517,65
76
518





507


embedded image


503,63
59
504





508


embedded image


551,67
74
552





509


embedded image


503,63
70
504





510


embedded image


551,67
73
552





511


embedded image


489,60
57
490





512


embedded image


489,60
44
490





513


embedded image


475,57
42
476





514


embedded image


593,75
68
594





























HPLC



Ex.

MW
area % at



No.
Structure
[g/mol]
210 nm
Mz + H


























515


embedded image


551,67
77
552





516


embedded image


615,75
78
616





517


embedded image


503,63
52
504





518


embedded image


529,66
59
530





519


embedded image


515,64
50
516





520


embedded image


584,74
42
585





521


embedded image


557,67
82
558





522


embedded image


487,58
30
488





523


embedded image


533,65
60
534





524


embedded image


537,64
81
538





525


embedded image


565,70
82
566





526


embedded image


565,70
56
566





527


embedded image


669,80
82
670





528


embedded image


551,67
77
552





529


embedded image


517,65
91
518





530


embedded image


597,7392
84
598





531


embedded image


539,6586
74
540





532


embedded image


553,6857
77
554





533


embedded image


523,6592
93
524





534


embedded image


537,6863
94
538





535


embedded image


659,74
89
660





536


embedded image


616,7637
80
617





537


embedded image


539,6586
73
540





538


embedded image


509,6321
92
510





539


embedded image


574,1036
48
574





540


embedded image


525,6315
75
526





541


embedded image


551,7133
84
552





542


embedded image


552,7009
75
553





543


embedded image


581,7398
83
582





544


embedded image


580,7115
80
581





545


embedded image


545,6129
91
546





546


embedded image


551,6697
54
552





547


embedded image


527,6225
89
528





548


embedded image


558,1042
83
558





549


embedded image


606,5763
55
606





550


embedded image


594,7386
83
595





551


embedded image


569,6851
87
570





552


embedded image


567,7127
79
568





553


embedded image


553,6857
88
554





554


embedded image


539,6586
88
540





555


embedded image


554,0771
83
544





556


embedded image


539,6586
93
540





557


embedded image


557,649
88
558





558


embedded image


577,6305
77
578





559


embedded image


599,7115
81
600





560


embedded image


599,7115
88
600





561


embedded image


553,6857
89
554





562


embedded image


491,614
92
492





563


embedded image


517,6086
83
518





564


embedded image


544,678
94
545





565


embedded image


517,6522
94
518





566


embedded image


519,6681
95
520





567


embedded image


562,6934
74
563





568


embedded image


553,6857
80
554





569


embedded image


546,694
87
547





570


embedded image


559,6926
73
560





571


embedded image


553,6857
86
554





572


embedded image


539,6586
90
540





573


embedded image


578,5221
87
578





574


embedded image


578,5221
92
578





575


embedded image


501,6528
50
502





576


embedded image


643,80875
76
644





577


embedded image


533,6516
75
534





578


embedded image


531,67929
88
532





579


embedded image


517,6522
87
518





580


embedded image


565,6968
84
566





581


embedded image


593,75098
88
594





582


embedded image


579,72389
74
580





583


embedded image


579,72389
65
580





584


embedded image


545,70638
85
546





585


embedded image


697,85754
68
698





586


embedded image


531,67929
52
532





587


embedded image


556,68917
88
557





588


embedded image


542,66208
78
543





589


embedded image


663,77937
92
664





590


embedded image


576,72322
85
577





591


embedded image


653,80396
77
654





592


embedded image


575,73287
91
576





593


embedded image


517,6522
86
518





94


embedded image


589,75996
90
590





595


embedded image


571,74462
71
572





596


embedded image


615,7982
92
616





597


embedded image


593,75098
78
594





598


embedded image


634,84752
76
635





599


embedded image


630,81287
81
631





600


embedded image


582,77104
82
583





601


embedded image


570,75989
34
571





602


embedded image


607,77807
82
608





603


embedded image


591,73789
73
592





604


embedded image


543,69044
79
544





605


embedded image


598,72681
68
599





606


embedded image


592,72547
42
593





607


embedded image


529,66335
76
530





608


embedded image


557,71753
88
558





609


embedded image


543,69044
83
544





610


embedded image


612,79753
64
613





611


embedded image


585,72808
88
