The disclosed embodiments concern a CO2 capture process. In embodiments, it is easy to implement by converting a gas turbine. The inventive embodiments could, for example, be included in connection with another gas turbine which generates 60 million watts or more, at the same time as virtually all the CO2 which the gas turbine generates can be extracted in a non-toxic manner, so that all this CO2 can be stored under pressure in reservoirs or be used as a pressure aid in oil production or be included as part of the raw material for industrial production. The inventors have arrived at an economically sustainable process.
More specifically, it is a CO2 capture process comprised of the following steps:
The applicant himself has published a patent application as WO2019172772 which uses a similar construction with a compressor, an afterburning chamber and an expander, and where flue gas from the afterburning chamber is circulated for heat exchange and CO2 extraction in a so-called Hot Potassium Carbonate (HPC) plant.
The disclosed embodiments concern an apparatus and a CO2 capture process comprised of the following steps:
The invention is illustrated in the accompanying drawings, in which:
The generator (G) is on the cold side and acts as a starter motor, and after start-up really only delivers energy to the CO2 capture process.
Normally, in an original gas turbine (1) we need cooling of the expander (3), this is not necessary now because we run such a low temperature. (4) indicates a now unnecessary cooling line.
By only getting 760 C from the combustion chamber (11) here, instead of 1050 C, it becomes easier to design and build heat exchangers (16) because we can use “off-the-shelf” heat exchangers instead of a high-temperature-resistant heat exchanger HE. The unburned oxygen from the flue gas (6) does not participate in the combustion because it flows in through the slits (12) after the combustion has taken place between the fuel gas (14) and the compressed air (15) in the top of the combustion chamber (11) and will therefore only cool the burned gas (15r).
A fuel line (14) supplies natural gas NG (14f) to the burner (13).
Slits (12) are formed in the wall (11w) of the combustion chamber (11), where the first CO2-rich exhaust (6r) from the coat (10) is mixed only into the combustion chamber (11) after combustion, to dilute the second CO2-rich burned gas (15r). The exhaust gas (6r) from the compressor does not participate in the new combustion, which only takes fresh compressed air (15c) and new fuel gas (14f), preferably natural gas (NG).
Compressed air (15c) which comes in from the compressed air line (15) on top of the combustion chamber (11) supplies air to the burner (13), which emits combustion gas (15r) from (13) with T=1800 C-1900 C, but the volume is only approximately ⅕ of the first CO2-rich flue gas (6r). We thus avoid making burners that will burn with a lower oxygen content, which simplifies a lot, and can use ordinary gas burners.
Flue gas (6r) from the compressor (2) in the coat (10) cools down the wall (11w) in the combustion chamber (11). (11w) indicates the wall (11w) in the combustion chamber (11).
The exhaust gas (7) from the expander (3) has a low CO2 content.
The figure shows, for example 350 C-500 C which depends on the pressure from the compressor. Reference numeral (5) is the exit (5) for compressed CO2-rich gas (6r) from the compressor (2). T=typically 350 degrees Celsius at pressure P=13 Bar.
In this figure, the heat exchanger (16) in this embodiment does not have the sophistication that the air supply (15) cools the shell of the heat exchanger (16), which is shown in
A significant advantage of the arrangement is that because one does not have to use burners designed to burn compressed exhaust gas (6r) with a greatly reduced O2 content, but burners (13) for compressed air (15c) and pressurised fuel (14f) injected upstream of the burners (13); one can use ordinary burners almost “off the shelf”, and use ordinary mixing ratios between air and fuel, which provides financial savings in construction and calculations and a cleaner combustion of fuel (14f) without having to make special modifications. The combustion chamber (11) is, in one embodiment, equipped with ceramic tiles with the cooler CO2-rich gas (6r) cooling down the wall (11w) of the combustion chamber (11). Low flue gas outlet temperature from the combustion chamber (11) helps prevent corrosion. This also means that cheaper steel qualities can be used than if the temperature in the combustion chamber had been around 1500 g Celsius, which is the normal initial temperature for the expander in modern gas turbines.
