The invention generally relates to the field of cheese manufacturing, more particularly the field of cheese moulds and cheese mould handling.
Today, within cheese production it is common practice to use moulds consisting of a mould body for draining, pressing, rind forming and shape-forming of a block, or bed, of curd, and a lid which can be moved inside the mould body for curd pressing. During cheese production a pressure is applied on the lid such that whey is pushed out of the curd block via apertures in the mould body and lid. By pressing the curd particles are pushed more closely to each other to support fusing (interconnecting) of the curd to a stable cheese body, pressing may be as less as gravity, but most commonly external force, for example by means of a pneumatical cylinder, is applied to the lid forcing it to move further inside the mould. The pressure, depending on the intensity of force, can also create a closed cheese surface, the rind, as a result of draining the curd particles at the outer side of the latter cheese, and deforming them to the surface structure of the mould body and lid, often having a rigidised surface. The form, shape, dimensions, further all called form, of the mould varies depending on the desired form of the final cheese to be emptied from the mould after processing. As an example, since many cheeses are in the form of so-called block alike shapes, a specific popular form being Euroblock, it is common that the mould body has a rectangular cross section, but also mould bodies with radius curves are well known, alike Dutch wheel shape, and even blocks with non even mould surfaces (for example for brand printing in the cheese surface) are becoming more popular. Further information about Cheese production can be read in “Dairy Processing Handbook”, Second revised edition, 2003, published by Tetra Pak Processing Systems AB, ISBN 91-631-3427-6.
When placing the curd to or removing the cheese from the mould care needs to be taken such that the curd or cheese is not deformed. Throughout the years different technologies for achieving this have been developed.
Traditionally, removing cheese from the mould is done by manually removing the cheese from the mould as a combination of loosening the cheese from the mould surface by shaking and turning the mould, but this takes time and can lead to extra damages to the cheese.
In automatic systems removing the cheese is done by opening the mould body by removing a mould lid, turning the mould body, and then removing the cheese by allowing or making the cheese to glide downwards from the mould body. As the cheese is often attached to a surface of the mould body additional force is used to force the cheese out, most commonly by use of pressurised air aided through the bottom of the mould body. This however has a known negative side effect that this airstream is making whey and curd fines to become air born and thus fouling the environment around the de-moulding unit. Further, the air must be of high hygienic quality to avoid contamination of the cheese surface. In addition the pressurised air supply unit can introduce hygienic issues as it gets contaminated with product remains which leads to undesired growth of microflora infecting future cheeses to be pushed from moulds. Forcing the cheese out this way can also lead to undesired deformations of the cheese leading to quality issues as cracks and pinholes.
An alternative system is to remove the cheese with vacuum. After removing the mould lid a cheese shape alike plate is lowered to the cheese surface, vacuum is formed between the plate and cheese thus pulling the cheese surface to the plate, at sufficient vacuum the plate thus can pull the cheese from the mould body. Side effect is that this method is not useable for all cheese forms, and during vacuum stage the cheese surface is and needs to be deformed which can lead to quality issues regarding rind and rind area. In addition the vacuum plate can introduce hygienic issues as it gets contaminated with product remains which leads to undesired growth of microflora infecting future cheeses to be pushed from moulds. Also this method is more sensitive for altering circumstances, such as progressive pH development in cheeses at disturbed mould handling sequences.
According to another system for de-moulding the mould can be placed upside down and then by vibrating the mould the cheese can be released. A drawback with this method is that the cheese may be damaged, it is time consuming, less reliable and sensitive for altering circumstances, such as progressive pH development in cheeses at disturbed mould handling sequences.
All of the above mentioned alternatives may be assisted by the addition of heating means to the mould.
Based on the above, there is a need for a more gentle handling of the cheeses when these are to be demoulded, i.e. released from the moulds.
Similarly, when placing the curd in the mould, also referred to as moulding, it is important to make sure that this is done as gently as possible. If the curd is damaged when being fed into the mould it may lead, for instance, to a non-uniform cheese.
