8-(piperazin-1yl)- and 8-([1,4]diazepan-1yl)-xanthines, the preparation thereof and their use as pharmaceutical composition

Information

  • Patent Grant
  • 7550455
  • Patent Number
    7,550,455
  • Date Filed
    Tuesday, November 2, 2004
    19 years ago
  • Date Issued
    Tuesday, June 23, 2009
    15 years ago
Abstract
The present invention relates to substituted xanthines of the general formula
Description
FIELD OF THE INVENTION

The present invention relates to novel substituted xanthines of the general formula




embedded image



their tautomers, their enantiomers, their diastereomers, their mixtures, their prodrugs and their salts, in particular their physiologically tolerable salts with inorganic or organic acids, which have valuable pharmacological properties, in particular an inhibitory action on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV), their preparation, their use for the prevention or treatment of illnesses or conditions which are connected with increased DPP-IV activity or can be prevented or alleviated by reduction of the DPP-IV activity, in particular of diabetes mellitus type I or type II, the medicaments comprising a compound of the general formula (I) or a physiologically tolerable salt thereof, and processes for their preparation.


Xanthines having a DPP-IV-inhibiting action are already known from WO 02/02560, WO 03/004496, WO 03/024965, EP 1 338 595 and WO 02/68420. These, however, differ markedly structurally from the compound according to the invention, in particular with respect to the substituents in position 7 and/or 8, or with respect to the group in the 1-position and the combination of groups in position 1 and 8.


In the above formula 1

    • R1 is a heteroaryl-C1-3-alkyl group,
      • where the term heteroaryl is to be understood as meaning a phenylpyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl or phenanthridinyl group and the abovementioned heteroaryl groups are substituted by R10, R11 and R12,
      • where R10 is a hydrogen atom, a fluorine, chlorine or bromine atom or a methyl, difluoromethyl, trifluoromethyl, phenyl, cyano, methoxy, difluoromethoxy, trifluoromethoxy, amino, methylamino, dimethylamino, pyrrolidin-1-yl, piperidin-1-yl or morpholin-4-yl group,
      • R11 is a hydrogen atom or a methyl, methoxy or cyano group and
      • R12 is a hydrogen atom or a methyl group,
    • or a naphthyl-C1-3-alkyl group, in which the naphthyl moiety is substituted by R13 and R14,
      • where R13 is a hydrogen atom, a fluorine, chlorine or bromine atom or a methyl, difluoromethyl, trifluoromethyl, cyano, methoxy, difluoromethoxy or trifluoromethoxy group and
      • R14 is a hydrogen atom or a methyl, methoxy or cyano group,
    • R2 is a methyl, ethyl, propyl, isopropyl, cyclopropyl or phenyl group,
    • R3 is a 2-butyn-1-yl group or a 1-buten-1-yl, 2-buten-1-yl or 3-methyl-2-buten-1-yl group,
    • and n is the number 1 or 2,
    • their tautomers, their enantiomers, their diastereomers, their mixtures, their prodrugs and their salts.


Prodrugs are understood as meaning derivatives which are converted in vivo into the actually active compound. In the compounds according to the invention, the NH group of the piperazino or -[1,4]diazepan-1-yl group can in particular be substituted by a group which is cleavable in vivo. Groups of this type are described, for example, in WO 98/46576 and by N. M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987).


A group which can be cleaved in vivo by an imino or amino group is to be understood as meaning, for example, a hydroxyl group, an acyl group such as a phenylcarbonyl group optionally mono- or disubstituted by fluorine, chlorine, bromine or iodine atoms, by C1-3-alkyl groups or C1-3-alkyloxy groups, where the substituents can be identical or different, a pyridinoyl group or a C1-16-alkanoyl group such as the formyl, acetyl, propionyl, butanoyl, pentanoyl or hexanoyl group, a 3,3,3-trichlorpropionyl or allyloxycarbonyl group, a C1-16-alkyloxycarbonyl or C1-16-alkylcarbonyloxy group, in which hydrogen atoms can be completely or partly replaced by fluorine or chlorine atoms, such as the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, tert-butoxycarbonyl, pentoxycarbonyl, hexoxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl, hexadecyloxycarbonyl, methylcarbonyloxy, ethylcarbonyloxy, 2,2,2-trichloroethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy, tert-butylcarbonyloxy, pentylcarbonyloxy, hexylcarbonyloxy, octylcarbonyloxy, nonylcarbonyloxy, decylcarbonyloxy, undecylcarbonyloxy, dodecylcarbonyloxy or hexadecylcarbonyloxy group, a phenyl-C1-6-alkyloxycarbonyl group such as the benzyloxycarbonyl, phenylethoxycarbonyl or phenylpropoxycarbonyl group, a 3-aminopropionyl group, in which the amino group can be mono- or disubstituted by C1-6-alkyl or C3-7-cycloalkyl groups and the substituents can be identical or different, a C1-3-alkylsulfonyl-C2-4-alkyloxycarbonyl, C1-3-alkyloxy-C2-4-alkyloxy-C2-4-alkyloxycarbonyl, Rp—CO—O—(RqCRr)—O—CO, C1-6-alkyl-CO—NH—(RsCRt)—O—CO or C1-6-alkyl-CO—O—(RsCRt)—(RsCRt)—O—CO group, in which

    • Rp is a C1-8-alkyl, C5-7-cycloalkyl, C1-8-alkyloxy, C5-7-cycloalkyloxy, phenyl or phenyl-C1-3-alkyl group,
    • Rq is a hydrogen atom, a C1-3-alkyl, C5-7-cycloalkyl or phenyl group,
    • Rr is a hydrogen atom or a C1-3-alkyl group and
    • Rs and Rt, which can be identical or different, are hydrogen atoms or C1-3-alkyl groups.