Compressed air (15c) (from a separately driven electric compressor) which comes in through (15) via the heat exchanger (16) and is finally fed into the top of the combustion chamber (15), delivers air to the burner (13). This emits combustion gas from (13) with T=1800-1900, but the volume is only approximately ⅕ of flue gas. We thus avoid making burners that will burn with a lower oxygen content, which simplifies a lot.
Furthermore, a vertical section of the heat exchanger (16) is shown with its air-cooled coat for the compressed air supply that forms part of the path of the compressed air in the pipes (15) which ends up at the top of the combustion chamber (11).
In coaxial pipes between the combustion chamber (11) and the heat exchanger (16), and between the heat exchanger (16) and the ring manifold (9) are not needed. The explanation for this is that the diameter of these pipes is approximately one metre, and we can use a high-quality steel that can withstand the current temperatures and thus avoid a coaxial cooling coat that was necessary in our own process. At this lower temperature we avoid high temperature oxidation of steel.
Here there is a radial outlet to the combustion chamber (11). Here are the positions (19) of the old combustion chambers for the gas turbine. One of the purposes of this converted gas turbine (1) is to compress gas (6) and not actually to generate energy for export, even though the process emits energy overall. An existing gas turbine generator is converted to an inventive embodiment which comprises a compressor to get CO2 gas purified in an efficient and profitable process. Thus, we get CO2 under high partial pressure into K2CO3—“hot potassium carbonate”—the process that requires high pressure. HPC is a non-toxic, harmless, environmentally friendly CO2 capture process. Ring lines/manifolds (8) and (9) are advantageous. Here there are no thermal stresses due to the fact that the radial pipes are radially directed.
Chemical reaction in the stripper, at e.g. 1 bar: 2KHCO3+heat=>K2CO3+H2O+CO2 (released).
Heat is supplied to the heating unit (31) (Re-boiler) with flue gas from the downstream SCR (30).
CO2+K2CO3+H2O>=2KHCO3+HEAT
The inventive embodiments include a CO2 capture system comprising the following features:
The compressed air (15c) is led only to the combustion of fuel (14f) at the burners (13) and forms the second CO2-rich gas (15r) and mixing with exhaust gas (6r) from the compressor (2) takes place first downstream of the formation of the other CO2-rich gas (15r). This is an essential aspect of the disclosure: Thus, the compressed air (15c) can be led only to the burners (13) and burned together with fuel (14f) without mixing with the oxygen-poor compressed flue gas (6r) from the compressor (2). This means that you can use ordinary burners (13) and avoid burning the fuel at low oxygen concentrations, which simplifies the plant, provides a faster and easier combustion and lowers the resulting temperature in the resulting CO2-rich flue gas (60r).
Disclosed herein is a CO2 capture process. More specifically, it is a CO2 capture process comprising the following steps:
Note a few points:
The loss of the pressure (P) in the CO2 extraction plant is insignificant and is in the range 0.4 Bar.
In an embodiment, the system has a regulation system arranged to regulate the supply of the amount of compressed air (15c) and fuel (14f) substantially equal to the extracted CO2 amount in the CO2 extraction plant so that the gas amount (60L) which runs out on the expander (3) corresponds to the gas amount (6g) which runs in through the compressor (2).
In an embodiment, the pressure is thus in the CO2 capture system comprised of the exit from the compressor (2), the manifolds (8, 9), the combustion chamber (11), the heat exchanger (16), the extraction plant (100), and the inlet of the expander (3) arranged so that the pressure (P) in the CO2-rich gases (6r, 15r, 60r) and the resulting CO2-poor gas (60L) is above 12 Bar, preferably above 16 Bar, and more preferably above 19 Bar.
According to an, the CO2 extraction plant (100) is a so-called Hot Potassium Carbonate K2CO3-plant where the extraction plant (100) is comprised of an absorption column (21) which operates under the pressure (P) and with absorption medium comprised of a mixture of water and potassium carbonate K2CO3, wherein the reaction in the absorption column (21) is;
CO2+K2CO3+H2O=2KHCO3.
Electric generator and starter motor
According to an embodiment, an electric generator/starter motor (G) is connected to the compressor (2) and the expander (3), which are otherwise preferably mounted on a common shaft, and preferably on the cold side at the inlet (6), and where the generator (G) generates energy recovered in the expander (3) to drive the process in the compressor (2), the CO2 extraction plant (100) and the system in general.