586





612


embedded image


515,63626
81
516





613


embedded image


543,69044
78
544





614


embedded image


528,67862
30
529





615


embedded image


489,64
84
490





616


embedded image


631,80
88
632





617


embedded image


521,64
87
522





618


embedded image


519,67
89
520





619


embedded image


505,64
94
506





620


embedded image


553,69
90
554





621


embedded image


581,74
85
582





622


embedded image


567,71
85
568





623


embedded image


567,71
86
568





624


embedded image


533,70
85
534





625


embedded image


685,85
84
686





626


embedded image


519,67
83
520





627


embedded image


544,68
92
545





628


embedded image


530,65
82
531





629


embedded image


651,77
89
652





630


embedded image


564,71
87
565





631


embedded image


641,79
87
642





632


embedded image


563,72
85
564





633


embedded image


505,64
88
506





634


embedded image


577,75
96
578





635


embedded image


559,73
79
560





636


embedded image


603,79
88
604





637


embedded image


581,74
83
582





638


embedded image


622,84
90
623





639


embedded image


618,80
85
619





640


embedded image


570,76
60
571





641


embedded image


558,75
40
559





642


embedded image


595,77
90
596





643


embedded image


579,73
87
580





644


embedded image


531,68
91
532





645


embedded image


586,72
69
587





646


embedded image


580,71
78
581





647


embedded image


517,65
86
518





648


embedded image


545,71
82
546





649


embedded image


531,68
86
532





650


embedded image


600,79
57
601





651


embedded image


573,72
82
574





652


embedded image


503,63
83
504





653


embedded image


531,68
83
532








Claims
  • 1. 7-Alkyl- and cycloalkyl-substituted imidazotriazinones of the general formula (I)
  • 2. Compounds of the general formula (I) according to claim 1, in which R1 represents straight-chain or branched alkyl having up to 3 carbon atoms, R2 represents straight-chain [lacuna] having 5 to 15 carbon atoms or branched alkyl having 3 to 15 carbon atoms, or  represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, R3 and R4 are identical or different and represent hydrogen, or  represent straight-chain or branched alkenyl having up to 4 carbon atoms, or  represent a straight-chain or branched alkyl chain having up to 6 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, carboxyl, straight-chain or branched alkoxy, alkoxycarbonyl and alkylthio having in each case up to 4 carbon atoms and/or by radicals of the formulae —SO3H, -(A)a-NR7R8, —O—CO—NR7′R8′, —S(O)b—R9, HN═SO—R9′, —P(O)(OR10)(OR11),  in which a and b are identical or different and represent a number 0 or 1, A represents a radical CO or SO2, R7, R7′, R8 and R8′ are identical or different and represent hydrogen, or represent phenyl, naphthyl, or pyridyl, where the ring systems listed above are optionally mono- to disubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or  represent straight-chain or branched alkoxy having up to 4 carbon atoms, or  represent straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, bromine, phenyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a group of the formula —(CO)d—NR14R15,  in which R14 and R15 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and d represents a number 0 or 1, or R7 and R8 and/or R7′ and R8′ together with the nitrogen atom form a pyrrolidinyl, piperidinyl or morpholinyl ring or a radical of the formula  in which R16 represents hydrogen, phenyl, naphthyl or straight-chain or branched alkyl having up to 4 carbon atoms, which is optionally substituted by hydroxyl, R9 and R9′ are identical or different and represent phenyl or benzyl, or represent straight-chain or branched alkyl having up to 3 carbon atoms, R10 and R11 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and/or the alkyl chain mentioned above under R3/R4 is optionally substituted by phenyl, naphthyl, morpholinyl, pyridyl, tetrahydropyranyl, tetrahydrofuranyl or thienyl, where the radical may optionally also be attached to the alkyl chain via a ring nitrogen atom, and where aryl and the heterocycle are optionally mono- to disubstituted by identical or different substituents from the group consisting of nitro, fluorine, chlorine, bromine, —SO3H, straight-chain or branched monohydroxy-substituted alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy and/or by a radical of the formula —(SO2)e—NR18R19,  in which e represents a number 0 or 1, R18 and R19 are identical or different and represent hydrogen, phenyl, benzyl or straight-chain or branched alkyl or acyl having in each case up to 4 carbon