The present invention relates to a box template production system and a method for converting a fanfolded sheet material into box templates.
Shipping and packaging industries frequently use cardboard and other sheet material processing equipment that converts sheet materials into box templates. One advantage of such equipment is that a shipper may prepare boxes of required sizes as needed in lieu of keeping a stock of standard, pre-made boxes of various sizes. Consequently, the shipper can eliminate the need to forecast its requirements for particular box sizes as well as to store pre-made boxes of standard sizes. Instead, the shipper may store one or more bales of fanfold material, which can be used to generate a variety of box sizes based on the specific box size requirements at the time of each shipment. This allows the shipper to reduce storage space normally required for periodically used shipping supplies as well as reduce the waste and costs associated with the inherently inaccurate process of forecasting box size requirements, as the items shipped and their respective dimensions vary from time to time.
In addition to reducing the inefficiencies associated with storing pre-made boxes of numerous sizes, creating custom sized boxes also reduces packaging and shipping costs. In the fulfillment industry it is estimated that shipped items are typically packaged in boxes that are about 65% larger than the shipped items. Boxes that are too large for a particular item are more expensive than a box that is custom sized for the item due to the cost of the excess material used to make the larger box. When an item is packaged in an oversized box, filling material (e.g., Styrofoam, foam peanuts, paper, air pillows, etc.) is often placed in the box to prevent the item from moving inside the box and to prevent the box from caving in when pressure is applied (e.g., when boxes are taped closed or stacked). These filling materials further increase the cost associated with packing an item in an oversized box.
Customized sized boxes also reduce the shipping costs associated with shipping items compared to shipping the items in oversized boxes. A shipping vehicle filled with boxes that are 65% larger than the packaged items is much less cost efficient to operate than a shipping vehicle filled with boxes that are custom sized to fit the packaged items. In other words, a shipping vehicle filled with custom sized packages can carry a significantly larger number of packages, which can reduce the number of shipping vehicles required to ship the same number of items. Accordingly, in addition or as an alternative to calculating shipping prices based on the weight of a package, shipping prices are often affected by the size of the shipped package. Thus, reducing the size of an item's package can reduce the price of shipping the item. Even when shipping prices are not calculated based on the size of the packages (e.g., only on the weight of the packages), using custom sized packages can reduce the shipping costs because the smaller, custom sized packages will weigh less than oversized packages due to using less packaging and filling material.
A typical box template production system includes a converting part that cuts, scores, and/or creases sheet material to form a box template. The sheet material is provided to the system from fanfolded bales and needs to be guided correctly into the converting part of the system. Prior art systems often guide the sheet material up and over a top position by means of wheels or rails and down again to a suitable working height for entering the converting part of the system. The converting part is positioned such that the box template is delivered out from the converting part for example directly on a work table or conveyor belt provided next to the outlet of the system for further processing of the box template into a box. The guiding of the sheet material from the bales into the converting part of the machine requires force and precision. The force required is a function of the amount of material that is being accelerated, and how much friction is created due to its bending through the guide system, and the force required to control the precise direction of the material. It is therefore essential to limit these factors. This guiding of sheet material also requires space in the room.
An object of the present invention is to provide an improved method for converting a fanfolded sheet material into a box template and an improved box template production system.
This is achieved in a box template production system and a method according to the independent claims.
In one aspect of the invention a box template production system comprising a converting part which is configured for converting a fanfolded sheet material into box templates is provided. Said converting is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees.
In another aspect of the invention a method for converting a fanfolded sheet material into a box template is provided. Said method comprises the steps of:
Hereby a method for converting a fanfolded sheet material into a box template and a box template production system is achieved where reduced force is needed for guiding the sheet material into the converting part of the system. Furthermore reduced space is needed for this system compared to prior art systems because of the shortened way to travel for the sheet material before it enters the converting part of the system.
In one embodiment of the invention said angle is between 30 and 70 degrees.
In one embodiment of the invention said fanfolded sheet material is provided to the system from at least one fanfold bale positioned at an inlet side of the system, wherein said box template production system comprises at least one feed guide configured for receiving the sheet material from the fanfold bale and guiding it up to a top position, wherein the converting part of the system is configured for receiving the sheet material from the at least one feed guide or from one or more connecting guide parts on its way down from the top position.