Also the curd must be well distributed in the mould, otherwise it may lead to deviations in the latter cheese, for example form-deviations due to uneven pressing, non closed or insufficient pressed rind areas and inner structure deviations as whey pockets, eye-clusters or cracks.
A common technique for moulding is to form a drained and pre-shaped curd bed, for instance by using a so-called drainage column, such as Tetra Tebel Casomatic marketed by Tetra Pak, and to cut the curd bed into curd blocks. After being cut off the curd blocks are released down into a mould placed below. A drawback of this technique is that it may damage the curd blocks, create losses of curd and quality issues within the curd block, e.g. pinholes, and form deviations occur to displaced curd blocks, e.g. placed out of mould centre during moulding.
An alternative technique is a so-called pre-pressvat in which a horizontal curd bed is created from a fed whey and curd mixture by draining whey via the curd bed supporting bottom or side walls and pre-pressing the formed curd bed, after which blocks are cut from this pre-formed curd bed and lowered/dropped or otherwise transferred into a mould leading to similar risks as on above mentioned drainage column systems
Another well known technique is to directly feed whey and curd mixture into a mould. In the mould, whey can expel through micro perforations and curd remains as a compact curd bed in the mould. The risk of this specific procedure is that the drainage properties are not stable as micro perforations can get stuck with small product parts as curd fines and thus moisture and weight accuracy and form stability of the produced cheese and per consequence sensory properties may be negatively influenced.
Therefore, there is a need to provide a more gentle and better controlled handling of the curd when curd is placed in the mould.
After moulding and de-moulding, the mould is cleaned and, if not to be used directly, stored before being used again.
In mould cleaning systems commonly used today, the mould is turned upside down to enable proper removal of product remains and cleaning liquid and to reduce the risk that curd residues or cleaning solution are captured in the mould. After the mould is cleaned using a combinatoin of water and cleaning detergents, and is dried/drained, the mould is turned again to an upright position.
Another cleaning method is to submerge moulds into a cleaning liquid and remain them for a specific time, often under addition of supporting actions as vibrations, ultravibrations, flow enforcements, airbubbles, all to excellerate and improve the effect of cleaning agents to the to be removed fouling.
A problem with the current cleaning systems for moulds is that it has proven to be difficult to clean the inner corners of the mould body and the apertures efficiently, both in terms of efficiency in cleaning (product remains and micro flora removal/deactivation) as on consumption of water and cleaning solution, and from a time aspect.
Accordingly, the present invention preferably seeks to mitigate, alleviate or eliminate one or more of the above-identified deficiencies in the art and disadvantages singly or in any combination and solves at least the above mentioned problems.
According to a first aspect it is provided a method for handling a mould, said mould comprising a hollow body and a lid, said hollow body having a first opening and a second opening, wherein said lid is arranged to be placed in an inner space of said hollow body such that a cheese can be held by said mould, said method comprising removing said lid from said hollow body, releasing said cheese from said mould, and cleaning said hollow body.
The method may further comprise draining said hollow body, wherein said step of releasing said cheese, removing said lid, cleaning said hollow body and draining said hollow body are performed with said hollow body in a position where said first opening is heading upwards and said second opening is heading downwards, or said second opening is heading upwards and said first opening is heading downwards.
The step of cleaning may be performed by flushing cleaning solution and/or water through said hollow body.
The cleaning solution and/or water may be flushed by using a nozzle arranged to move vertically during cleaning.
The step of cleaning may be performed by submerging said hollow body in cleaning solution and/or water.
According to a second aspect it is provided a mould comprising a hollow body having a first opening and a second opening, and a lid, wherein in a cheese holding state said lid is placed in an inner space of said hollow body such that a cheese can be held by said mould, and in a cleaning state said hollow body and said lid are separated such that said hollow body and said lid can be cleaned separately.
The mould may further comprise a top lid arranged to be placed on top of said cheese in said cheese holding state, and in said cleaning state said top lid is separated from said hollow body such that said hollow body, said lid and said top lid can be cleaned separately.
The top lid and said lid may be identical.
According to a third aspect it is provided a mould handling system comprising a lid removing apparatus arranged to remove a lid from a mould comprising a hollow body having a first opening and a second opening, wherein said lid is arranged to be placed in said hollow body, and a mould cleaning apparatus arranged to clean said hollow body.