atoms, and/or R3 and R4 represent radicals of the formulae —NR20R21 or —(O)-E-NR22R23,  in which R20 and R21 have the meaning of R18 and R19 given above and are identical to or different from this meaning, or  together with the nitrogen atom form a morpholinyl ring, pyrrolidinyl ring or a radical of the formula  in which R24 has the meaning of R16 given above and is identical to or different from this meaning, E represents a straight-chain alkylene group having up to 4 carbon atoms, R22 and R23 have the meaning of R18 and R19 given above and are identical to or different from this meaning, and/or R3 or R4 represent radicals of the formulae  or represent cyclopentyl, cyclohexyl, naphthyl, phenyl, pyridyl, or quinolyl or tetrazolyl attached via the phenyl ring,  and where the ring systems given above are optionally mono- to disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl and alkoxycarbonyl having in each case up to 4 carbon atoms and/or by groups of the formulae —SO3H, —OR26, (SO2)fNR27R28, —P(O)(OR29)(OR30),  in which R26 represents a radical of the formula or  represents cyclopentyl or cyclohexyl, or  represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, hydroxyl, carboxyl or phenyl, which for its part may be mono- to disubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 3 carbon atoms, hydroxyl and halogen, f represents a number 0 or 1, R27 and R28 have the meaning of R18 and R19 given above and are identical to or different from this meaning or represent a radical of the formula —CO—NH2, R29 and R30 have the meaning of R10 and R11 given above and are identical to or different from this meaning, and/or the ring systems given above are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms, which are optionally substituted by hydroxyl, carboxyl, morpholine, pyridyl or by groups of the formula —SO2—R31, P(O)(OR32)(OR33) or —NR34R35,  in which R31 represents hydrogen or has the meaning of R9 given above and is identical to or different from this meaning, R32 and R33 have the meaning of R10 and R11 given above and are identical to or different from this meaning, R34 and R35 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms, or R34 and R35 together with the nitrogen atom form a morpholinyl, pyrrolidinyl, piperidinyl ring or a radical of the formula  in which R36 has the meaning of R16 given above and is identical to or different from this meaning, or R3 and R4 together with the nitrogen atom form a piperidinyl, pyrrolidinyl or morpholinyl ring, or a radical of the formula  in which R37 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or  represents cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, or  represents straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, pyridyl, carboxyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or R37 represents a radical of the formula —(CO)g-G,  in which g represents a number 0 or 1, G represents naphthyl, phenyl, pyridyl or pyrimidyl, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, straight-chain or branched alkoxy, alkyl or alkylthio having in each case up to 4 carbon atoms, hydroxyl and trifluoromethyl, and the heterocycles listed above under R3 and R4 are optionally mono- to trisubstituted, optionally also geminally, by identical or different substituents from the group consisting of hydroxyl, formyl, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 4 carbon atoms and groups of the formulae —P(O)(OR38)(OR39) or —(CO)g)—NR40R41,  in which R38 and R39 have the meaning of R10 and R11 given above and are identical to or different from this meaning, g represents a number 0 or 1, and R40 and R41 are identical or different and have the meaning of R18 and R19 given above, and/or the heterocycles listed under R3 and R4 are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, carboxyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyloxy, cyclohexyloxy, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a radical of the formula —SO3H, —NR42R43 or P(O)OR44OR45,  in which R42 and R43 are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straight-chain or branched alkyl or alkoxy having in each case up to 4 carbon atoms, R44 and R45 are identical or different and have the meaning of R10 and R11 given above, and/or the alkyl is optionally substituted by benzyloxy, naphtyl or phenyl, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, hydroxyl, straight-chain or branched alkoxy and alkylthio having in each case up to 4 carbon atoms, or by a group of the formula —NR42′ R43′,  in which R42′ and R43′ have the meaning of R42 and R43 given above and are identical to or different from this meaning, and/or the heterocycles listed under R3 and R4 are optionally