The present invention refers to a bearing member, such as a bearing member that allows the bearing housing to tilt in relation to its central axis.
Centrifugal separators commonly comprise a centrifuge rotor mounted to a typically vertical spindle driven by a drive unit located beneath the centrifuge rotor. The centrifuge rotor typically has a relatively large weight in comparison to the drive unit. In addition, the centrifuge rotor is configured to receive a large amount of the product to be separated. The mass carried by the spindle during operation of the centrifugal separator is thus significant. Relatively small imbalances of the centrifuge rotor may create problems during operation, in particular when, during up-start, the centrifuge rotor has to pass the critical rotational speed in order to achieve the most appropriate supercritical rotational speed for the desired separation efficiency.
US 2015/283561 discloses a centrifugal separator comprising a centrifugal drum and a drive spindle rotatably mounted in a drive housing by a neck bearing and a foot bearing. The drive housing encloses a drive chamber and an electric motor which has a stator and a motor rotor. The motor rotor is disposed on the drive spindle and the stator is fixedly connected to the drive housing. An air gap exists between the stator and the motor rotor. The stator and the motor rotor are arranged between the neck bearing and the foot bearing. The foot bearing is designed as a pivot bearing and axially supports the centrifugal drum. The neck bearing is radially supported, via at least one elastic element, in a bearing housing which in its turn is fastened on the drive housing. The elastic element consists of two metal sleeves which are interconnected by means of a ring consisting of elastomer material.
The elastic elements of US 2015/283561 that support the neck bearing permit the spindle to make small radial movements during operation. However, the design may result in the spindle being slightly tilted when it is moved radially from a geometric center axis. The elastic elements supporting the neck bearing do not seem to be configured to compensate for such tilting. The tilting of the spindle may thus result in forces striving to rotate the inner and outer bearing rings of the neck bearing around a transversal axis in relation to each other, which may cause premature wear of the neck bearing.
U.S. Pat. No. 9,427,747 discloses a centrifugal separator which is suitable for heavy duty applications and comprises a frame, a spindle and centrifuge rotor on the spindle. The centrifuge rotor comprises a rotor casing forming an inner separation space, an inlet for supply of a fluid and an outlet for discharge of a separated component. A drive motor having a stator and a rotor drives the spindle and the centrifuge rotor. The motor rotor is supported by a first bearing and second bearing. A coupling member connects the motor rotor and the spindle for transmitting a rotary movement from the motor rotor to the spindle. A third bearing supports the spindle so that it is radially elastic in relation to the frame for transmitting a first part of radial forces between the spindle and the frame. The coupling member comprises a lamella coupling or a universal coupling, and transmits a second part of the radial forces, which exists between the spindle and the frame, to the frame via the motor rotor and the first and the second bearings.
Spherical bearings may be used for supporting a rotating shaft that must move both rotationally and at a small angle. However, spherical bearings may be complex and expensive. There is therefore a need in the art for further, less complex solutions for supporting a rotating shaft in different kinds of apparatuses.
The object of the present invention is to overcome the problems discussed above. In particular, it is aimed at a bearing member permitting tilting, or slight tilting, of a spindle during operation.
As an aspect of the present invention, there is provided the centrifugal separator initially defined, which is characterised in that that the upper bearing housing is mounted to the stationary frame via the elastic member and an upper tilting member permitting the spindle to tilt in relation to the central axis during operation of the centrifugal separator, wherein the elastic member and the upper tilting member are arranged one after the other in a radial direction.
According to an embodiment of the invention, the elastic member is located radially outside the tilting member. Alternatively, the elastic member may be located radially inside the tilting member.
