This invention relates to a bullet and to a bullet cartridge.
Bullet design is influenced by various factors, each of which has a particular influence on bullet performance.
In this specification a bullet body is defined to comprise a tip (meplat), an ogive, a cylindrical part (bearing surface) and a base (which may include a boattail).
This invention addresses two factors of bullet design namely reducing energy loss in the barrel caused by mechanical friction and maintaining bullet stability during flight.
Various factors have an influence on bullet stability namely the rate of rotation, the material density of the bullet, the length of the bullet, the mass of the bullet and the destabilizing yaw moment the bullet experiences during flight, caused by the center of pressure being located ahead of the center of gravity.
In order to impart gyroscopic stability to a bullet during flight, rifle barrels are manufactured with internal helical rifling with a predefined twist rate, such as one revolution in 8 inches (1:8), one turn in ten inches (1:10), or the like. Bullets are manufactured to a particular barrel caliber. The length and mass of the bullet determine the barrel twist requirement.
Traditional jacketed bullets have a smooth outer bearing surface that matches the outer groove diameter of the barrel. Once the bullet starts to travel through the bore of the barrel, the bearing surface is engraved according to the rifling of the barrel. This action causes rotational torque on the bullet thereby to impart spin to the bullet which stabilizes the bullet gyroscopically during flight. When fired and engaging the barrel rifling, the bearing surface of a bullet expands slightly due to the displaced material from the engraving process to form a seal with the internal dimensions of the barrel. The process of cutting the grooves into the bearing surface and the expansion of the bearing surface to form a seal with the internal dimensions of the barrel causes in-bore friction and therefore loss of potential kinetic energy in the bullet.
It is an object of this invention to mechanically engage the bullet with the barrel rifling prior to the discharge of the firearm and thereby facilitate precisely repeatable bullet spin-up, increased gyroscopic stability, which will enhance accuracy, while simultaneously minimizing in-bore friction and converting the reduced engraving loss into increased muzzle velocity, kinetic energy and thus range.
According to a first aspect of the invention, there is provided a bullet, having a longitudinal body on which is defined
The bullet may define at least two longitudinally spaced circumferential drive bands each of which that intersects the set of helical grooves, to define the pressure retaining formation (seals) with the casing of a cartridge, in use. In this specification the terms circumferential drive band, circumferential seal, pressure seal and pressure retaining formation are used interchangeably and refers to the same formations on the bullet.
The helical grooves may extend at least partially over the length of the bullet.
The helical grooves may extend from the ogive, over the bearing surface of the cylindrical part and at least partially towards the base of the bullet. The helical grooves, extending forward toward the ogive and rearward toward the boattail may transitionally diminish in depth as the ogive and boattail diameters reduce towards the front and the rear of the bullet.
It is to be appreciated that the spacing, angularity and shape of the helical grooves are matched with the rifling of a particular barrel.
A rear drive band of the at least two drive bands may be positioned on the bullet to correspond to a position proximate a base of the neck of a cartridge case.
A front drive band of the at least two drive bands may be positioned on the bullet to correspond to a position proximate an opening (mouth) of the cartridge case.
The bullet may include additional longitudinally spaced circumferential drive bands spaced between the at least two longitudinally spaced circumferential drive bands.
In one embodiment the diameter of the cylindrical part of the bullet body may define the groove diameter of the bullet. In this embodiment, the at least two longitudinally spaced circumferential drive bands are defined only by circumferential seals intersecting the set of helical grooves. Upon encountering the barrel rifling, the displaced material will enlarge the circumference of the bullet sufficiently to seal off propellant gasses.
In another embodiment the cylindrical part of the bullet body and the base of the ogive may have a minimally reduced diameter in relation to the diameter of the at least one drive band defining the outer diameter of the bullet. Typically the drive band diameter may be increased by between 0% and 2% of the cylindrical part of the bullet body. The cylindrical part of the bullet body defining the groove diameter.
According to another aspect of the invention, there is provided a cartridge, which includes
The cartridge may include a primer.
The cartridge may include a powder charge.