Preferred compounds of the general formula I are those in which

    • R1 is a heteroarylmethyl group,
      • where the term heteroaryl is to be understood as meaning a phenylpyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl or phenanthridinyl group and the abovementioned heteroaryl groups are substituted by R10, R11 and R12,
      • where R10 is a hydrogen atom or a methyl, difluoromethyl, trifluoromethyl, phenyl, cyano, methoxy, difluoromethoxy, trifluoromethoxy, amino, methylamino, dimethylamino, pyrrolidin-1-yl, piperidin-1-yl or morpholin-4-yl group,
      • R11 is a hydrogen atom or a methyl or cyano group and
    • R12 is a hydrogen atom or a methyl group,
    • or a naphthylmethyl group, in which the naphthyl moiety is substituted by R13 and R14,
      • where R13 is a hydrogen atom, a fluorine, chlorine or bromine atom or a methyl, difluoromethyl, trifluoromethyl, cyano, methoxy, difluoromethoxy or trifluoromethoxy group and
    • R14 is a hydrogen atom or a methyl or cyano group,
    • R2 is a methyl, ethyl, propyl, isopropyl, cyclopropyl or phenyl group,
    • R3 is a 2-butyn-1-yl group or a 1-buten-1-yl, 2-buten-1-yl or 3-methyl-2-buten-1-yl group,
    • and n is the number 1 or 2,
    • their tautomers, their mixtures and their salts.


Particularly preferred compounds of the general formula I are those in which

    • R1 is a heteroarylmethyl group,
      • where the term heteroaryl is to be understood as meaning a phenylpyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl or phenanthridinyl group and the abovementioned heteroaryl groups are substituted by R-hu 10, R11 and R12,
      • where R10 is a hydrogen atom or a methyl, phenyl, cyano, methoxy, amino, methylamino, dimethylamino, pyrrolidin-1-yl, piperidin-1-yl or morpholin-4-yl group,
      • R11 is a hydrogen atom or a methyl or cyano group and
      • R12 is a hydrogen atom or a methyl group,
    • or a naphthylmethyl group, in which the naphthyl moiety is substituted by R13 and R14,
      • where R13 is a hydrogen atom, a fluorine atom or a methyl, cyano or methoxy group and
      • R14 is a hydrogen atom or a methyl or cyano group,
    • R2 is a methyl group,
    • R3 is a 2-butyn-1-yl group
    • and n is the number 1 or 2,
    • their tautomers, their mixtures and their salts.


Very particularly preferred compounds are those in which

    • R1 is a methyl group, which is substituted by a fluoronaphthyl, methoxynaphthyl, cyanonaphthyl, dicyanonaphthyl, phenylpyrimidinyl, quinolinyl, fluoroquinolinyl, methylquinolinyl, cyanoquinolinyl, isoquinolinyl, methylisoquinolinyl, cyanoisoquinolinyl, quinazolinyl, methylquinazolinyl, phenylquinazolinyl, (dimethylamino)-quinazolinyl, (morpholin-4-yl)quinazolinyl, quinoxalinyl, methylquinoxalinyl, dimethylquinoxalinyl, trimethylquinoxalinyl, phenylquinoxalinyl or naphthyridinyl group,
    • R2 is a methyl group,
    • R3 is a 2-butyn-1-yl group,
    • and n is the number 1 or 2,
    • their tautomers, their mixtures and their salts;
    • in particular, those compounds are preferred in which
    • R1 is a methyl group, which is substituted by a cyanoquinolinyl, methylisoquinolinyl, cyanoisoquinolinyl, quinazolinyl, methylquinazolinyl, phenylquinazolinyl, dimethylquinoxalinyl or naphthyridinyl group,
    • R2 is a methyl group,
    • R3 is a 2-butyn-1-yl group and
    • n is the number 1 or 2,
    • their tautomers and their salts.


Those compounds of the general formula I form a preferred subgroup in which

    • R1, R2 and R3 are defined as mentioned above and n is the number 1,
    • their tautomers and their salts.


Those compounds of the general formula I form a second subgroup in which

    • R1, R2 and R3 are defined as mentioned above
    • and n is the number 2,
    • their tautomers and their salts.


In particular, the following compounds may be mentioned:

    • (a) 1-[(4-Methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
    • (b) 1-[(4-Phenylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
    • (c) 1-[([1,5]-Naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine


      and their tautomers and their salts.


According to the invention, the compounds of the general formula I are obtained by processes known per se, for example by the following processes:


a) Reaction of a Compound of the Formula




embedded image



in which

    • R1 to R3 are defined as mentioned at the outset and
    • Z1 is a leaving group such as a halogen atom, a substituted hydroxyl, mercapto, sulphinyl, sulphonyl or sulphonyloxy group such as a chlorine or bromine atom, a methanesulfonyl or methanesulfonyloxy group, with piperazine or [1,4]diazepane or their salts.


The reaction is expediently carried out in a solvent such as isopropanol, butanol, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulphoxide, ethylene glycol monomethyl ether, ethylene glycol diethyl ether or sulpholane optionally in the presence of an inorganic or tertiary organic base, e.g. sodium carbonate, potassium carbonate or potassium hydroxide, a tertiary organic base, e.g. triethylamine, or in the presence of N-ethyldiisopropylamine (Hüinig's base), where these organic bases can simultaneously also serve as solvents, and optionally in the presence of a reaction accelerator such as an alkali metal halide or a catalyst based on palladium at temperatures between −20 and 180° C., but preferably at temperatures between −10 and 120° C. The reaction, however, can also be carried out without solvent or in an excess of piperazine or [1,4]diazepane.


b) Deprotection of a Compound of the Formula




embedded image



in which R1, R2 and R3 are defined as mentioned at the outset.


The cleavage of the tert-butyloxycarbonyl group is preferably carried out by treatment with an acid such as trifluoroacetic acid or hydrochloric acid or by treatment with bromotrimethylsilane or iodotrimethylsilane optionally using a solvent such as methylene chloride, ethyl acetate, dioxane, methanol, isopropanol or diethyl ether at temperatures between 0 and 80° C.


In the reactions described above, reactive groups optionally present such as amino, alkylamino or imino groups can be protected during the reaction by customary protective groups, which are cleaved again after the reaction.


For example, possible protective groups for an amino, alkylamino or imino group are the formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl, benzyl, methoxybenzyl or 2,4-dimethoxybenzyl group and for the amino group additionally the phthalyl group.


The optionally subsequent cleavage of a used protective group is carried out, for example, hydrolytically in an aqueous solvent, e.g. in water, isopropanol/water, acetic acid/water, tetrahydrofuran/water or dioxane/water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or sulphuric acid or in the presence of an alkali metal base such as sodium hydroxide or potassium hydroxide or aprotically, e.g. in the presence of iodotrimethylsilane, at temperatures between 0 and 120° C., preferably at temperatures between 10 and 100° C.


