The present application claims priority to and the benefit of Sweden Patent Application No. 1851054.5 filed Sep. 5, 2018, entitled “A BOX ERECTING METHOD AND SYSTEM” which application is herein incorporated by reference in its entirety.
The present invention relates to a box erecting method and system and to a box production method and system.
Erecting boxes from box templates in for example shipping and packaging industries can be done manually and/or with help from some erecting tools. These tools could for example comprise vacuum tools for gripping certain parts of a box template while folding other parts, such as for example a bottom of the box. Automatic erecting of boxes may encounter problems for example when different sizes of boxes should be erected with use of the same tools and/or if the box walls are not as stable as required, for example due to folds provided in the templates due to a fanfold storage of the template material.
Shipping and packaging industries frequently use cardboard and other sheet material processing equipment that converts sheet materials into box templates. One advantage of such equipment is that a shipper may prepare boxes of required sizes as needed in lieu of keeping a stock of standard, pre-made boxes of various sizes. Consequently, the shipper can eliminate the need to forecast its requirements for particular box sizes as well as to store pre-made boxes of standard sizes. Instead, the shipper may store one or more bales of fanfold material, which can be used to generate a variety of box sizes based on the specific box size requirements at the time of each shipment. This allows the shipper to reduce storage space normally required for periodically used shipping supplies as well as reduce the waste and costs associated with the inherently inaccurate process of forecasting box size requirements, as the items shipped and their respective dimensions vary from time to time.
In addition to reducing the inefficiencies associated with storing pre-made boxes of numerous sizes, creating custom sized boxes also reduces packaging and shipping costs. In the fulfillment industry it is estimated that shipped items are typically packaged in boxes that are about 65% larger than the shipped items. Boxes that are too large for a particular item are more expensive than a box that is custom sized for the item due to the cost of the excess material used to make the larger box. When an item is packaged in an oversized box, filling material (e.g., Styrofoam, foam peanuts, paper, air pillows, etc.) is often placed in the box to prevent the item from moving inside the box and to prevent the box from caving in when pressure is applied (e.g., when boxes are taped closed or stacked). These filling materials further increase the cost associated with packing an item in an oversized box.
Customized sized boxes also reduce the shipping costs associated with shipping items compared to shipping the items in oversized boxes. A shipping vehicle filled with boxes that are 65% larger than the packaged items is much less cost efficient to operate than a shipping vehicle filled with boxes that are custom sized to fit the packaged items. In other words, a shipping vehicle filled with custom sized packages can carry a significantly larger number of packages, which can reduce the number of shipping vehicles required to ship the same number of items. Accordingly, in addition or as an alternative to calculating shipping prices based on the weight of a package, shipping prices are often affected by the size of the shipped package. Thus, reducing the size of an item's package can reduce the price of shipping the item. Even when shipping prices are not calculated based on the size of the packages (e.g., only on the weight of the packages), using custom sized packages can reduce the shipping costs because the smaller, custom sized packages will weigh less than oversized packages due to using less packaging and filling material.
A typical box template production system includes a converting part that cuts, scores, and/or creases sheet material to form a box template. The sheet material can be provided to the system from fanfolded bales. The fanfold storage of the sheet material provides unwanted fanfold folds to the box templates. These folds could be a problem when erecting the boxes, especially if tools for automatic erection are used.
It is an object of the present invention to provide an improved method and system for erecting boxes.
It is a further object of the invention to provide a method and a system for erecting boxes which is automated and flexible.
This is achieved in a method and a system for erecting boxes according to the independent claims.
In one aspect of the invention a method for erecting a box from a box template is provided. Said method comprising the steps of:
In another aspect of the invention a box erecting system for erecting a box from a box template is provided. Said box erecting system comprises:
Hereby, a reliable process for erecting boxes is achieved. Thanks to the folding of the bottom flaps before wrapping the box around the frame possible problems in stability of side walls of the box arising from for example the storing method of the sheet material, for example fanfold bales or rolls, can be avoided. When wrapping the box template around the frame fanfold folds or instability of the material caused by roll storing could sometimes cause that the box template side corners do not fit snug around the frame as planned. When the bottom flaps are folded before the wrapping the stability of the box template will be much better and problems during wrapping possibly caused by the fanfold folds will be much decreased.
A further object of the invention is to provide an improved method and a system for producing boxes.
This is achieved by a method for producing boxes from sheet material, said method comprising the steps of:
This is also achieved by a box production system comprising:
Hereby boxes can be produces efficiently. An automatic or partly automatic erection of the boxes can be provided close to a box production system.
In one embodiment of the invention the step of folding two first bottom flaps and two second bottom flaps comprises folding the two first bottom flaps a different amount of degrees than the two second bottom flaps are folded. Hereby the box template can be wrapped around the frame without the bottom flaps colliding.
In one embodiment of the invention the step of folding first and second bottom flaps of the box template comprises advancing the box template through a feeding part of a box erecting system towards the frame such that a first guiding device provided in the feeding part will force the first and second bottom flaps to fold between 60 and 90 degrees in relation to an adjacent side wall part of the box template.