By means of the upper tilting member, the forces, acting on the at least one bearing of the upper bearing housing and striving to rotate the bearing rings of the at least one bearing to each other and around a transversal axis, may be displaced from the bearing and radially outwards to the upper tilting member, which in turn permits the bearing housing to tilt in relation the central axis. Thus, torsional forces transverse to the spindle acting on the at least one bearing of the upper bearing housing when the spindle is tilted may be considerably reduced in comparison with the upper bearing housing being mounted directly, or only via the elastic member, in the stationary frame. Consequently, there may be no relative rotating movements between an inner bearing ring and an outer bearing ring of the one of more bearings of the upper bearing housing even if the spindle is tilted. The at least one bearing of the upper bearing housing may thus operate under low-force conditions even if the spindle is tilted. Moreover, the wear of the elastic member may be reduced in comparison with the upper bearing housing being mounted only via the elastic member in the stationary frame due to the reduced torsional forces. Consequently, there may be no relative rotating movements between an inner bearing ring and an outer bearing ring of the one of more bearings of the upper bearing housing even if the spindle is tilted.
According to an embodiment of the invention, the upper bearing housing is located between the rotating member of the drive unit and the centrifuge rotor.
According to an embodiment of the invention, the upper tilting member comprises a pack of annular disks extending around the upper bearing housing and being attached to the upper bearing housing and to the elastic member.
The pack of annular disks may be flexible. Each one of the annular disks may be flexible. The annular disks may adjoin each other in the pack of annular disks.
When subjected to bending stress, a tilting member comprising a pack of annular disks will bend easily in comparison with a tilting member made from one piece of homogenous material. Moreover, when a tilting member comprising a pack of annular disks is subjected to uniaxial stress, it is as strong as a tilting member made from one piece of homogenous material. Thus, the tilting member comprising a pack of annular disks provides the bendability to reduce the torsional load on the at least one bearing while being strong enough to support the spindle via the upper bearing housing.
According to an embodiment of the invention, the pack of annular disks of the upper tilting member is attached to the upper bearing housing by at least three primary attachment members equidistantly separated from each other around the annular disks, and attached to the elastic member by at least three secondary attachment members each being positioned between a respective pair of adjacent primary attachment members.
Such an alternating attachment of the pack of annular disks to the upper bearing housing and to the elastic member may ensure a rigid attachment to the upper bearing housing and to the elastic member, and a flexibility permitting the upper bearing housing and the spindle to tilt.
According to an embodiment of the invention, the pack of annular disks of the upper tilting member is attached to the stationary frame by at least three primary attachment members equidistantly separated from each other around the annular disks, and attached to the elastic member by at least three secondary attachment members each being positioned between a respective pair of adjacent primary attachment members.
Also such an alternating attachment of the pack of annular disks to the stationary frame and to the elastic member may ensure a rigid attachment to the stationary frame and to the elastic member, and a flexibility permitting the upper bearing housing and the spindle to tilt.
According to an embodiment of the invention, each of the primary and secondary attachment members comprises a screw bolt extending through a respective aperture through the pack of annular disks of the upper tilting member. Such screw bolts permit an easy and efficient mounting of the pack of annular disks to the upper bearing housing and the elastic member.
According to an embodiment of the invention, the at least one bearing comprises a first bearing comprising an outer bearing ring attached to the upper bearing housing and an inner bearing ring attached to the spindle, a second bearing comprising an outer bearing ring attached to the upper bearing housing and an inner bearing ring attached to the spindle, and possibly a third bearing comprising an outer bearing ring attached to the upper bearing housing and an inner bearing ring attached to the spindle. By arranging a number of bearings, i.e. at least the first bearing and the second bearing, in the upper bearing housing, a rigid support of the spindle is achieved.
According to an embodiment of the invention, the centrifugal separator comprises a lower bearing housing mounted to the stationary frame and supporting at least one bearing comprising an outer bearing ring attached to the lower bearing housing and an inner bearing ring attached to the spindle. The lower bearing housing may be provided outside the rotating member of the drive unit. The lower bearing housing and the at least one bearing may contribute to a more rigid support of the spindle and the centrifuge rotor.
According to an embodiment of the invention, the lower bearing housing is mounted to the stationary frame via a lower tilting member permitting the spindle to tilt in relation to the central axis during operation of the centrifugal separator.