In use, the longitudinally extending helical grooves engage the barrel rifling during loading of the cartridge into the chamber. Upon firing, propellant gas push the bullet body through the barrel rifling with the at least one circumferential drive band material that intersects the helical grooves being displaced to seal off bypassing gas to create the safe operating pressure.
The invention will now be described by way of a non-limiting example only, with reference to the following drawings.
In the drawings:
In
As can be seen the helical grooves (12.1) extend partially over the length of the bullet from a rear part of an ogive (12.4) of the bullet body (12) over the bearing surface (12.5) of cylindrical part of the bullet body (12) towards the base of the bullet body (12) at a front portion of a boattail (12.6). As is clearly visible in
It is to be appreciated that the bullet (10) may be machined to create a meplat (not shown in
As can be seen in the embodiment shown in
As can more clearly seen in
As can be seen in
In
In
In use, a cartridge is manually placed in a chamber with the grooves (12.1, 22.1, 32.1, 42.1, 60.1) engaging the ridges (not shown) of the barrel rifling (not shown), where after the bolt is closed. The design of the loaded cartridge is such, that the bolt cannot be closed unless the helical grooves (12.1, 22.1, 32.1, 42.1, 60.1) of the bullet (10, 20, 30, 40, 60) are mated with the barrel rifling. When the rifle is fired, the pressure in the case from the propellant gas unseats the bullet from the neck of the case (50) and causes the bullet (10, 20, 30, 40, 60) to accelerate within the barrel and to rotate along the twist of the barrel rifling. The cylindrical part of the bullet body (12, 22, 32, 42, 62), along with the helical grooves (12.1, 22.1, 32.1, 42.1, 60.1) align the bullet (10, 20, 30, 40, 60) longitudinally within the barrel.
The longitudinal movement of the circumferential drive bands (12.2, 12.3; 22.2, 22.3, 22.4; 32.2, 32.3; 42.2; 62.2) of the bullet (10, 20, 30, 40, 60) onto the ridges of the barrel causes the circumferential drive band (12.2, 12.3; 22.2, 22.3, 22.4; 32.2, 32.3; 42.2; 62.2) material to be displaced. This displacement causes the bullet body (12, 22, 32, 42, 62) to bulge, thereby to create a tight seal against the barrel rifling and groove surfaces, thereby to prevent propellant gas from bypassing the bullet body (12, 22, 32, 42, 62). As can be seen in the Figures, the helical grooves (12.1, 22.1, 32.1, 42.1, 60.1) are provided with a ramped angled transition where they meet the circumferential pressure bands (12.2, 12.3; 22.2, 22.3, 22.4; 32.2, 32.3; 42.2; 62.2), which provides a more gradual engraving from the ridges of the barrel and facilitates the forming of the radial bulge profile.
As the rear end of the helical grooves engages the rifling, the bullet is now in full engagement with the bore and the circumferential drive bands (12.2, 12.3; 22.2, 22.3, 22.4; 32.2, 32.3; 42.2; 62.2) seal the bullet (10, 20, 30, 40, 60) over the grooves and cross-sectional rifling geometry in the barrel to restrict any pressure losses as the bullet (10, 20, 30, 40, 60) travels down the barrel towards the muzzle.
It is to be appreciated that the particular twist rate of the barrel rifling and the number of grooves of a particular barrel will determine the specific design of the helical grooves (12.1, 22.1, 32.1, 42.1, 60.1) on the bullet (10, 20, 30, 40, 60). This invention can equally be applied to right hand and left hand twists. Furthermore, the invention can be equally applied to the shape of the rifling, whether it is U-shaped, rectangular, trapezoidal or another geometrical design.
It is to be appreciated that the bullets (10, 20, 30, 40, 60) can be manufactured of a mono metal, a jacketed bullet, or the like.
The inventor believes that the invention provides a new bullet and cartridge which minimizes in-bore friction, minimizes pressure losses and therefore reduce resultant kinetic energy loss without reduction in bullet stability.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/055963 | 6/24/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62867119 | Jun 2019 | US |