In one embodiment of the invention only one feed guide is provided for each sheet material and said feed guide is configured for receiving the sheet material such that it slides over the feed guide. The at least one feed guide is configured for allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material. Correction might be needed due to a material bale that is off the nominal position, or placed at an angle towards the feeding direction. Hereby the guiding of the sheet material will be facilitated and will be requiring less force. A shorter transport way before the sheet material enters the converting part and reduced friction will require less force than in prior art systems. Furthermore a fanfold bale provided in a slightly wrong position at the inlet to the system can still be handled because the direction of the sheet material through the system can be corrected.
In one embodiment of the invention the at least one feed guide is provided as an arc starting at a start position where the sheet material is provided to the feed guide, said arc further comprising the top position, wherein said feed guide has a width being less than one fifth of the width of the sheet material.
In one embodiment of the invention the system comprises a printer configured and positioned for printing on the sheet material in a direction being perpendicular to the feed direction of the sheet material when the sheet material is converted in the converting part of the system. Because of the tilted position of the printer printing capabilities are improved compared to prior art systems where printing often is provided directly from below, i.e. an underside of the sheet material is printed because this will later be an outside of the box and the printer is often provided together with the converting part in the system. However printing upwards is not ideal because dust and dirt can cover the printer heads and gravity force can counteract the printing effectivity. Hereby with this system the printing is provided to the sheet material not directly from below but from an angle corresponding to the angle defined above. This provides a more effective printing system which is less prone to the problems caused by dirt and dust covering the printer heads.
The invention relates to a box template production system comprising a converting part which is configured for converting a fanfolded sheet material into box templates. According to the invention said converting is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees or suitably between 30 and 70 degrees.
The sheet materials used for forming the box templates according to the invention could be e.g., paperboard, corrugated board or cardboard. The term cardboard is used in the text and claims and intends to cover all these examples. As used herein, the term “box template” shall refer to a substantially flat stock of material that can be folded into a box-like shape. A box template may have notches, cutouts, divides, and/or creases that allow the box template to be bent and/or folded into a box. Additionally, a box template may be made of any suitable material, generally known to those skilled in the art. For example, cardboard or corrugated paperboard may be used as the template material.
The system 100 comprises a feeding part 106 provided for guiding the sheet material 104a, 104b into a processing part 108 of the system. The processing part 108 of the system comprises a frame 117 holding a converting part 112 and some other parts briefly described below. The converting part 112 converts the sheet material into box templates by for example cutting and creasing the material as described above. The feeding part 106 comprises a frame 107 which holds one or more feed guides 108a, 108b. In this shown embodiment two feed guides 108a, 108b are provided, one for each bale 102a, 102b. The feed guides 108a, 108b are configured for receiving the sheet material 104a, 104b from the fanfold bales 102a, 102b and guiding it up to a top position 121a, 121b, wherein the converting part 112 of the system is configured for receiving the sheet material 104a, 104b from the at least one feed guide 108a, 108b or from one or more connecting guide parts on its way down from the top position 121a, 121b. In this embodiment a feed changer 110 is provided between the feed guides 108a, 108b and the converting part 112 of the system.
The feed changer 110 is in this embodiment a connecting guide part between the feed guides 108a, 108b and the converting part 112 of the system. The feed changer 110 controls from which bale 102a, 102b sheet material 104a, 104b should be provided into the converting part 112 of the system 100. In another embodiment further connecting guide parts could be provided between the feed guides 108a, 108b and the converting part 112.