The cleavage of a benzyl, methoxybenzyl or benzyloxycarbonyl group, however, is carried out, for example, hydrogenolytically, e.g. using hydrogen in the presence of a catalyst such as palladium/carbon in a suitable solvent such as methanol, ethanol, ethyl acetate or glacial acetic acid optionally with addition of an acid such as hydrochloric acid at temperatures between 0 and 100° C., but preferably at room temperatures between 20 and 60° C., and at a hydrogen pressure of 1 to 7 bar, but preferably of 3 to 5 bar. The cleavage of a 2,4-dimethoxybenzyl group, however, is preferably carried out in trifluoroacetic acid in the presence of anisole.


The cleavage of a tert-butyl or tert-butyloxycarbonyl group is preferably carried out by treatment with an acid such as trifluoroacetic acid or hydrochloric acid or by treatment with iodotrimethylsilane optionally using a solvent such as methylene chloride, dioxane, methanol or diethyl ether.


The cleavage of a trifluoroacetyl group is preferably carried out by treatment with an acid such as hydrochloric acid optionally in the presence of a solvent such as acetic acid at temperatures between 50 and 120° C. or by treatment with sodium hydroxide solution optionally in the presence of a solvent such as tetrahydrofuran at temperatures between 0 and 50° C.


The cleavage of a phthalyl group is preferably carried out in the presence of hydrazine or a primary amine such as methylamine, ethylamine or n-butylamine in a solvent such as methanol, ethanol, isopropanol, toluene/water or dioxane at temperatures between 20 and 50° C.


Furthermore, the compounds of the general formula I obtained can be separated, as has been already mentioned at the outset, into their enantiomers and/or diastereomers. For example, cis/trans mixtures can thus be separated into their cis and trans isomers, and compounds having at least one optically active carbon atom can be separated into their enantiomers.


For example, the cis/trans mixtures thus obtained can be separated by chromatography into their cis and trans isomers, the compounds of the general formula I obtained, which occur as racemates, can be separated by methods known per se (see Allinger N. L. and Eliel E. L. in “Topics in Stereochemistry”, Vol. 6, Wiley Interscience, 1971) into their optical antipodes and compounds of the general formula I having at least 2 asymmetric carbon atoms can be separated on the basis of their physicochemical differences according to methods known per se, e.g. by chromatography and/or fractional crystallization, into their diastereomers, which, if they are obtained in racemic form, can then be separated into the enantiomers as mentioned above.


The separation of enantiomers is preferably carried out by column separation on chiral phases or by recrystallizing from an optically active solvent or by reacting with an optically active substance, in particular acids and their activated derivatives or alcohols, forming salts or derivatives such as, for example, esters or amides, with the racemic compound and separating the diastereomeric salt mixture or derivative obtained in this way, e.g. on the basis of different solubilities, it being possible to liberate the free antipodes from the pure diastereomeric salts or derivatives by the action of suitable agents. Particularly common, optically active acids are, for example, the D and L forms of tartaric acid or dibenzoyltartaric acid, di-O-p-toluoyl-tartaric acid, malic acid, mandelic acid, camphorsulphonic acid, glutamic acid, aspartic acid or quinic acid. A possible optically active alcohol is, for example, (+)- or (−)-menthol and an optically active acyl group in amides is, for example, (+)- or (−)-menthyloxycarbonyl.


In addition, the compounds of the formula I obtained can be converted into their salts, in particular for pharmaceutical administration into their physiologically tolerable salts with inorganic or organic acids. Possible acids for this are, for example, hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulphonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.


The compounds of the general formulae II and III used as starting substances are either known from the literature or they are obtained by processes known per se from the literature (see Examples I to IV).


As already mentioned at the outset, the compounds of the general formula I according to the invention and their physiologically tolerable salts have valuable pharmacological properties, in particular an inhibitory action on the enzyme DPP-IV.


The biological properties of the novel compounds were tested as follows:


The ability of the substances and their corresponding salts to inhibit DPP-IV activity can be shown in a test set-up in which an extract of the human colon carcinoma cell line Caco-2 is utilized as the DPP-IV source. The differentiation of the cells, in order to induce the DPP-IV expression, was carried out according to the description of Reiher et al. in an article having the title “Increased expression of intestinal cell line Caco-2”, which appeared in Proc. Natl. Acad. Sci. Vol. 90, pages 5757-5761 (1993),. The cell extract was obtained from the cells solubilized in a buffer (10 mM tris HCl, 0.15 M NaCl, 0.04 t.i.u. aprotinin, 0.5% Nonidet-P40, pH 8.0) by centrifugation at 35000 g for 30 minutes at 4° C. (for the removal of cell debris).


The DPP-IV assay was carried out as follows:


50 μl of substrate solution (AFC; AFC is amido-4-trifluoromethylcoumarin), final concentration 100 μM, were introduced into black microtitre plates. 20 μl of assay buffer (final concentrations 50 mM tris HCl pH 7.8, 50 mM NaCl, 1% DMSO) were pipetted in. The reaction was started by addition of 30 μl of solubilized Caco-2 protein (final concentration 0.14 μg of protein per well). The test substances to be investigated were typically added prediluted in 20 μl, the assay buffer volumes then being correspondingly reduced. The reaction was carried out at room temperature; the incubation period was 60 minutes. The fluorescence was then measured in a Victor 1420 multilabel counter, the excitation wavelength being at 405 nm and the emission wavelength at 535 nm. Blank values (corresponding to 0% activity) were obtained in batches without Caco-2 protein (volumes replaced by assay buffer), control values (corresponding to 100% activity) were obtained in batches without addition of substance. The potencies of the respective test substances, expressed as IC50 values, were calculated from dose-response curves, which consisted of 11 measurement points in each case. The following results were obtained thereby:
















Compound
DPP IV inhibition



(Example No.)
IC50 [nM]



















1
3



1(1)
17



1(2)
9



1(3)
6












    • The compounds prepared according to the invention are highly tolerable, since, for example, after oral administration of 10 mg/kg of the compound of Example 1 to rats in was not possible to observe any changes in the behaviour of the animals.