substituted by phenyl, naphthyl or by radicals of the formulae  where the ring systems for their part may be substituted by fluorine, chlorine, hydroxyl or by straight-chain or branched alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, or R3 and R4 together with the nitrogen atom form radicals of the formulae  in which R44 represents hydrogen or straight-chain or branched alkyl or alkoxycarbonyl having in each case up to 3 carbon atoms, R45 and R45′ are identical or different and represent hydrogen or methyl, R46 represents hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms, R5 and R6 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, hydroxyl or represent straight-chain or branched alkoxy having up to 4 carbon atoms, and their salts and isomeric forms.
  • 3. Compounds of the general formula (I) according to claim 1, in which R1 represents straight-chain or branched alkyl having up to 3 carbon atoms, R2 represents straight-chain [lacuna] having 5 to 12 carbon atoms or branched alkyl having 3 to 12 carbon atoms, or  represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, R3 and R4 are identical or different and represent hydrogen, or  represent straight-chain or branched alkenyl having up to 4 carbon atoms, or  represent a straight-chain or branched alkyl chain having up to 6 carbon atoms which is optionally interrupted by an oxygen atom and which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, carboxyl, straight-chain or branched alkoxy, alkoxycarbonyl and alkylthio having in each case up to 4 carbon atoms and/or by radicals of the formulae —SO3H, -(A)a-NR7R8, —O—CO—NR7′R8′, —S(O)b—R9, HN═SO—R9′, —P(O)(OR10)(OR11),  in which a and b are identical or different and represent a number 0 or 1, A represents a radical CO or SO2, R7, R7′, R8 and R8′ are identical or different and represent hydrogen, or represent phenyl, naphthyl, or pyridyl, where the ring systems listed above are optionally mono- to disubstituted by identical or different substituents from the group consisting of hydroxyl, nitro, trifluoromethyl, trifluoromethoxy, carboxyl, halogen, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or  represent straight-chain or branched alkoxy having up to 4 carbon atoms, or  represent straight-chain or branched alkyl having up to 6 carbon atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, bromine, phenyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a group of the formula —(CO)d—NR14R15,  in which R14 and R15 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and d represents a number 0 or 1, and R7 and R8 and/or R7′ and R8′ together with the nitrogen atom form a pyrrolidinyl, piperidinyl or morpholinyl ring or a radical of the formula  in which R16 represents hydrogen, phenyl, naphthyl or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl, R9 and R9′ are identical or different and represent phenyl or benzyl, or represent straight-chain or branched alkyl having up to 3 carbon atoms, R10 and R11 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 3 carbon atoms, and/or the alkyl chain listed above under R3/R4 is optionally substituted by phenyl, naphthyl, morpholinyl, pyridyl, tetrahydropyranyl, tetrahydrofuranyl or thienyl, where the attachment to the alkyl chain may optionally also take place via a ring nitrogen atom, and where aryl and the heterocycle are optionally mono- to disubstituted by identical or different substituents from the group consisting of nitro, fluorine, chlorine, bromine, —SO3H, straight-chain or branched mono-hydroxy-substituted alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, hydroxyl, trifluoromethyl, trifluoromethoxy and/or by a radical of the formula —(SO2)e—NR18R19,  in which e represents a number 0 or 1, R18 and R19 are identical or different and represent hydrogen, phenyl, benzyl or straight-chain or branched alkyl or acyl having in each case up to 4 carbon atoms, and/or R3 or R4 represents radicals of the formulae —NR20R21 or —(O)-E-NR22R23,  in which R20 and R21 have the meaning of R18 and R19 given above and are identical to or different from this meaning, or  together with the nitrogen atom form a morpholinyl ring, pyrrolidinyl ring or a radical of the formula  in which R24 has the meaning of R16 given above and is identical to or different from this meaning, E represents a straight-chain alkylene group having up to 4 carbon atoms, R22 and R23 have the meaning of R18 and R19 given above and are identical to or different from this meaning and/or R3 or R4 represent the radicals of the formulae  or represent cyclopentyl, cyclohexyl, naphthyl, phenyl, pyridyl, or quinolinyl or tetrazolyl attached via the phenyl ring,  and where the ring systems given