The mould cleaning apparatus may be arranged to clean said hollow body by flushing cleaning solution and/or water through said hollow body.
The cleaning apparatus may comprise a nozzle arranged to move vertically during cleaning.
The cleaning apparatus may be arranged to clean said hollow body by submerging said hollow body in cleaning solution and/or water.
The mould handling system may further comprise a mould transportation apparatus arranged to transport said hollow body from said lid removing apparatus to a mould cleaning apparatus, wherein said mould transportation apparatus transport said hollow body in an upright position.
The above, as well as additional objects, features and advantages of the present invention, will be better understood through the following illustrative and non-limiting detailed description of preferred embodiments of the present invention, with reference to the appended drawings, wherein:
Semi-hard and hard cheese production can be divided in the main steps of pre-treating the milk, producing curd, draining and pressing the curd into cheese, brining the cheese, and storing/ripening the cheese. The step of pre-treating the milk often comprise sub-steps, such as heat treating in order to significantly reduce the number of active micro organisms, especially the pathogenic types, and standardization the milk to for example fat to protein ratio in order to achieve a certain fat content in the final cheese. The step of curd production can comprise adding rennet or another coagulant type and starter culture and other cheese specific ingredients, stirring and cutting, removal whey and addition of water and altering temperatures during processing such that curd of the right properties (e.g. shape, contents, pH) is produced. The non-bound whey is after curd processing drained from the curd, and the drained curd is filled into moulds often by use of a draining, forming and portioning unit, such as Tetra Tebel Casomatic units or others. In the pressing step, force (often by means of a pneumatic driven cylinder) can be applied onto the curd such that excess whey is pushed out, curd is pushed closely together resulting in interconnections between them (fusing), curd lying directly to the mould surfaces are deformed to the mould surface resulting in a rind and after time a cheese is formed. In the brining step, the cheese is often placed in salty bath. Lastly, the cheese is stored. Further details can, for example, be read in Dairy Processing Handbook, second revised edition 2003, published by Tetra Pak Processsing Systems AB.
A step of placing the curd in the mould is often referred to as moulding. In large scale cheese production lines of today the moulding step can be that a piece of curd block is formed by a e.g. drainage column and placed in a mould. More particularly, the curd block can be output from the drainage column to a transfer-interface, for example a slide cassette, and from the slide cassette to the mould.
A step of removing the cheese from the mould is often referred to as de-moulding. This can be performed by pushing out the cheese by using pressurized air, shaking out the cheese, i.e. using vibrations, or using a vacuum head for pulling out the cheese.
It has been realized that instead of using a traditional mould with side walls and a bottom in one piece, a mould comprising a hollow body and a bottom lid can be used.
In the moulding step, an advantage of having the bottom lid and the hollow body as two parts is that the bottom lid may be lowered as curd is fed into the mould, or alternatively the mould lid may be used for this. A positive result of this is that a more gentle handling of the curd can be achieved, which in turn means that waste or quality issues in latter cheese can be reduced. Still an advantage is that the drainage column can feed the piece of curd directly into the mould, thereby preventing unnecessary transfer movements with the cheese (losses and quality issues) making it possible to omit the transfer-interface, such as a slide cassette and in turn to save costs.
At direct feed of whey and curd into the mould the possibility of lowering the bottom plate limits blockage of new released micro perforations of the mould body as already formed curd bed is filtering/capturing small particles as curd fines from incoming feed and thus preventing them to block the mould perforations.
In the de-moulding step, an advantage of having the mould with the hollow body is that the cheese can be pushed out from the mould in the same direction as the pressure force has been applied. This means, for instance, if the curd is pressed towards the bottom lid, that the curd can be released via the bottom when being de-moulded. This means in turn that the distance the cheese will need to travel inside the hollow body is kept short. Since there is a known risk that the cheese is damaged when being transferred within the hollow body, this risk is lower when using a mould comprising a hollow body compared to a traditional mould. As the distance for transfer is shorter combined with the fact that the cheese surface on which demoulding force is aided is supported in full exactly corresponding to the cheese form significantly reduces the risk of deformations to the cheese at de-moulding, deformations which are known risks to occurring quality issues as cracks and pinholes. Physical and Microbiological contamination to cheeses and environment around demoulding is significantly reduced as no air (pressurised or vacumised) is directly used in contact to cheese and mould. Further, an advantage is that the cheese may be weighed during demoulding, and as such direct demoulding directly into a brine bath avoiding contact to interface transfer systems as belts with its microbiological contamination risks is possible to do.