With respect to the ability to inhibit the DPP-IV activity, the compounds of the general formula I according to the invention and their corresponding pharmaceutically acceptable salts are suitable for influencing all those conditions or illnesses which can be influenced by an inhibition of the DPP-IV activity. It is therefore to be expected that the compounds according to the invention are suitable for the prevention of illnesses or conditions such as diabetes mellitus type 1 and type 2, prediabetes, reduction of the glucose tolerance or changes in the fasting blood sugar, diabetic complications (such as, for example, retinopathy, nephropathy or neuropathies), metabolic acidosis or ketosis, reactive hypoglycaemia, insulin resistance, metabolic syndrome, dyslipidaemias of all sorts of origin, arthritis, atherosclerosis and related diseases, adiposity, allograft transplantation and osteoporosis caused by calcitonin. Moreover, these substances are suitable for preventing B cell degeneration such as, for example, apoptosis or necrosis of pancreatic B cells. The substances are further suitable for improving or restoring the functionality of pancreatic cells, in addition for increasing the number and size of pancreatic B cells. Additionally and justified by the role of the glucagon-like peptides, such as, for example, GLP-1 and GLP-2 and their link with DPP-IV Inhibition, it is expected that the compounds according to the invention are suitable, inter alia, for achieving a sedating or anxiolytic effect, moreover of favourably influencing catabolic conditions after operations or hormonal stress responses or of being able to reduce the mortality and morbidity after myocardial infarct. Moreover, they are suitable for the treatment of all conditions which are connected with the abovementioned effects and are mediated by GLP-1 or GLP-2. The compounds according to the invention can likewise be employed as diuretics or antihypertensives and are suitable for the prevention and treatment of acute kidney failure. Furthermore, the compounds according to the invention can be employed for the treatment of inflammatory diseases of the airways. Likewise, they are suitable for the prevention and therapy of chronic inflammatory bowel diseases such as, for example, irritable bowel syndrome (IBS), Crohn's disease or ulcerative colitis as well as in pancreatitis. In addition, it is expected that they can be employed in any type of injury or disturbance in the gastrointestinal tract and, for example, in cases of colitis and enteritis. Moreover, it is expected that DPP-IV inhibitors and thus also the compounds according to the invention can be used for the treatment of infertility or for the improvement of fertility in man or in the mammalian body, in particular if the infertility is connected with insulin resistance or with polycystic ovarian syndrome. On the other hand, these substances are suitable for influencing the motility of the sperm and and can thus be employed as contraceptives for use in man. Moreover, the substances are suitable for influencing growth hormone deficiency states, which are accompanied by low growth, and can be usefully employed in all indications in which growth hormone can be used. On account of their inhibitory action against DPP IV, the compounds according to the invention are also suitable for the treatment of various autoimmune diseases such as, for example, rheumatoid arthritis, multiple sclerosis, cases of thyroiditis and Basedow's disease etc. Moreover, they can be employed in viral diseases and, for example, in HIV infections, for the stimulation of haematopoiesis, in benign prostate hyperplasia, in cases of gingivitis, and for the treatment of neuronal defects and neurodegenerative diseases such as, for example, Alzheimer's disease. Compounds described are likewise to be used for the therapy of tumours, in particular for modifying tumour invasion and formation of metastases; examples here are use in T cell lymphomas, acute lymphoblastic leukaemia, cell-based thyroid carcinomas, basal cell carcinomas or breast carcinomas. Further indications are stroke, cases of ischaemia of all sorts of origin, Parkinson's disease and migraine. Moreover, further indication areas are cases of follicular and epidermal hyperkeratosis, increased keratinocyte proliferation, psoriasis, cases of encephalomyelitis, cases of glomerulonephritis, cases of lipodystrophy, and psychosomatic, depressive and neuropsychiatric diseases of all sorts of origin.


The compounds according to the invention can also be used in combination with other active compounds. The therapeutics suitable for such a combination include, for example, antidiabetics, such as, for example, metformin, sulphonylureas (e.g. glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinediones (e.g. rosiglitazone, pioglitazone), PPAR gamma agonists (e.g. GI 262570) and antagonists, PPAR gamma/alpha modulators (e.g. KRP 297), PPAR gamma/alpha/delta modulators, AMPK activators, ACC1 and ACC2 inhibitors, DGAT inhibitors, SMT3 receptor agonists, 11β-HSD inhibitors, FGF19 agonists or mimetics, alpha-glucosidase inhibitors (e.g. acarbose, voglibose), other DPPIV inhibitors, alpha2 antagonists, insulin and insulin analogues, GLP-1 and GLP-1 analogues (e.g. exendin-4) or amylin. In addition, SGLT2 inhibitors such as T-1095 or KGT-1251 (869682), inhibitors of protein tyrosine phosphatase 1, substances which influence deregulated glucose production in the liver, such as, for example, inhibitors of glucose 6-phosphatase, or of fructose 1,6-bisphosphatase, of glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvate carboxykinase, of glycogen synthase kinase or of pyruvate dehydrokinase, hypolipidaemics, such as, for example, HMG-CoA reductase inhibitors (e.g. simvastatin, atorvastatin), fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and its derivatives, PPAR alpha agonists, PPAR delta agonists, ACAT inhibitors (e.g. avasimibe) or cholesterol absorption inhibitors such as, for example, ezetimibe, bile acid-binding substances such as, for example, colestyramine, inhibitors of ileal bile acid transport, HDL-increasing compounds such as, for example, inhibitors of CETP or regulators of ABC1 or LXRalpha antagonists, LXRbeta agonists or LXRalpha/beta regulators or active compounds for the treatment of obesity, such as, for example, sibutramine or tetrahydrolipstatin, dexfenfluramine, axokine, antagonists of the cannbinoid1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists or β3-agonists such as SB-418790 or AD-9677 as well as agonists of the 5HT2c receptor.


In addition, a combination with medicaments for influencing high blood pressure such as, for example, All antagonists or ACE inhibitors, diuretics, β-blockers, Ca antagonists and others or combinations thereof is suitable.


The dose necessary to achieve an appropriate action is expediently, in the case of intravenous administration, 1 to 100 mg, preferably 1 to 30 mg, and in the case of oral administration 1 to 1000 mg, preferably 1 to 100 mg, in each case 1 to 4× daily. For this purpose, the compounds of the formula I prepared according to the invention, if appropriate in combination with other active substances, can be incorporated together with one or more inert customary vehicles and/or diluents, e.g. maize starch, lactose, sucrose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fat-containing substances such as hard fat or their suitable mixtures, in customary galenical preparations such as tablets, coated tablets, capsules, powders, suspensions or suppositories.