above are optionally mono- to disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, trifluoromethyl, trifluoromethoxy, carboxyl, straight-chain or branched acyl and alkoxycarbonyl having in each case up to 4 carbon atoms and/or by groups of the formulae —SO3H, —OR26, (SO2)fNR27R28, —P(O)(OR29)(OR30),  in which R26 represents a radical of the formula or  represents cyclopentyl or cyclohexyl, or  represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by straight-chain or branched alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, hydroxyl, carboxyl or phenyl, which for its part may be mono- to disubstituted by identical or different substituents from the group consisting of straight-chain or branched alkoxy having up to 3 carbon atoms, hydroxyl and halogen, f represents a number 0 or 1, R27 and R28 have the meaning of R18 and R19 given above and are identical to or different from this meaning or represent a radical of the formula —CO—NH2, R29 and R30 have the meaning of R10 and R11 given above and are identical to or different from this meaning, and/or the ring systems given above are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which are optionally substituted by hydroxyl, carboxyl, morpholine, pyridyl or by groups of the formula —SO2—R31, P(O)(OR32)(OR33) or —NR34R35,  in which R31 represents hydrogen or has the meaning of R9 given above and is identical to or different from this meaning, R32 and R33 have the meaning of R10 and R11 given above and are identical to or different from this meaning, R34 and R35 are identical or different and represent hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl or straight-chain or branched alkoxy having up to 3 carbon atoms, or R34 and R35 together with the nitrogen atom form a morpholinyl, pyrrolidinyl, piperidinyl ring or a radical of the formula  in which R36 has the meaning of R16 given above and is identical to or different from this meaning, or R3 and R4 together with the nitrogen atom form a piperidinyl, pyrrolidinyl or morpholinyl ring, or a radical of the formula  in which R37 represents hydrogen, hydroxyl, formyl, trifluoromethyl, straight-chain or branched acyl, alkoxy or alkoxycarbonyl having in each case up to 4 carbon atoms, or  represents cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, or  represents straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, trifluoromethyl, pyridyl, carboxyl, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms, or R37 represents a radical of the formula —(CO)g-G,  in which g represents a number 0 or 1, G represents naphthyl, phenyl, pyridyl or pyrimidyl, where the ring systems listed above are optionally mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, straight-chain or branched alkoxy, alkyl or alkylthio having in each case up to 4 carbon atoms, hydroxyl and trifluoromethyl, and the heterocycles listed under R3 and R4 are optionally mono- to trisubstituted, optionally also geminally, by identical or different substituents from the group consisting of hydroxyl, formyl, carboxyl, straight-chain or branched acyl or alkoxycarbonyl having in each case up to 4 carbon atoms and groups of the formulae —P(O)(OR38)(OR39) or —(CO)g)—NR40R41,  in which R38 and R39 have the meaning of R10 and R11 given above and are identical to or different from this meaning, g represents a number 0 or 1, and R40 and R41 are identical or different and have the meaning of R18 and R19 given above, and/or the heterocycles listed under R3 and R4 are optionally substituted by straight-chain or branched alkyl having up to 4 carbon atoms which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of hydroxyl, fluorine, chlorine, carboxyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyloxy, cyclohexyloxy, straight-chain or branched alkoxy and alkoxycarbonyl having in each case up to 4 carbon atoms or by a radical of the formula —SO3H, —NR42R43 or P(O)OR44OR45,  in which R42 and R43 are identical or different and represent hydrogen, phenyl, carboxyl, benzyl or straight-chain or branched alkyl or alkoxy having in each case up to 4 carbon atoms, R44 and R45 are identical or different and have the meaning of R10 and R11 given above, and/or the alkyl is optionally substituted by benzyloxy, naphtyl or phenyl, which for its part may be mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, hydroxyl, straight-chain or branched alkoxy or alkylthio having in each case up to 4 carbon atoms, or by a group of the formula —NR42′R43′ in which R42′ and R43′ have the meaning of R42 and R43 given above and are identical to or different from this meaning, and/or the heterocycles listed under R3 and R4 are optionally substituted by phenyl, naphthyl or by radicals