In
In
Next, in
Before applying a pressure on the curd a top lid 106 can be placed on top of the curd, as illustrated in
When applying a pressure, e.g. by using a pneumatic cylinder 108, as illustrated in
As illustrated in
After having removed the top lid 106, the bottom lid 102 can be removed, as illustrated in
In the illustrated example, the top lid 106 is removed before the bottom lid 102. However, another option is to remove the bottom lid 102 before the top lid 106, alternatively the top lid 106 and bottom lid 102 may be removed simultaniously.
After having the top lid and bottom lid removed, the cheese 110 can be released through the lower end of the hollow body, as illustrated in
As an alternative to the mould illustrated in
As illustrated in
Referring to
In
Next, in
In
As illustrated in
In
As illustrated in
When a target weight and/or volume of curd have been fed into the mould the knife cuts off the curd such that a curd block is formed. The knife is often embodied as a plate having a sharp edge. By having the knife embodied in this way, the knife will after having cut off the curd provide for that the curd stays in the drainage column, as illustrated in
As illustrated in
An advantage of this direct dosing in mould approach is that less equipment is needed, which of course reduces cost. Major advantage although is that curd is fed more gentle to the mould with less direct product losses and indirect losses due to resulting quality issues (as cracks and pinholes).
Today, since traditional moulds do not comprise a hollow body the direct filling in mould approach illustrated in
In
As illustrated in
When having the curd block placed in the traditional mould 402, as illustrated in
As an alternative to the process illustrated in
By having the traditional mould 504 placed lower with respect to the plane surface the cheese will fall down into the traditional mould, as illustrated in
When having the curd block placed in the traditional mould 504, as illustrated in
By using the direct dosing in mould approach illustrated in
Firstly, an improved hygiene is achieved. Using a slide cassette and transfer surfaces implies namely that one and the same part is in contact with a number of curd blocks, which in turn increases the risk that unwanted microorganisms can be spread.
Also at shifts between product types the risk of finding product remains of previous product in the new product type is significantly lowered.
Secondly, since there is no slide cassette and transfer surfaces transporting the curd block from the drainage column to the mould the risk of damaging the curd blocks is reduced, having the positive effect that less curd blocks are damaged and that product losses are held low.
Thirdly, the direct dosing in mould has the positive effect that the time needed for placing the curd blocks in the moulds can be reduced, which in turn has the positive effect that cheese production lines with higher capacity can be made.
With reference to
As illustrated in
An even surface has the positive effect that there is less deformation of the curd during pressing. Resulting advantages are that there is more constant moisture content throughout the cheese, that there is less defects in the cheese, such as whey residues, whey pockets and clusters of eye formation, and format stability of the latter cheese is improved.
As illustrated in
At filling from below and using traditional moulds, as illustrated in
As mentioned such an intermediate pre-pressing step is not required at direct mould filling. Also product losses and quality risks are significantly reduced at direct mould filling.
If filling a curd and whey mixture into a traditional mould, it is common practice to place a dosing and whey drainage plate in the bottom of the traditional mould, as illustrated in
After having filled the traditional mould the dosing plate is removed, as illustrated in
If using the mould comprising the hollow body, the process can be done differently, as illustrated in
As curd and whey mixture is fed into the mould, the bottom lid is pushed downwards, successively forming additional room for the curd and whey mixture. Excess whey can be released through perforations in the dosing plate, the mould and the bottom lid.
After having filled the mould the dosing plate is removed, as illustrated in
An advantage of using the mould with the hollow body and the bottom lid, as illustrated in
During de-moulding, i.e. when the cheese is released from the mould, the mould comprising a hollow body has several advantages.