By means of the lower tilting member, the forces, acting on the at least one bearing of the lower bearing housing and striving to rotate the bearing rings of the at least one bearing in relation to each other and around a transversal axis, may be displaced from the bearing and radially outwards to the lower tilting member. The at least one bearing of the lower bearing housing may thus operate under low-force conditions even if the spindle is tilted. Consequently, there may be no relative rotating movements between an inner bearing ring and an outer bearing ring of the one of more bearings of the lower bearing housing even if the spindle is tilted.
According to an embodiment of the invention, the lower tilting member comprises a pack of annular disks extending around the lower bearing housing and being attached to the lower bearing housing and to the stationary frame. In contrast to the upper tilting member, the lower tilting member may thus be attached directly to the stationary frame without any intermediate elastic member.
The pack of annular disks or the lower tilting member may be flexible. Each of the annular disks may be flexible. The annular disks may adjoin each other in the pack of annular disks of the lower tilting member.
When subjected to bending stress, a tilting member comprising a pack of annular disks will bend easily in comparison with a tilting member made from one piece of homogenous material. Moreover, when a tilting member comprising a pack of annular disks is subjected to uniaxial stress, it is as strong as a tilting member made from one piece of homogenous material. Thus, the tilting member comprising a pack of annular disks provides the bendability to reduce the torsional load on the at least one bearing while being strong enough to support the spindle via the lower bearing housing.
According to an embodiment of the invention, the pack of annular disks of the lower tilting member is attached to the lower bearing housing by at least three primary attachment members equidistantly separated from each other around the annular disks, and to the stationary frame by at least three secondary attachment members each being positioned between a respective pair of adjacent primary attachment members. This alternating attachment of the pack of annular disks to the lower bearing housing and the stationary frame ensures a rigid attachment to the lower bearing housing and to the stationary frame, and a flexibility permitting the lower bearing housing and the spindle to tilt.
According to an embodiment of the invention, each of the primary and secondary attachment members attaching the lower tilting member comprises a screw bolt extending through a respective aperture through the pack of annular disks of the lower tilting member, wherein the screw bolts of the primary attachment members extend through the pack of annular disks in a first axial direction and the screw bolts of the secondary attachment members extend through the pack of annular disks in an opposite second axial direction. The screw bolts permit an easy and efficient mounting of the pack of annular disks to the lower bearing housing and the stationary frame.
According to an embodiment of the invention, the at least one bearing of the lower bearing housing comprises a first bearing comprising an outer bearing ring attached to the lower bearing housing and an inner bearing ring attached to the spindle, a second bearing comprising an outer bearing ring attached to the lower bearing housing and an inner bearing ring attached to the spindle, and possibly a third bearing comprising an outer bearing ring attached to the lower bearing housing and an inner bearing ring attached to the spindle. By arranging a number of bearings, i.e. at least the first bearing and the second bearing, in the lower bearing housing, a rigid support of the spindle is achieved.
According to an embodiment of the invention, the lower bearing housing comprises a lower convex spherical surface supported by a concave spherical surface provided on the stationary frame. The spherical surfaces may provide a lower support for the spindle and may provide a tilting point around which the spindle may tilt.
According to an embodiment of the invention, the rotating member of the drive unit is mounted on the spindle between the upper bearing housing and the lower bearing housing. The rotating member may thus be fixed to the spindle, which may be supported at both an upper end and a lower end of the rotating member.
According to an embodiment of the invention, the drive unit comprises an electric motor having a stator attached to the stationary frame and a motor rotor.
According to an embodiment of the invention, the rotating member comprises the motor rotor. The motor rotor may thus be provided on and around the spindle.
According to an embodiment of the invention, the spindle is hollow and surrounds the inlet for the product and/or the first outlet for the relatively light component. However, in embodiments, the spindle is solid.
The tilting member as discussed above may also be used in other applications than centrifugal separators. Thus, as a further aspect of the invention, there is provided a bearing member for supporting a rotatable axle, comprising
and wherein the bearing member further comprises
The tilting member is thus arranged for attaching a bearing housing to a stationary machine element to allow the bearing housing to tilt in relation to its central axis (X). The rotational axis of the at least one bearing may thus be parallel to the normal of the plane formed by the annular discs when the tilting member is mounted around the bearing housing.