In this embodiment it can be seen that the converting part 112 of the system 100 is provided in a tilted position, i.e. the feed direction of a sheet material when passing through the converting part 112 is not parallel to a plane of the floor as is the case in prior art systems. As described in the claims the converting of the sheet material into a box template is accomplished to the sheet material when a feed direction of the sheet material through the converting part of the system is along an axis A having an angle α towards a plane of a floor onto which the system stands, wherein said angle α is between 20 and 90 degrees or suitably between 30 and 70 degrees. In the embodiment shown in
In the embodiment of the invention shown in
Furthermore in the embodiment shown in
In the embodiment shown in
The system 200 comprises a feeding part 206 provided for guiding the sheet material 204a-204e into a processing part 208 of the system. The processing part 208 of the system comprises a frame 217 holding a converting part 212 and a feed changer 210. The converting part 112 converts the sheet material into box templates by for example cutting and creasing the material as described above. The feeding part 206 comprises a frame 207 which holds one or more feed guides 208a, 208b, 208c, 208d, 208e. In this shown embodiment five feed guides 208a, 208b, 208c, 208d, 208e are provided, one for each bale 202a, 202b, 202c, 202d, 202e. The feed guides 208a, 208b, 208c, 208d, 208e are configured for receiving the sheet material 204a-204e from the fanfold bales 202a, 202b, 202c, 202d, 202e and guiding it up to a respective top position 221a, 221b, 221c, 221d, 221e, wherein the converting part 212 of the system is configured for receiving the sheet material 204a-204e from the at least one feed guide 208a, 208b, 208c, 208d, 208e or from one or more connecting guide parts on its way down from the top position 221a, 221b, 221c, 221d, 221e. In this embodiment a feed changer 210 is provided between the feed guides 208a-208e and the converting part 212 of the system. The feed changer 210 is in this embodiment a connecting guide part between the feed guides 208a-208e and the converting part 212 of the system. The feed changer 210 controls from which bale 202a-202e sheet material 204a-204e should be provided into the converting part 212 of the system 200.
In the embodiment of the invention shown in
Furthermore in the embodiment shown in
In one embodiment of the invention the converting part 212 of the system 200 comprises a printer 231 configured and positioned for printing on the sheet material 204a-204e in a direction being perpendicular to the feed direction of the sheet material 204a-204e when the sheet material is converted in the converting part 212 of the system 200. In the embodiment shown in
S1: Feeding the sheet material 104a-b; 204a-e into a box template production system 100; 200, 300.
S3: Converting the sheet material 104a-b; 204a-e into box templates when a feed direction of the sheet material 104a-b; 204a-e through a converting part 112; 212; 312 of the box template production system 100; 200; 300 is along an axis having an angle towards a plane of a floor onto which the system stands, wherein said angle is between 20 and 90 degrees or in another embodiment between 30 and 70 degrees.
In one embodiment of the invention the step of feeding, S1, comprises guiding the sheet material 104a-b; 204a-e into the box template production system 100; 200; 300 by at least one feed guide 108a, 108b; 208a-208e, wherein said guiding comprises guiding the sheet material up to a top position 121a, 121b; 221a-221e and then further down from the top position to the converting part 112; 212; 312 of the system.
In one embodiment of the invention the step of feeding, S1, further comprises providing the sheet material 104a-b; 204a-e from at least one fanfold bale 102a, 102b; 202a-202e to only one feed guide 108a, 108b; 208a-208e for each sheet material 104a-b; 204a-e such that the feed guide 108a, 108b; 208a-208e is positioned somewhere in a middle third part of a width of the sheet material thus allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material.
In one embodiment of the invention the method further comprises the optional step:
S5: Printing on the sheet material 104a-b; 204a-e in a direction being perpendicular to the feed direction of the sheet material when the sheet material is converted in the converting part 112; 212 of the system.
In another aspect of the invention a box template production system configured for converting a fanfolded sheet material into box templates is provided, wherein said box template production system comprises at least one feed guide configured for receiving sheet material from fanfold bales and guiding it up to a top position. In this aspect of the invention a conversion part of the system can be provided both tilted or not tilted, i.e. the converting of sheet material to a box template can be accomplished when a feed direction of the sheet material through the converting part of the system is along a floor plane or tilted as described above. In this aspect of the invention a converting part of the system is configured for receiving the sheet material from the at least one feed guide or from one or more connecting guide parts, wherein only one feed guide is provided for each sheet material and wherein said feed guide is configured for receiving the sheet material such that the sheet material slides over the feed guide. The at least one feed guide is configured for allowing the sheet material to tilt sideways around the feed guide on its way up to the top position thereby enabling correction of the feeding direction of the sheet material as described above.
In one embodiment of the invention the at least one feed guide is provided as an arc starting at a start position where the sheet material is provided to the feed guide, said arc further comprising the top position, wherein said feed guide has a width being less than one fifth of the width of the sheet material. The material and surface of the feed guide 108a, 108b; 208a-208e can be provided such that the sheet material 104a-b; 204a-e can slide over the feed guide and tilt sideways, such as for example low friction metal or plastics, or even a set of small wheels providing roller friction rather than glide friction.
Number | Date | Country | Kind |
---|---|---|---|
1651682-5 | Dec 2016 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/036603 | 6/8/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62351127 | Jun 2016 | US | |
62425457 | Nov 2016 | US |