The following examples are intended to illustrate the invention in greater detail:


Preparation of the starting compounds:







EXAMPLE I
1-[(4-Methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine

A mixture of 28.91 g of 3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine, 20.00 g of 2-chloromethyl-4-methylquinazoline and 27.74 g of potassium carbonate in 235 ml of N-methylpyrrolidone is warmed to 75° C. and stirred at this temperature for six hours. Subsequently, the reaction mixture is slowly treated with 235 ml of water, a pale precipitate depositing. The suspension is cooled in an ice bath. The precipitate is filtered off with suction, washed with water and a little petroleum ether and dried at 50° C. in a circulating air drying oven.


Yield: 40.8 g (93% of theory) Mass spectrum (ESI+): m/z=453, 455 [M+H]+


The following compounds are obtained analogously to Example I:


(1) 1-[(3-Methylisoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine

Rf: 0.40 (silica gel, ethyl acetate/petroleum ether=1:1) Mass spectrum (ESI+): m/z=452, 454 [M+H]+


(2) 1-[(Phenanthridin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine

Rf: 0.50 (silica gel, cyclohexane/ethyl acetate=3:1) Mass spectrum (ESI+): m/z=488, 490 [M+H]+


(3) 1-[(4-Phenylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine (carrying out in N,N-dimethylformamide at 80° C.)

Rf: 0.83 (silica gel, ethyl acetate/petroleum ether=4:1) Mass spectrum (ESI+): m/z=515, 517 [M+H]+


(4) 1-[(2,3-Dimethylquinoxalin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine (carrying out in N,N-dimethylformamide at 80° C.)

Rf: 0.50 (silica gel, ethyl acetate/petroleum ether=4:1) Mass spectrum (ESI+): m/z=467, 469 [M+H]+


(5) 1-[(4-Cyanoisoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine (carrying out in N,N-dimethylformamide at 80° C.)

Rf: 0.80 (silica gel, ethyl acetate/petroleum ether=4:1) Mass spectrum (ESI+): m/z=463, 465 [M+H]+


(6) 1-[(1-Cyanoisoquinolin-3-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine (carrying out in N,N-dimethylformamide at 80° C.)

Rf: 0.75 (silica gel, ethyl acetate/petroleum ether=4:1) Mass spectrum (ESI+): m/z=463, 465 [M+H]+


(7) 1-[([1,5]-Naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine (carrying out in N,N-dimethylformamide at 80° C.)

Rf: 0.39 (silica gel, ethyl acetate) Mass spectrum (ESI+): m/z=439, 441 [M+H]+


EXAMPLE II
3-Methyl-7-(2-butyn-1-yl)-8-bromoxanthine

A mixture of 40.00 g of 3-methyl-8-bromoxanthine, 36 ml of diisopropylethylamine and 23.00 g of 1-bromo-2-butyne in 500 ml of N,N-dimethylformamide is stirred at room temperature for three hours. 1 ml of 1-bromo-2-butyne is then added again and the mixture is stirred at room temperature for a further hour until the reaction is complete. For work-up, the reaction mixture is diluted with 400 ml of water. The resulting precipitate is filtered off with suction, washed with water, cold methanol and diethyl ether and dried.


Yield: 41.60 g (86% of theory) Mass spectrum (ESI+): m/z=297, 299 [M+H]+


EXAMPLE III
2-Chloromethyl-4-methylquinazoline

Prepared by treatment of 2.95 g of 2-chloromethyl-4-methylquinazoline 3-oxide with 6 ml of phosphorus trichloride in 150 ml of chloroform under reflux.


Yield: 1.75 g (57% of theory) Rf: 0.81 (silica gel, methylene chloride/methanol=95:5) Mass spectrum (ESI+): m/z=193, 195 [M+H]+


EXAMPLE IV
1-(Bromomethyl)-4-cyanoisoquinoline

Prepared by treatment of 2.40 g of 1-methyl-4-cyanoisoquinoline with 2.60 g of N-bromosuccinimide in the presence of 100 mg of azobisisobutyronitrile in carbon tetrachloride under reflux.


Yield: 704 mg (20% of theory) Rf: 0.58 (silica gel, methylene chloride) Mass spectrum (ESI+): m/z=247, 249 [M+H]+


The following compounds are obtained analogously to Example IV:


(1) 3-(Bromomethyl)-1-cyanoisoquinoline

Rf: 0.62 (silica gel, methylene chloride)


(2) 2-(Bromomethyl)-[1,5]-naphthyridine

Mass spectrum (ESI+): m/z=223, 225 [M+H]+Rf: 0.65 (silica gel, methylene chloride)


Preparation of the final compounds:


EXAMPLE 1
1-[(4-Methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

A mixture of 300 mg of 1-[(4-methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-bromoxanthine and 290 mg of piperazine in 5 ml of N,N-dimethylformamide is heated at 200° C. for 5 min in a microwave oven. After cooling to room temperature, the reaction mixture is treated with water and saturated sodium chloride solution and extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution, dried over magnesium sulphate and concentrated. The solid flask residue is triturated with diethyl ether, filtered off with suction and dried at 45° C. in a circulating air drying oven.


Yield: 200 mg (66% of theory) Melting point: 213-215° C. Mass spectrum (ESI+): m/z=459 [M+H]+


The following compounds are obtained analogously to Example 1:


(1) 1-[(3-Methylisoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

Rf: 0.50 (reversed phase TLC ready-to-use plates (E. Merck), acetonitrile/water/trifluoroacetic acid=50:50:1) Mass spectrum (ESI+): m/z=458 [M+H]+


(2)1- [(3-Methylisoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-([1,4]diazepan-1-yl)xanthine

Melting point: 129-13 1° C. Mass spectrum (ESI+): m/z=472 [M+H]+


(3) 1-[(4-Methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-([1,4]diazepan-1-yl)xanthine

Melting point: 188-190° C. Mass spectrum (ESI+): m/z=473 [M+H]+


(4) 1-[(Phenanthridin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine

Rf: 0.50 (reversed phase TLC ready-to-use plate (E. Merck), acetonitrile/water/trifluoroacetic acid=50:50:1) Mass spectrum (ESI+): m/z=494 [M+H]+


(5) 1-[(Phenanthridin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-([1,4]diazepan-1-yl)-xanthine