This aspect is thus based on the inventor's insight that the tilting member with its disc pack may be used to hold a bearing in position. The disc pack is stiff in radial and polar direction but may be flexible in the axial direction. Due to this, the tilting torque is low. The disc pack contains multiple discs connected with sleeve elements. This is an advantage since multiple discs have a lower bending resistance than one disc with the same height. The tilting member of the present disclosure allows for a simpler ball bearing or roller bearing, such as a cylindrical roller bearing, an angular contact bearing or ball bearing to be used in applications where a sophisticated and expensive spherical bearing have been used for accommodating both static and dynamic misalignment.
As discussed above, forces acting on at least one bearing of a bearing housing striving to rotate the bearing rings of the bearing to each other and around a transversal axis, may be displaced from the bearing and radially outwards to the upper tilting member, which in turn permits a bearing housing to tilt in relation the central axis. Thus, torsional forces transverse to a rotating shaft acting on the bearing a bearing housing when the rotating shaft is tilted may be considerably reduced in comparison with a bearing housing being mounted directly in the stationary frame. Consequently, the tilting member of the present disclosure may provide for decreasing the relative rotating movements between an inner bearing ring and an outer bearing ring of even if the rotating shaft to which the bearing supports is tilted. The bearing may thus operate under low-force conditions even if the rotational shaft is tilted.
Further, a tilting member comprising a pack of annular disks will bend easily in comparison with a tilting member made from one piece of homogenous material. Moreover, when a tilting member comprising a pack of annular disks is subjected to uniaxial stress, it is as strong as a tilting member made from one piece of homogenous material. Thus, the tilting member comprising a pack of annular disks provides the bendability to reduce the torsional load on a bearing while being strong enough to support the rotatable shaft via the bearing housing.
The pack of annular discs are thus stacked. The discs of the pack may have been pressed together, such as with a pressure of at least 60 kN, so as to assure that there is no small play between the discs. Further, also the sleeve elements may have been pressed together with the pack so as to assure that there is a tight fit between sleeve member and the pack of annular discs. When mounted on the bearing housing, the pack of annular discs may be pre-tensioned with a certain spring force.
The sleeve elements used for holding the stack of annular discs together may have a through-going hole for receiving a fastening means, such as a screw member. The apertures of the tilting member may be equidistantly spaced around the annular discs. Thus, the sleeve elements may be equidistantly spaced around the annular discs.
Further, the body of the tilting member may be the pack of annular discs, meaning that the pack of annular discs may form the major portion of the tilting member. Consequently, the portion of the tilting member forming the through hole for the bearing housing may be the pack of discs only.
The pack of annular disks may be flexible. Each one of the annular disks may be flexible. The annular disks may adjoin each other in the pack of annular disks.
In embodiments, the pack of annular discs comprises at least two annular discs, such as at least four annular discs, such as at least eight annular discs.
In embodiments, he annular discs are metal lamellas, such as steel lamellas.
In embodiments, the annular discs are made from cold rolled sheet metal, such as cold rolled steel.
In embodiments, the at least one fastening element is attaching the tilting member to the bearing housing in every second aperture of the tilting member.
In embodiments, the bearing is a roller bearing other than a spherical roller bearing.
In embodiments, the thickness of the individual annular discs in the pack of annular discs is less than 5 mm, such as less than 1 mm, such as less than 0.5 mm. All annular discs of the pack may be of the same thickness.
The annular discs of the pack may have the form of a closed polygon with a plurality of corners, and the apertures may thus be arranged in the corners. As an example, the annular discs may comprise more than four, such as more than six, such as eight or more corners.
As an example, the annular discs may have the form of an octagon. The octagon shape may thus enclose the through-hole for receiving the bearing housing.