of the formulae  where the ring systems for their part may be substituted by fluorine, chlorine, hydroxyl or by straight-chain or branched alkyl, alkylthio or alkoxy having in each case up to 4 carbon atoms, or R3 and R4 together with the nitrogen atom form radicals of the formulae  in which R44 represents hydrogen or straight-chain or branched alkyl or alkoxycarbonyl having in each case up to 3 carbon atoms, R45 and R45′ are identical or different and represent hydrogen or methyl, R46 represents hydroxyl or straight-chain or branched alkoxy having up to 4 carbon atoms, R5 and R6 are identical or different and represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, hydroxyl or represent straight-chain or branched alkoxy having up to 4 carbon atoms, and their salts and isomeric forms.
  • 4. Compounds of the general formula (I) according to claim 1, in which R1 represents methyl or ethyl, R2 represents straight-chain [lacuna] having 5 to 11 carbon atoms or branched alkyl having 3 to 11 carbon atoms, or represents cyclopentyl, cyclohexyl, cycloheptyl, R3 and R4 are identical or different and represent straight-chain or branched alkyl having up to 4 carbon atoms which is optionally substituted by hydroxyl, morpholinyl, methoxy, ethoxy, N,N-dimethylamino, N,N-diethylamine or phenyl, which for its part may be substituted up to 3 times by identical or different substituents from the group consisting of methoxy, or  represents cyclopropyl, or  or represents phenyl which is optionally substituted up to 3 times by identical or different substituents from the group consisting of fluorine, chlorine or hydroxyl, methoxy, ethoxy, fluorine or by straight-chain or branched alkyl having up to 3 carbon atoms, which for its part may be substituted by hydroxyl, or R3 and R4 together with the nitrogen atom form a morpholinyl, pyrrolidinyl or piperidinyl ring which are optionally substituted by hydroxyl or by radicals of the formulae —P(O)(OC2H5)2 or —CH2—P(O)OH(OC2H5) or by straight-chain or branched alkyl having up to 3 carbon atoms, which for its part may be substituted by hydroxyl or methoxy, or or R3 and R4 together with the nitrogen atom form a radical of the formula  in which R37 represents pyrimidyl, ethoxycarbonyl or a radical of the formula  —CH2—P(O)(OCH3)2 or represents straight-chain or branched alkyl having up to 3 carbon atoms which is optionally substituted by hydroxyl or methoxy, R5 represents hydrogen, and R6 represents ethoxy, and their salts and isomeric forms.
  • 5. Process for preparing compounds of the general formula (I) according to claim 1, characterized in that [A] initially compounds of the general formula (II) in which R1 and R2 are as defined above and L represents straight-chain or branched alkyl having up to 4 carbon atoms, are converted with compounds of the general formula (III) in which R5 and R6 are as defined above in a two-step reaction, preferably using the system ethanol and then phosphorus oxytrichloride/dichloroethane, into the compounds of the general formula (IV) in which R1, R2, R5 and R6 are as defined above, in a further step reacted with chlorosulphonic acid to give the compounds of the general formula (V) in which R1, R2, R5 and R6 are as defined above, and then reacted with amines of the general formula (VI) HN3R4  (VI) in which R3 and R4 are as defined above in inert solvents.
  • 6. Medicaments, comprising at least one compound of the general formula (I) according to claim 1.
  • 7. Process for preparing medicaments, characterized in that compounds of the general formula (I) according to claim 1 are converted into a suitable administration form, if appropriate using auxiliaries and excipients.
  • 8. Use of compounds of the general formula (I) according to claim 1 in medicaments.
  • 9. Use of compounds of the general formula (I) according to claim 1 in medicaments for inhibiting cGMP-metabolizing phosphodiesterases.
  • 10. Use of compounds of the general formula (I) according to claim 1 for treating cardiovascular disorders.
  • 11. Use of compounds of the general formula (I) according to claim 1 for preparing medicaments having a relaxing effect on smooth muscles.
  • 12. Use of compounds of the general formula (I) according to claim 1 for preparing medicaments for treating female sexual dysfunction.
  • 13. Use of compounds of the general formula (I) according to claim 1 for preparing medicaments for treating erectile dysfunction.
Priority Claims (2)
Number Date Country Kind
198 27 640.0 Jun 1998 DE national
PCT/EP99/04032 Jun 1998 WO international
Continuations (2)
Number Date Country
Parent 10251939 Sep 2002 US
Child 10850510 May 2004 US
Parent 09720051 Mar 2001 US
Child 10251939 Sep 2002 US