Melting point: 223-225° C. Mass spectrum (ESI+): m/z=508 [M+H]+


(6)1-[(4-Phenylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

Rf: 0.49 (silica gel, methylene chloride/methanol/conc. aqueous ammonia=90:10:1) Mass spectrum (ESI+): m/z=521 [M+H]+


(7) 1-[(2,3-Dimethylquinoxalin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine

Rf: 0.38 (silica gel, methylene chloride/methanol/conc. aqueous ammonia=90:10:1) Mass spectrum (ESI+): m/z=473 [M+H]+


(8) 1-[(4-Cyanoisoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

Rf: 0.39 (silica gel, methylene chloride/methanol/conc. aqueous ammonia=90: 10:1) Mass spectrum (ESI+): m/z=469 [M+H]+


(9) 1-[(1-Cyanoisoquinolin-3-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

Rf: 0.34 (silica gel, methylene chloride/methanol/conc. aqueous ammonia=90:10:1) Mass spectrum (ESI+): m/z=469 [M+H]+


(10) 1-[([1,5]-Naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine

Rf: 0.46 (silica gel, methylene chloride/methanol/conc. aqueous ammonia=90:10:1) Mass spectrum (ESI+): m/z=445 [M+H]+


The following compounds can also be obtained analogously to the above examples and other processes known from the literature:

  • 1-[(4-Methylquinazolin-2-yl)methyl]-3-phenyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(4-Methylquinazolin-2-yl)methyl]-3-cyclopropyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(4-Cyanonaphthalen-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(4-Methoxynaphthalen-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(4-Fluoronaphthalen-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(4-Dimethylaminoquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-{[4-(Morpholin-4-yl)quinazolin-2-yl]methyl}-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1- [([1,5]Naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-([1,4]diazepan-1-yl)-xanthine
  • 1-[(2-Methylquinolin-4-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(7-Fluoroquinolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(4-Phenylpyrimidin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(1-Cyanoisoquinolin-3-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-([1,4]diazepan-1-yl)-xanthine
  • 1-[(Quinazolin-6-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(Isoquinolin-1-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(Quinolin-4-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(4-Cyanoquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 1-[(3-Cyanoquinolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)xanthine
  • 1-[(1,4-Dicyanonaphthalen-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine


EXAMPLE 2

Coated Tablets Containing 75 mg of Active Substance












1 coated tablet core contains:


















Active substance
75.0 mg



Calcium phosphate
93.0 mg



Maize starch
35.5 mg



Polyvinylpyrrolidone
10.0 mg



Hydroxypropylmethylcellulose
15.0 mg



Magnesium stearate
 1.5 mg




230.0 mg 











Preparation:


The active substance is mixed with calcium phosphate, maize starch, polyvinylpyrrolidone, hydroxypropylmethylcellulose and half the stated amount of magnesium stearate. Pressings having a diameter of about 13 mm are prepared on a tabletting machine; these are grated through a sieve having a mesh width of 1.5 mm on a suitable machine and blended with the remaining amount of magnesium stearate. These granules are pressed on a tabletting machine to give tablets having the desired shape.

    • Core weight: 230 mg
    • Die: 9 mm, convex


The coated tablet cores thus prepared are coated with a film which consists essentially of hydroxypropylmethylcellulose. The finished film-coated tablets are glazed with beeswax. Coated tablet weight: 245 mg.


EXAMPLE 3

Tablets Containing 100 mg of Active Substance


Composition:












1 tablet contains:


















Active substance
100.0 mg



Lactose
 80.0 mg



Maize starch
 34.0 mg



Polyvinylpyrrolidone
 4.0 mg



Magnesium stearate
 2.0 mg




220.0 mg











Preparation Process:


Active compound, lactose and starch are mixed and uniformly moistened with an aqueous solution of the polyvinylpyrrolidone. After sieving the moist mass (2.0 mm mesh width) and drying in a tray drying oven at 50° C., the mixture is sieved again (1.5 mm mesh width) and the lubricant is admixed. The press-ready mixture is compressed to give tablets.

    • Tablet weight: 220 mg
    • Diameter: 10 mm, biplanar with a facet on both sides and a breaking notch on one side.


EXAMPLE 4

Tablets Containing 150 mg of Active Substance


Composition:












1 tablet contains:


















Active substance
150.0 mg 



Lactose, powdered
89.0 mg



Maize starch
40.0 mg



Colloidal silicic acid
10.0 mg



Polyvinylpyrrolidone
10.0 mg



Magnesium stearate
 1.0 mg




300.0 mg 











Preparation:


The active substance mixed with lactose, maize starch and silicic acid is moistened with a 20% strength aqueous polyvinylpyrrolidone solution and pounded through a sieve having a mesh width of 1.5 mm.


The granules dried at 45° C. are again grated through the same sieve and mixed with the stated amount of magnesium stearate. Tablets are pressed from the mixture.

    • Tablet weight: 300 mg
    • Die: 10 mm, flat


EXAMPLE 5

Hard Gelatine Capsules Containing 150 mg of Active Substance












1 capsule contains:



















Active compound

150.0 mg



Maize starch, dried
about
180.0 mg



Lactose, powdered
about
 87.0 mg



Magnesium stearate

 3.0 mg




about
420.0 mg











Preparation:


The active compound is blended with the excipients, passed through a sieve of mesh width 0.75 mm and homogeneously mixed in a suitable apparatus.


The final mixture is filled into hard gelatine capsules of size 1.

    • Capsule filling: about 320 mg
    • Capsule shell: hard gelatine capsule size 1.


EXAMPLE 6

Suppositories Containing 150 mg of Active Substance


1 Suppository Contains:












1 suppository contains:


















Active compound
150.0 mg



Polyethylene glycol 1500
550.0 mg



Polyethylene glycol 6000
460.0 mg



Polyoxyethylenesorbitan monostearate
840.0 mg




2000.0 mg 











Preparation:


After melting the suppository mass, the active compound is homogeneously dispersed therein and the melt is poured into precooled moulds.