Thus, the pack of annular disks of the tilting member extends around the bearing housing, or bearing retainer, and is also attached to the bearing housing. The fastening element may for example be a screw element. As an example, the pack of annular disks of the tilting member may be attached to the bearing housing by at least three primary attachment members equidistantly separated from each other around the annular disks.
The annular discs of the tilting member may thus form a through hole that is larger than the diameter of the at least one bearing.
In embodiments, the bearing is a roller bearing, such as a cylindrical roller bearing. The roller bearing may be a roller bearing other than a spherical roller bearing. Thus, the bearing may be a roller bearing that does not permit angular rotation around a central point in two angled directions.
In embodiments, the at least one bearing comprises an outer bearing ring attached to the bearing housing and an inner bearing ring arranged for attachment to a rotatable shaft, such as a spindle. The at least one bearing may for example be one, two or three bearings.
The present disclosure also provides the tilting member discussed herein above as such, i.e. there is provided a tilting member arranged for attaching a bearing housing to a stationary machine element to allow the bearing housing to tilt in relation to its central axis, wherein the tilting member comprises a pack of annular discs forming a through hole for receiving a bearing housing;
wherein each of the annular discs comprises a plurality of apertures extending through each of the discs and wherein the tilting member further comprises a sleeve element provided in each of the apertures for holding the annular discs together as a stack and for receiving a fastening means for attaching the tilting member to said bearing housing or said stationary machine element.
As a further aspect, there is provided an apparatus comprising
The apparatus may be any kind of apparatus comprising a rotatable shaft, such e.g. a wind turbine.
In embodiments, the apparatus is further comprising at least one fastening element attaching the tilting member to the bearing housing in every second aperture of the tilting member and attaching the tilting member to the stationary machine element in every second aperture of the tilting member.
As an example, the pack of annular disks of the tilting member may be attached to the bearing housing by at least three primary attachment members equidistantly separated from each other around the annular disks, and attached to the stationary machine element by at least three secondary attachment members each being positioned between a respective pair of adjacent primary attachment members.
Such an alternating attachment of the pack of annular disks to the bearing housing and to the stationary machine element may ensure a rigid attachment to the bearing housing and to the stationary machine element, and a flexibility permitting the bearing housing and the rotatable shaft to tilt.
In embodiments, each of the primary and secondary attachment members comprises a screw bolt extending through a respective aperture through the pack of annular disks of the tilting member. Such screw bolts permit an easy and efficient mounting of the pack of annular disks to the upper bearing housing and the elastic member.
The present invention will now be explained more closely by means of a description of various embodiments and with reference to the drawings attached hereto.
The spindle 3 is supported by the stationary frame 2 and permitted to rotate in relation to the stationary frame 2. The central axis x extends through a lower end and an upper end of the centrifugal separator 1, as indicated in
The stationary frame 2 may also comprise a suitable base element (not disclosed) permitting the stationary frame 2 and the centrifugal separator 1 to be positioned on a ground, a floor or the like.
The centrifugal separator 1 comprises a drive unit 4, see also
Furthermore, the centrifugal separator 1 comprises a centrifuge rotor 8 that is mounted to an upper end of the spindle 3 to rotate together with the spindle 3. The centrifuge rotor 8 encloses a separation space 9. The centrifuge rotor 8 may comprise a stack of separation disks 10 provided in the separation space 9. The separation disks 10 may be frusto-conical.
An inlet 11 for the product extends to the separation space 9. A first outlet 12 for the relatively light component and a second outlet 13 for the relatively heavy component extends from the separation space 9. The second outlet 13 may comprise a plurality of peripheral ports that extend through the centrifuge rotor 8.
The peripheral ports may be openable for intermittent discharge of the relatively heavy component, such as sludge, from the separation space 9.
In the embodiments disclosed, the inlet 11 is located in the proximity of the lower end of the centrifugal separator 1. The first outlet 12 is located in the proximity of the upper end of the centrifugal separator 1.