In one embodiment of the invention the method further comprises a step performed before wrapping the box template around the frame:
In one embodiment of the invention the method further comprises the step of:
Hereby boxes of different sizes can be erected.
In one embodiment of the invention the step of adjusting the size of the frame comprises controlling the size of the frame by a control system connected to the frame, wherein said adjusting comprises controlling by the control system distances between four corner posts provided in the frame.
In one embodiment of the invention the method further comprises the step of:
In one embodiment of the invention the box erecting system further comprises an advancing device provided in a feeding part of the box erecting system for advancing the box template along a path of the feeding part towards the frame, wherein the frame is provided at an outlet side of the feeding part and wherein the first guiding device is provided to said feeding part such that the first guiding device will force the first and second bottom flaps to fold between 60 and 90 degrees in relation to an adjacent side wall part of the box template when the box template is fed through the feeding part.
In one embodiment of the invention the box erecting system further comprises at least one actuator provided to the feeding part and configured for providing an additional amount of folding to either the two first bottom flaps or the two second bottom flaps when the box template is fed through the feeding part.
In one embodiment of the invention the box erecting system further comprises a second guiding device provided in a feeding part of the box erecting system and configured for folding two first top flaps and two second top flaps of the box template before the box template is wrapped around the frame, which first and second top flaps will constitute a top of the box when it is erected and closed and which two first top flaps are opposing each other and which two second top flaps are opposing each other in the box when it is erected, wherein the first and second top flaps are folded in relation to an adjacent side wall part of the box template and in an opposite direction compared to the folding of the bottom flaps.
Further embodiments are described in the dependent claims.
According to the invention a box erecting system and a method for erecting boxes from box templates are provided. A box erecting system 1 according to one embodiment of the invention is shown in
The method and system according to the invention can be applied for different types of boxes, for example a so called Regular Slotted Container, RSC, also called Fefco 201 or American box or a Half Slotted Container HSC, also called Fefco 200.
In this embodiment of the invention the control system 11 is configured for controlling the position of the frame 5 for wrapping the box template 3 around the frame 5. The control system 11 can control the attaching device 19 provided to at least one of the corner posts 7 to attach to a first end 23 of a box template 3 to be erected. The control system 11 is configured to rotate the frame 5 for wrapping the box template 3 around the frame 5.
The box erecting system 1 comprises furthermore a feeding part 31 which is configured for feeding the frame 5 with a box template 3. The feeding part 31 can possibly be provided in direct connection to a box template production system, for example directly at an outlet 43 from a converting part 41 of a box template production system. This is schematically illustrated in
The first guiding device 37a can best be seen in
Hereby the bottom flaps 28, 29 are already folded when the box template 3 arrives at the frame 5 for wrapping of the box template 3 around the frame 5. This is suitable because any possible fanfold folds in the box template caused by the storage of the sheet material in z-folds can make sides of the box less stable and robust than sides without fanfolds. When erecting boxes such fanfold folds may cause problems, especially when boxes are erected automatically. By first folding bottom flaps 28, 29, box sides comprising fanfold folds will be stabilized and the erection of boxes will be facilitated, i.e. a more reliable and robust box erecting system will be achieved. Other storage methods such as for example rolls of sheet material can also cause instability of the side walls. The folding of the bottom flaps according to the invention will increase stability of the side walls also in this case.
In one embodiment of the invention at least one actuator 39 is furthermore provided in the feeding part 31. This actuator 39 can be seen in
In this embodiment, but not necessarily, the feeding part 31 of the box erecting system 1 further comprises a second guiding device 37b (best seen in
Hereby the two first top flaps 48 and the two second top flaps 49 of the box template 3 are folded before the box template 3 is wrapped around the frame 5. The first and second top flaps 48, 49 will constitute a top of the box when it is erected and closed and the two first top flaps 48 are opposing each other and the two second top flaps 49 are opposing each other in the box when it is erected. The first and second top flaps 48, 49 are folded in an opposite direction compared to the folding of the bottom flaps 28, 29. The amount of folding can for the top flaps be anything between 0-180 degrees. Also a small folding will increase the stability. Folding of the top flaps also provides further advantages such as easier filling of the erected box, easier transportation of the erected box towards a filling station and the corner posts 7 of the frame 5 do not need to be excessively long for holding the box when wrapped around the frame.
The box erecting system 1 comprises furthermore in one embodiment of the invention a gluing device 51 configured for providing glue to a first end 23 or a second end 24 of the box template 3 for the sealing of a manufacturer's joint and to the first or the second bottom flaps 28, 29 before the box template 3 has been completely wrapped around the frame 5. The box erecting system 1 may also comprise a compressing device configured for compressing the first bottom flaps 28 towards the second bottom flaps 29 to seal the bottom.
As described above a manufacturer's joint and a bottom of the box can be sealed for example by tape or by glue before the frame 5 is removed from the erected box and used for erecting a new box.