EXAMPLE 7

Suspension Containing 50 mg of Active Substance


100 ml of Suspension Contain:












100 ml of suspension contain:



















Active compound
1.00
g



Carboxymethylcellulose Na salt
0.10
g



Methyl p-hydroxybenzoate
0.05
g



Propyl p-hydroxybenzoate
0.01
g



Sucrose
10.00
g



Glycerol
5.00
g



Sorbitol solution, 70% strength
20.00
g



Flavouring
0.30
g



water, dist.
to 100
ml











Preparation:


Dist. water is heated to 70° C. Methyl and propyl p-hydroxybenzoate and also glycerol and carboxymethylcellulose sodium salt are dissolved therein with stirring. The mixture is cooled to room temperature and the active compound is added and homogeneously dispersed with stirring. After adding and dissolving the sugar, the sorbitol solution and the flavouring, the suspension is evacuated with stirring for deaeration. 5 ml of suspension contain 50 mg of active compound.


EXAMPLE 8

Ampoules Containing 10 mg of Active Substance


Composition:












Composition:



















Active compound
10.0
mg










0.01N hydrochloric acid
q. s.











Water, double-distilled
to 2.0
ml











Preparation:


The active substance is dissolved in the required amount of 0.01 N HCl, rendered isotonic using sodium chloride, sterile-filtered and filled into 2 ml ampoules.


EXAMPLE 9

Ampoules Containing 50 mg of Active Substance


Composition:












Composition:



















Active compound
50.0
mg










0.01N hydrochloric acid
q. s.











Water, double-distilled
to 10.0
ml











Preparation:


The active substance is dissolved in the required amount of 0.01 N HCl, rendered isotonic using sodium chloride, sterile-filtered and filled into 10 ml ampoules.

Claims
  • 1. A compound of formula
  • 2. The compound of formula I according to claim 1, wherein R1 is(a) a heteroarylmethyl group, wherein heteroaryl is selected from the group consisting of phenylpyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl and phenanthridinyl, which may be optionally substituted by R10, R11 and R12,where R10 is selected from hydrogen, methyl, difluoromethyl, trifluoromethyl, phenyl, cyano, methoxy, difluoromethoxy, trifluoromethoxy, amino, methylamino, dimethylamino, pyrrolidin-1-yl, piperidin-1-yl or morpholin-4-yl;R11 is selected from hydrogen, methyl or cyano; andR12 is selected from hydrogen or methyl,or(b) a naphthylmethyl group, which may optionally be substituted by R13 and R14, where R13 is selected from hydrogen, fluorine, chlorine, bromine, methyl, difluoromethyl,trifluoromethyl, cyano, methoxy, difluoromethoxy or trifluoromethoxy; andR14 is selected from hydrogen, methyl or cyano;R2 is selected from methyl, ethyl, propyl, isopropyl, cyclopropyl or phenyl;R3 is selected from 2-butyn-1-yl, 1-buten-1-yl, 2-buten-1-yl or 3-methyl-2-buten-1-yl;andn is 1 or 2;
  • 3. The compound of formula I according to claim 1, wherein R1 is(a) a heteroarylmethyl group, where heteroaryl is selected from a group consisting of phenylpyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl or phenanthridinyl, which may optionally substituted by R10, R11 and R12,where R10 is selected from hydrogen, methyl, phenyl, cyano, methoxy, amino, methylamino, dimethylamino, pyrrolidin-1-yl, piperidin-1-yl or morpholin-4-yl;R11 is selected from hydrogen, methyl or cyano; andR12 is selected from hydrogen or methyl,or(b) a naphthylmethyl group, which optionally may be substituted by R13 and R14, where R13 is selected from hydrogen, fluorine, methyl, cyano or methoxy; andR14 is selected from hydrogen, methyl or cyano;R2 is methyl;R3 is 2-butyn-1-yl;andn is 1 or 2;
  • 4. The compound of formula I according to claim 1, wherein R1 is methyl, which may be substituted by a fluoronaphthyl, methoxynaphthyl, cyanonaphthyl, dicyanonaphthyl, phenylpyrimidinyl, quinolinyl, fluoroquinolinyl, methylquinolinyl, cyanoquinolinyl, isoquinolinyl, methylisoquinolinyl, cyanoisoquinolinyl, quinazolinyl, methylquinazolinyl, phenylquinazolinyl, (dimethylamino)-quinazolinyl, (morpholin-4-yl)quinazolinyl, quinoxalinyl, methylquinoxalinyl, dimethylquinoxalinyl, trimethylquinoxalinyl, phenylquinoxalinyl or naphthyridinyl;R2 is methyl;R3 is 2-butyn-1-yl;andn is 1 or 2;
  • 5. The compound of formula I according to claim 1, wherein R1 is methyl, which may be substituted by a cyanoquinolinyl, methylisoquinolinyl, cyanoisoquinolinyl, quinazolinyl, methylquinazolinyl, phenylquinazolinyl, dimethylquinoxalinyl or naphthyridinyl group;R2 is methyl;R3 is 2-butyn-1-yl;andn is 1 or 2;
  • 6. The compound of formula I according to any one of claims 1 to 5, wherein R1, R2 and R3 are as defined;andn is 1;
  • 7. The compound of formula I according to any one of claims 1 to 5, wherein R1, R2 and R3 are as defined;andn is 2;
  • 8. The compound of formula I according to claim 1 is selected from: (a) 1-[(4-Methylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine(b) 1-[(4-Phenylquinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine(c) 1-[([1,5]-Naphthyridin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(piperazin-1-yl)-xanthine
  • 9. A physiologically tolerable salt of a compound according to one of claims l-5 or 8 with at least one inorganic or organic acid.
  • 10. A medicament comprising a compound according to claim 1 or a physiologically tolerable salt thereof in addition to one or more inert vehicles and/or diluents.
  • 11. A method of treating at least one of diabetes mellitus type II and adiposity comprising administering to a patient in need thereof an effective amount of a compound according to claim 1 or a physiologically tolerable salt thereof.
  • 12. A process for the preparation of the compounds of the general formula I according to claim 1, wherein a) a compound of the formula
  • 13. The process according to claim 12 further comprising separating a compound thus obtained into its enantiomers and/or diastereomers.
  • 14. The process according to claim 12 further comprising converting a compound thus obtained into at least one salt thereof with an inorganic or organic acid.
  • 15. The process according to claim 13 further comprising converting a compound thus obtained into at least one salt thereof with an inorganic or organic acid.
  • 16. A process for the preparation of the compounds of the formula I according to claim 1, wherein a) a compound of the formula
Priority Claims (1)
Number Date Country Kind
103 55 304 Nov 2003 DE national
RELATED APPLICATIONS

Benefit of U.S. Provisional Application Ser. No. 60/530,560, filed on Dec. 18, 2003, is hereby claimed, and which application is incorporated herein in its entirety.