In order to remove the bottom lid, this can be lifted in one end, as illustrated in
After having removed the bottom lid a force may be applied on the top lid such that the cheese and top lid are pushed down, as illustrated in
When the cheese is pushed out from the hollow body the cheese can be transported to e.g. a brine bath, or as an alternative, pushed directly into the brine bath. The weight of the cheese can be detected as lost weight from the mould body when releasing the cheese.
The bottom lid may be removed by lifting the bottom lid in one end, as illustrated in
Next, in order to release the cheese, the hollow body can be lifted upwards such that cheese is separated from the hollow body, as illustrated in
After having released the cheese from the hollow body, the top lid can be removed, as illustrated in
If using a traditional mould de-moulding is made in different ways. Two common approaches are lifting the cheese from the mould using a vacuum head, and using pressurized air for releasing the cheese downwards from the traditional mould.
There are a number of advantages with using the mould comprising the hollow body compared to traditional moulds. Firstly, there is no need for using vacuum heads, pressurized air or the like. An advantage of omitting the vacuum head and pressurised air plate is that the risk for contamination is reduced. Another advantage is that cheese deformation is significantly reduced as deformations are functionally required at vacuum and pressurised air demoulding methods. An advantage of omitting the pressurized air is that less whey and product fines aerosols are spread to the surroundings.
Further, as an effect of that the cheese can be released via the bottom end of the mould and that the cheese is placed in the bottom after pressing, the distance the cheese is travelling within the hollow body is shorter in the mould comprising the hollow body compared to the traditional mould, the risk that the cheese is deformed or damaged is reduced.
In
In
In
The upward movement of the hollow body is stopped when a lower edge 1610 of the hollow body reaches the frame 1602. Since the top lid is not attached to the hollow body and provided that the adhesion between the top lid and the cheese is not greater than the friction between the cheese and side walls of the hollow body, the top lid will continue and may in this way be removed from the mould. This can be enforced by releasing the top lid at one side of the cheese surface a bit earlier “peeling-off the lop lid”.
As illustrated in
Since the properties of the cheese are most often carefully controlled and followed, the dimensions and properties of the hollow body, the bottom lid and the top lid may be adapted to fit a particular cheese.
Apart from advantages related to moulding and de-moulding, the mould comprising the hollow body has beneficial cleaning properties.
In order to make sure that curd residues are not caught in the mould, it is usual to let the mould drain/dry placed upside down, and then turns it to upright position afterwards.
Since the mould comprising the hollow body does not constitute a closed end, as the traditional mould, there is no need to turn the mould before and after cleaning. Therefore, a cleaning station 1800 for the mould does not need to comprise devices for turning the mould, as illustrated in
The mould can be transported to a cleaning station 1802 in which the mould are held in place while water and/or cleaning detergents are flushed through the hollow body.
In order to make sure that each sections of the hollow body is cleaned properly the nozzle may be moved vertically during the cleaning, as illustrated in
The main cleaning advantages of the hollow mould body and separated mould bottom beside the minimised handling (turning) requirements are that the mould become an open construction with less difficult to clean edges. Open construction implying that used cleaning fluid and removed fouling are push away from the incoming cleaning fluids not interfering with it when reflecting back as at traditional moulds (fouling is often circulating around as they become part of the incoming cleaning fluid streams (captured by it at its way out). Thus the impact of cleaning is significantly improved (returning fluids do not interfere with incoming fluids), released fouling is running out in once (no captured by incoming fluids) and difficult to cleaning edges between bottom and body are not present at cleaning stage.
Instead of using a nozzle, or in combination with using a nozzle, the mould can be cleaned by being submerged.
If using a similar approach for a traditional mould, as illustrated in
The advantage of having the mould comprising the hollow body in this respect is that curd residues are less likely to be captured in the hollow body. Further, since the hollow body can be reached from two ends, the hollow body is easier to clean than the traditional mould. In addition the traditional needs to be turned, something that is not necessary for the mould comprising the hollow body.
The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
1450157-1 | Feb 2014 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/052768 | 2/10/2015 | WO | 00 |