In this embodiment of the invention the frame 5 comprises four corner posts 7a, 7b, 7c, 7d. If for example a Regular Slotted Container, RSC, or a Half Slotted Container, HSC, is erected each one of the four corner posts 7a-7d will be provided in an inside corner each of the box between two side walls of the box. Furthermore a distance between a first one of the corner posts 7a and a second one of the corner posts 7b corresponds to a width of the finally erected box and a distance between the first corner post 7a and a third corner post 7c corresponds to a length of the finally erected box. When adjusting the size of the frame the distances between the corner posts are changed which distances correspond to the length and width of the finally erected box. The feeding part 31 of the box erecting system 1 can also suitably be adapted for different box template sizes. The position of the first and second guiding devices 37a, 37b will be adjusted according to a height of side walls 108, 109 of the box template, which corresponds to a height of the finally erected box. Also as described above at least one of the corner posts 7 comprises an attachment device 19 to which a first end 23 of a box template 3 can be attached during wrapping of the box template around the frame 5. In the embodiments as shown in
Furthermore, in this embodiment it can be seen that the control system 11 is configured for providing the frame 5 to the box template 3 with a distal end 25 of the frame 5 substantially in line with bottom flap creases 27 of the box template 3 such that a bottom can be folded while keeping the frame 5 inside the wrapped box template.
In this embodiment of the invention the control system 11 is configured for controlling the position and orientation of the frame 5 for wrapping the box template 3 around the frame 5. The control system 11 can control the attaching device 19 provided to at least one of the corner posts 7 to attach to a first end 23 of a box template 3 to be erected. The control system 11 is further in this embodiment configured to rotate the frame 5 for wrapping the box template 3 around the frame 5.
In
S1: Folding first and second bottom flaps 28, 29 in relation to an adjacent side wall part 108, 109 of the box template 3. The folding can be between 60-90 degrees and in one embodiment between 80-90 degrees. Optionally also top flaps 48, 49 can be folded however in the opposite direction from the folding of the bottom flaps. Suitably this step of folding the bottom flaps 28, 29 also comprises folding the two first bottom flaps 28 a different amount of degrees than the two second bottom flaps 29 are folded.
S2: Attaching a first end 23 of the box template 3 to a frame 5 of the box erecting system 1.
S3: Rotating the frame 5 to wrap the box template 3 around the frame.
S4: Sealing a manufacturer's joint and a bottom of the box before it is separated from the frame. Sealing may comprise to provide glue to a first end 23 or a second end 24 of the box template and to either the first or the second bottom flaps 28, 29 and possibly also to compress the first and second bottom flaps towards each other and compress the manufacturer's joint.
S5: Separating the erected box from the frame such that another box can be erected.
According to another aspect of the invention a method for producing boxes from sheet material is provided. The sheet material can be for example cardboard or corrugated board. The method comprises the steps of:
The method can further comprise an initial step of providing the sheet material to a box template production system from bales of fanfolded sheet material. When the box templates are produced from fanfolded material, such as for example fanfolded corrugated board, folds will be provided in the box templates also at other positions than intended, here called fanfold folds. These fanfold folds can be problematic to handle when erecting the boxes because the box walls may not behave as walls without such fanfold folds. They may fold along a fanfold fold rather than along intended crease lines. Ensuring corner folding in intended positions is crucial to ensure a correct box erection. The use of the frame and the method of wrapping the box templates around the frame for erecting the boxes will be especially suitable for and improve erection processes of box templates comprising fanfold folds, i.e. box templates provided in different sizes on demand from fanfolded sheet material. Such a fanfold fold 140 is shown in the box template 3 which is erected by the box erecting system 1 shown in
According to one embodiment of the invention the method for producing boxes further comprises synchronizing a control system 11 of the box erecting system 1 with a control system 11′ of the converter part 41 such that the wrapping of a box template 3 around the frame 5 is synchronized with conversion of sheet material into a box template in the converter part 41, whereby the whole process from sheet material to an erected box is a continuous process. These two control systems 11, 11′ can also be combined into one control system.
According to another aspect of the invention a box production system 100 is provided. Such a box production system is as already described schematically shown in
In one embodiment of the invention said at least one inlet 45 is configured for receiving said sheet material from bales of fanfolded sheet material or from sheet material rolls as described above.
In one embodiment of the invention the control system 11 of the box erecting system 1 is synchronized or integrated with a control system of the converter part 41 such that the wrapping of a box template 3 around the frame 5 is synchronized with conversion of sheet material into a box template in the converter part 41, whereby the whole process from sheet material to an erected box is a continuous process.
The control system 11 of the box erecting system 1 comprises further a processor and a computer program which when run on the processor causes the control system 11 to perform the method for erecting boxes as described above.
The invention comprises further a computer program comprising computer readable code which, when run on a processor in a control system 11 of a box erecting system 1 according to the invention causes the control system to perform the box erecting method of the invention as described above.
Number | Date | Country | Kind |
---|---|---|---|
1851054-5 | Sep 2018 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/049535 | 9/4/2019 | WO | 00 |