US Referenced Citations (72)
Number Name Date Kind
2928833 Leake et al. Mar 1960 A
4005208 Bender Jan 1977 A
4599338 Regnier et al. Jul 1986 A
5041448 Janssens Aug 1991 A
5051517 Findeisen Sep 1991 A
5223499 Greenlee Jun 1993 A
5234897 Findeisen et al. Aug 1993 A
5258380 Janssens Nov 1993 A
5266555 Findeisen et al. Nov 1993 A
5389642 Dorsch Feb 1995 A
5470579 Bonte et al. Nov 1995 A
5719279 Kuefner-Muhl et al. Feb 1998 A
5753635 Buckman May 1998 A
6303661 Demuth Oct 2001 B1
6342601 Bantick Jan 2002 B1
6548481 Demuth et al. Apr 2003 B1
6579868 Asano Jun 2003 B1
6784195 Hale et al. Aug 2004 B2
6821978 Chackalamannil Nov 2004 B2
6869947 Kanstrup Mar 2005 B2
7060722 Kitajima Jun 2006 B2
7074794 Kitajima Jul 2006 B2
7074798 Yoshikawa Jul 2006 B2
7074923 Dahanukar Jul 2006 B2
7109192 Hauel Sep 2006 B2
7179809 Eckhardt Feb 2007 B2
7183280 Himmelsbach Feb 2007 B2
7192952 Kanstrup Mar 2007 B2
7217711 Eckhardt May 2007 B2
7235538 Kanstrup et al. Jun 2007 B2
20020161001 Kanstrup Oct 2002 A1
20020169174 Chackalamannil et al. Nov 2002 A1
20020198205 Himmelsbach et al. Dec 2002 A1
20030105077 Kanstrup et al. Jun 2003 A1
20030199528 Kanstrup Oct 2003 A1
20030232987 Dahanukar et al. Dec 2003 A1
20030236272 Carr Dec 2003 A1
20040034014 Kanstrup et al. Feb 2004 A1
20040077645 Himmelsbach et al. Apr 2004 A1
20040082570 Yoshikawa et al. Apr 2004 A1
20040087587 Himmelsbach May 2004 A1
20040097510 Himmelsbach et al. May 2004 A1
20040116328 Yoshikawa et al. Jun 2004 A1
20040122228 Maier Jun 2004 A1
20040138214 Himmelsbach et al. Jul 2004 A1
20040138215 Eckhardt Jul 2004 A1
20040166125 Himmelsbach Aug 2004 A1
20050020574 Hauel et al. Jan 2005 A1
20050026921 Eckhardt Feb 2005 A1
20050130985 Himmelsbach Jun 2005 A1
20050171093 Eckhardt et al. Aug 2005 A1
20050187227 Himmelsbach et al. Aug 2005 A1
20050203095 Eckhardt Sep 2005 A1
20050234108 Himmelsbach et al. Oct 2005 A1
20050261352 Eckhardt Nov 2005 A1
20060004074 Eckhardt Jan 2006 A1
20060058323 Eckhardt et al. Mar 2006 A1
20060063787 Yoshikawa Mar 2006 A1
20060079541 Langkopf Apr 2006 A1
20060094722 Yasuda May 2006 A1
20060100199 Yoshikawa et al. May 2006 A1
20060142310 Pfrengle et al. Jun 2006 A1
20060173056 Kitajima Aug 2006 A1
20060205711 Himmelsbach Sep 2006 A1
20060247226 Himmelsbach Nov 2006 A1
20070027168 Pfrengle et al. Feb 2007 A1
20070088038 Eckhardt Apr 2007 A1
20070093659 Bonfanti Apr 2007 A1
20070142383 Eckhardt Jun 2007 A1
20070185091 Himmelsbach et al. Aug 2007 A1
20070219178 Muramoto Sep 2007 A1
20070281940 Dugi Dec 2007 A1
Foreign Referenced Citations (58)
Number Date Country
2136288 May 1995 CA
2418656 Feb 2002 CA
2496325 Mar 2004 CA
2496249 Apr 2004 CA
2505389 May 2004 CA
2508233 Jun 2004 CA
2529729 Dec 2004 CA
2543074 Jun 2005 CA
2555050 Sep 2005 CA
2556064 Sep 2005 CA
2590912 Jun 2006 CA
10109021 Sep 2002 DE
10117803 Oct 2002 DE
0149578 Jul 1985 EP
0400974 May 1990 EP
0399285 Nov 1990 EP
0412358 Feb 1991 EP
0524482 Jan 1993 EP
0657454 Jun 1995 EP
1054012 Nov 2000 EP
1 338 595 Aug 2003 EP
1514552 Mar 2005 EP
1537880 Aug 2005 EP
385302 Apr 1973 ES
2707641 Jan 1995 FR
S37-4895 Jun 1962 JP
2003300977 Oct 2003 JP
2006045156 Feb 2006 JP
9107945 Jun 1991 WO
9403456 Feb 1994 WO
9929695 Jun 1999 WO
WO 0202560 Jan 2002 WO
0214271 Feb 2002 WO
0224698 Mar 2002 WO
WO 02068420 Sep 2002 WO
WO 03004496 Jan 2003 WO
WO 03024965 Mar 2003 WO
03057200 Jul 2003 WO
03104229 Dec 2003 WO
2004018467 Mar 2004 WO
2004018468 Mar 2004 WO
2004028524 Apr 2004 WO
2004033455 Apr 2004 WO
WO 2004041820 May 2004 WO
2004046148 Jun 2004 WO
2004048379 Jun 2004 WO
2004050658 Jun 2004 WO
2004096806 Nov 2004 WO
2004108730 Dec 2004 WO
2004111051 Dec 2004 WO
2005058901 Jun 2005 WO
2005082906 Sep 2005 WO
2005085246 Sep 2005 WO
2006029769 Mar 2006 WO
2006048427 May 2006 WO
2006068163 Jun 2006 WO
2007017423 Feb 2007 WO
WO 2008017670 Feb 2008 WO
Related Publications (1)
Number Date Country
20050130985 A1 Jun 2005 US
Provisional Applications (1)
Number Date Country
60530560 Dec 2003 US