The spindle 3 may be hollow and form an inner channel to the separation space 9. In the embodiments disclosed, the inlet 11 for the product extends through the inner channel of the hollow spindle 3 to the inner space 9 of the centrifuge rotor 8. Alternatively, the first outlet 12 for the relatively light component may extend through the hollow spindle 3. According to a further alternative both the inlet 11 and the outlet 12 may be arranged to extend through the hollow spindle 3.
According to a still further alternative, the spindle 3 may lack any inlet or outlet, wherein both the inlet 11 and the first outlet 12 may be located in the proximity of the upper end of the centrifugal separator 1.
The centrifugal separator 1 also comprises an outer casing 14 attached to the stationary frame 2 and enclosing the centrifuge rotor 8.
In the embodiments disclosed, the centrifugal separator 1 comprises an upper bearing housing 20 and a lower bearing housing 30. The upper bearing housing 20 may be located between the rotating member 5 of the drive unit 4 and the centrifuge rotor 8. The lower bearing housing 30 may be provided outside the rotating member 5 of the drive unit 4, i.e. between the rotating member 5 of the drive unit 4 and the lower end of the centrifugal separator 1.
The upper bearing housing 20 is mounted to the stationary frame 2, see also
The first and/or second bearings 22, 23 of the upper bearing housing 20 may be configured to provide radial support to the spindle 3, and possibly also axial support in order to carry the load of the centrifuge rotor 8.
The lower bearing housing 30 is mounted to the stationary frame 2, see also
The first and/or second bearings 32, 33 of the lower bearing housing 30 may be configured to provide radial support to the spindle 3, and possibly also axial support in order to carry the load of the centrifuge rotor 8.
The upper bearing housing 20 is mounted to the stationary frame 2 via an elastic member 40 permitting the upper bearing housing 20 and thus the spindle 3 to move radially during the rotation of the spindle 3.
In the first embodiment, the upper bearing housing 20 is mounted to the elastic member 40 via an upper tilting member 41 permitting the spindle 3 to tilt in relation to the central axis x.
In the embodiments disclosed, the elastic member 40 comprises an annular elastic element 42 and a ring element 43. The elastic element 42 is attached to the frame 2 and the ring element 43 is attached to the tilting member 41.
The elastic element 42 may be made of a rubber material, such as e.g. nitrile rubber.
In the first embodiment, the elastic member 40 is located radially outside the tilting member 41, wherein the elastic element 42 may be located outside the ring element 43.
In addition to the elastic member 40 and the tilting member 41, the upper bearing housing 20 may be supported by a plurality of spring elements 27 circumferentially distributed around the spindle 3. The spring elements 27 may rest against an upper intermediate wall 28 of the stationary frame 2 and may support the upper bearing housing 20 from beneath, as can be seen in
The upper tilting member 41 may comprise a pack of annular disks 44 extending around the upper bearing housing 20 and being attached to the upper bearing housing 20 and to the ring element 43 of the elastic member 40, see
The pack of annular disks 44 may comprise a plurality of annular disks 44, which may be identical with each other. Each of the annular disks 44 may be made from cold rolled sheet metal. Thus, a strong and flexible upper tilting member 41 may be provided, which has superior material properties in the context of the herein discussed tilting member as compared to hot rolled sheet metal. The annular disks 44 may be made from steel, such as stainless steel, spring steel, or similar, i.e. such as cold rolled steel sheet, cold rolled stainless steel sheet, cold rolled spring steel sheet, etc. A body of the upper tilting member 41 may be made up of annular disks 44 only.
In the embodiments disclosed, the pack of annular disks 44 comprises eight equidistant apertures extending through each of the annular disks 44. A respective sleeve element 47 is provided in each of the apertures. The sleeve element 47 is configured to keep the annular disks 44 together, and thus to ensure the integrity of the pack upper tilting element 41. Each of the sleeve elements 47 has a through-going hole as can be seen in Figs and 7.