In a further embodiment the electric generator/starter motor (G) is connected to the compressor (2) and arranged to pressurise the system before start-up, and where energy to the electric motor (G) is taken from outside, from the mains or preferably from a generator in a thermal power plant that also produces the first CO2-rich gas (6s).
In one embodiment, the combustion chamber (11) is a silo-type combustion chamber (11).
In an embodiment ntion, the first and second manifolds (8) and (9) are arranged as ring manifolds arranged around the casings (19) and connected to the exit (5) from the compressor (2) and the return to the expander (3), where the casings (19) are what otherwise constitute burners (19′) on a converted gas turbine, but where the burner top has been removed.
In an embodiment, the exit (5) from the compressor (2) is a coaxial exit (5) around a modified return (19) from the casing between the compressor (2) and the expander (3) which is otherwise used for one of the burners (19′) in a gas turbine.
According to an embodiment, the compressed air line (15) goes via a cooling coat on the heat exchanger (16) arranged to cool the pressure shell of the heat exchanger (16) combined with preheating the compressed air (15c) before the injection at the top of the combustion chamber (11)(see
In one embodiment, the lower part of the combustion chamber (11) in the shell (10) is clad on the inside with ceramic tiles (10f) for shielding radiant heat from the combustion process of fuel (14f) and compressed air (15c) at the burners (13).
Above we have described the system for CO2 capture. Here follows the corresponding description of the method, which is a CO2 capture process comprised of the following steps:
In one embodiment, in that we only get 760 C from the combustion chamber (11) here, instead of 1050 C if one would otherwise use an afterburner technology, it becomes easier to design and build heat exchangers (16) because we can use an “off-the-shelf” heat exchanger (16) instead of a high temperature resistant heat exchanger that can withstand temperatures as high as 1050 C.
Essential advantages are that one gets get pressurised combustion and pressurised cleaning. We now achieve, in one embodiment, to reach 19.5 Bar (or higher pressure) flue gas from 6, and thus get a high efficiency of the CO2 recovery plant (100) and reduce the footprint significantly. This improves efficacy and significantly reduces costs of the process, including the one we ourselves have participated in the development of.
According to an embodiment of the method, the supplied amount of compressed air (15c) and fuel (14f) is regulated substantially equally in relation to the extracted CO2 amount in the CO2 extraction plant so that the gas amount (60L) running out on the expander (3) corresponds to the gas amount (6g) which flows in through the compressor (2), i.e., that the additive gases (15c, 14f) which are burned in the combustion chamber (adjusted for its CO2 content) correspond to the amount of CO2 taken out in the extraction plant (100), and that one can thereby use existing gas turbine constructions as a basis for embodiments. This saves a lot of development costs and allows one to save a lot of time in the construction of embodiments.
As mentioned earlier, the pressure in the CO2-rich gases (6r, 15r, 60r, 60L) in the process between the outlet of the compressor (2) and the inlet to the expander (3) is above 12 Bar, preferably above 16 Bar, and more preferably above 19 Bar.
In the CO2 capture process, a so-called Hot Potassium Carbonate (HPC) process is used in the CO2 extraction plant (100). Preferably, the CO2 extraction plant (100) operates mainly under the gas pressure in the gas (60r, 60L) corresponding to that of the compressor (2), and in the combustion chamber (11) and the heat exchanger (16), and further back to the expander (3). The expander (3) operates under a pressure corresponding to that in the combustion chamber (11) with a deduction of a pressure drop of approximately 0.4 Bar that occurs in pipes, heat exchangers, NOx absorption unit (SCR) (30), boiler for heating absorption liquid (31) and centrifuge (28).
According to an embodiment, an absorption column (21) with absorption medium comprised of a mixture of water and potassium carbonate K2CO3 is used in the extraction plant (100), where the reaction in the absorption column (21) is
CO2+K2CO3+H2O=2KHCO3.
This equation is stoichiometrically balanced.
According to an embodiment of the method, an electric generator/starter motor (G) is connected to the compressor (2) and the expander (3), preferably on a common shaft, and preferably on the cold side at the inlet (6), and where the generator (G) generates energy recovered in the expander (3) to drive the process in the compressor (2), the CO2 extraction plant (100) and the system in general. The generator's capacity will cover the system's auxiliary systems for pumping fuel, lubricating oils, compressing air, etc., and the generator can be switched to act as a starter motor to cover the auxiliary systems of the entire process so that the entire system can be pressurised using the compressor (2) before starting up the burners (13), the CO2 extraction plant (100), pressure injection of fuel (14f), compression for the supply of supply air (15c), circulation of lubricating oils, etc.
According to one embodiment, the first CO2-rich exhaust gas (6s) is supplied from an external gas turbine (6s). In another embodiment, the source is a coal-fired thermal power plant (6s), or a cement plant, a refinery cracker, or a waste incineration plant, which supplies the CO2-rich exhaust gas (6g).
We then refer to
The function of the converted gas turbine is mainly limited to compressing flue gas from external sources, as well as generating sufficient electrical power in the generator (G) to drive the turbine's auxiliary systems. The generator (G) also has a function as a starting motor. The absorber (21) will operate at a pressure (P) 12 Bar or higher. This means that an environmentally friendly absorbent with low selectivity can be used as potassium carbonate (K2CO3). Furthermore, compared to absorption at atmospheric pressure will the cost of the absorber (21) be reduced to approximately 1/12. At atmospheric pressure, only absorbents with high selectivity can be used such as MonoEthyleneAmine. Expensive chemicals are added to MEA that reduce degeneration, corrosion, foaming and the establishment of blocking stable salts. Furthermore, flue gas emissions from such a plant into the atmosphere will contain carcinogenic chemicals such as Nir—Nitrous Amines. Even extremely low concentrations, more than 1 nanogram per cubic metre, will pose health risks.
In an embodiment, flue gas (60r) has an inlet temperature at the heat exchanger (16) which is selected to be 760 C (ref. also
In an embodiment, the heat flue gas (60r) with a temperature of 275 Celsius is passed from the heat exchanger (20) to a nozzle (27) for feeding in ammonia (NH3). Downstream of the nozzle, NH3 and the flue gas are mixed in a tube with “guide vanes” upstream of the NOx capture unit (30) which can operate at the Selective Catalytic Reduction (SCR) unit. The unit preferably operates at an optimal temperature of 270 degrees Celsius. From the Selective Catalytic Reduction (SCR) (30) the flue gas is led by a pipeline to a boiler (31) for heating the absorption liquid.
This arrangement is cost-reducing compared to conventional steam heating. From the boiler (31) the flue gas is led to a centrifuge (28). The centrifuge separates water from the flue gas. This is very advantageous as water supply to and contamination of the absorption liquid in the absorber (21) is prevented.
Water separated from the centrifuge (28) is led to a self-cleaning filter (26). From the filter (26) the water is led to a high-pressure pump (25). Then pressurised water is led to nozzles in the heat recovery unit (24) so that the temperature of the flue gas from the absorber (21) is increased before entering the heat exchanger (20).
Thus, the gas burners (13) will operate on clean air.
An embodiment can be based on a gas turbine SGT5-2000E—187 MW/50 Hz.
In the combustion chamber (‘19’)
Natural gas such as fuel (14f) which is fed into the burners (13): 4 Kg/sec
Pressurised air (15c) to the burners (13): 111 Kg/sec
Power supplied by generator (G): 37 MW
Exhaust gas, the third CO2-rich gas (60r) temperature out of combustion chamber (11): 756 degrees Celsius
Return gas (60L) temperature from heat exchanger (16) to expander (3): 700 degrees Celsius
amount of CO2 trapped: 103 kg/sec.
Electric power (60 Hz) supplied to static frequency converter (SFC) for:
Air compressor: 43 MW/purchased 60 Hz electric power.
CO2 export compressor (101); 40 MW/purchased 60 Hz electrical power.
“Catacarb” compressors; 10 MW
Accessories & utilities; 3 MW
Excess power/power margin 50 Hz: 24 MW.
Purchase of external power: 83 MW at an estimated price of 4 cents/Kwh; 3320 $/h
We refer to
14s
Number | Date | Country | Kind |
---|---|---|---|
20200450 | Apr 2020 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2021/050100 | 4/14/2021 | WO |