In the first embodiment, the pack of annular disks 44 of the upper tilting member 41 is attached to the upper bearing housing 20 by four primary attachment members 45 equidistantly separated from each other around the annular disks 44, see
Furthermore, the pack of annular disks 44 of the upper tilting member 41 may be attached to ring element 43 of the elastic member 40 by four secondary attachment members 46 each being positioned between a respective pair of adjacent primary attachment members 45, see
Each of the primary and secondary attachment members 45, 46 may comprise a screw bolt extending through the hole of the sleeve element 47 of a respective one of the apertures through the pack of annular disks 44 of the upper tilting member 41, wherein the screw bolts of the primary attachment members 45 may engage a respective threaded hole into a respective one of the projections 20′ of the upper bearing housing 20 and the screw bolts of the secondary attachment members 46 may engage a respective threaded hole into a respective one of the projections 43′ of the ring element 43 of the elastic member 40.
The lower bearing housing 30 may be mounted to the stationary frame 2 via a lower tilting member 51 permitting the spindle 3 to tilt in relation to the central axis x. In the embodiments disclosed, the lower tilting member 51 comprises a pack of annular disks 54 extending around the lower bearing housing 30. The pack of annular disks 54 are attached to the lower bearing housing 30 and to the stationary frame 2, as can be seen in
Also the pack of annular disks 54 at the lower tilting member 51 may comprise a plurality of annular disks 54, which may identical with each other. Thus, a strong and flexible lower tilting member 51 may be provided, which has superior material properties in the context of the herein discussed tilting member as compared to hot rolled sheet metal. The annular disks 54 may be made from steel, such as stainless steel, spring steel, or similar, i.e. such as cold rolled steel sheet, cold rolled stainless steel sheet, cold rolled spring steel sheet, etc. A body of the lower tilting member 51 may be made up of annular disks 54 only.
In the embodiments disclosed, the pack of annular disks 54 comprises eight equidistant apertures extending through each of the annular disks 54. A respective sleeve element 57 is provided in each of the apertures. The sleeve element 57 is configured to keep the annular disks 54 together, and thus to ensure the integrity of the pack lower tilting element 51. Each of the sleeve elements 57 has a through-going hole as can be seen in
In the embodiments disclosed, the pack of annular disks 54 of the lower tilting member 51 is attached to the lower bearing housing 30 by four primary attachment members 55 equidistantly separated from each other around the annular disks 54, see
Furthermore, the pack of annular disks 54 may be attached to the stationary frame 2 by four secondary attachment members 56 each being positioned between a respective pair of adjacent primary attachment members 55, see
Each of the primary attachment members 55 and the secondary attachment members 56 attaching the lower tilting member 51 comprises a screw bolt extending through the hole of the sleeve element 57 of a respective one of the apertures through the pack of annular disks 54 of the lower tilting member 51.
The screw bolts of the primary attachment members 55 may extend through the pack of annular disks 55 in a first axial direction upwards as can be seen in
The lower bearing housing 30 may comprise a lower convex spherical surface 39 that is supported by and may rest against a concave spherical surface 29 provided on the stationary frame 2, see
Also in the second embodiment, the elastic member 40 comprises an annular elastic element 42 and a ring element 43, as can be seen in
In the second embodiment, the pack of annular disks 44 of the upper tilting member 41 is attached to the stationary frame 2 by four primary attachment members 45 equidistantly separated from each other around the annular disks 44, see
Furthermore, the pack of annular disks 44 of the upper tilting member 41 may be attached to ring element 43 of the elastic member 40 by four secondary attachment members 46 each being positioned between a respective pair of adjacent primary attachment members 45, see
As an example, the straight portions may have a width that is smaller than the through hole 62 formed by the annular discs. As an example, the diameter of the through hole 62 may be at least five times, such as at least ten times, larger than the width of the straight portion 61 of the discs 44.
The pack of annular discs 44 comprises in this embodiment more than eight annular discs. The annular discs are in the form of a steel lamella, with a thickness of about 0.5 mm.
The present invention is not limited to the embodiments disclosed but may be varied and modified within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20162575.3 | Mar 2020 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/056242 | 3/11/2021 | WO |