The invention relates to circulating fluidized bed boilers. The invention relates to loopseal heat exchangers. The invention relates to particle coolers.
A fluidized bed heat exchanger is known from U.S. Pat. No. 5,184,671. The fluidized bed heat exchanger may be arranged in connection with a steam generator to recover heat from the bed material of the fluidized bed. Typically in such a heat exchanger steam becomes superheated, whereby such a fluidized bed heat exchanger may be referred to as a fluidized bed superheater. In a circulating fluidized bed boiler, a fluidized bed heat exchanger may be arranged in the loopseal. In such a case the heat exchanger may be referred to as a loopseal heat exchanger or a loopseal superheater.
The bed material of a fluidized bed boiler comprises inert particulate material and ash. In known solutions, all the bed material (i.e. also the ash) is conveyed from the loopseal heat exchanger to the furnace of the fluidized bed boiler, from which the ash can be collected as bottom ash. However, some of the ash may form agglomerates that hinder the operation of the fluidized bed reactor. The ash or the agglomerates may, for example, limit the air flow from a grate of a furnace, which results in uneven air flow in the furnace. In addition to affecting the operation of furnace, because of the ash, the pipelines need to be designed sufficiently large to convey also the ash. This may limit the capacity of the boiler.
To address these issues, a circulating fluidized bed boiler according to an embodiment of the invention comprises a loopseal heat exchanger comprising a first particle outlet for letting out particulate material from the loopseal heat exchanger and a first ash removal channel for letting out ash from the loopseal heat exchanger. Moreover, in order to sieve the bed material such that the ash content is larger in the first ash removal channel than at the first particle outlet, the first ash removal channel is arranged at a lower level than the first particle outlet. Thus, the heavy ash declines towards the first ash removal channel naturally by means of gravity. In a preferred embodiment, the loopseal heat exchanger comprises nozzles for fluidizing the bed material within the loopseal heat exchanger. By fluidizing the bed material, the loopseal heat exchanger functions also as an air sieve to help separating the heavy ash from the particulate material. Thus, the ash, or at least mainly the ash, can be removed from the loopseal heat exchanger and conveyed to a cooler for further processing instead of the furnace of the circulating fluidized bed boiler.
The invention is more specifically disclosed in the independent claim. The dependent claims and the description below disclose embodiments, of which some are preferred.
To illustrate different views of the embodiments, three orthogonal directions Sx, Sy, and Sz are indicated in the figures. The direction Sz is substantially vertical and upwards. In this way, the direction Sz is substantially reverse to gravity.
Within the furnace 50, some burnable material is configured to be burned. Some inert particulate material, e.g. sand, is also arranged in the furnace 50. The mixture of the particulate material and the burnable material and/or ash is referred to as bed material. At the bottom of the furnace 50, a grate 52 is arranged. The grate 52 is configured to supply air into the furnace in order to fluidize the bed material and to burn at least some of the burnable material to form heat, flue gas, and ash. In a circulating fluidized bed, the air supply is so strong, that the bed material is configured to flow upwards in the furnace 50. The grate 52 comprises grate nozzles 54 for supplying the air. The grate 52 limits bottom ash channels 56 for removing ash from the furnace 50.
From the upper part of the furnace 50, the bed material is conveyed to a cyclone 40 in order to separate the bed material from gases. From the cyclone 40, the bed material falls through a channel 60 to a loopseal 5. In the loopseal 5, a layer of bed material is formed. The layer prevents the combustion air or the fluidizing air from flowing in an opposite direction from the furnace 50 to the cyclone 40. Preferably, the loopseal 5 does not have a common wall with the furnace 50. This gives more flexibility to the structural design of the boiler 1. At least when the loopseal 5 does not have a common wall with the furnace 50, the bed material is returned from the loopseal 5 to the furnace 50 via a pipeline 15 configured to convey bed material from the loopseal 5 to the furnace 50.
Referring to
The walls 500 of the loopseal heat exchanger 10 limit (i.e. the loopseal heat exchanger has) a first particle outlet 590, which is configured to let out at least particulate material from the loopseal heat exchanger 10. The first particle outlet is limited from below by an outlet wall 507. In the
The walls 500 of the loopseal heat exchanger limit (i.e. the loopseal heat exchanger has) a first compartment 21. The first compartment 21 comprises an inlet 31 for receiving bed material from the furnace 50 via the cyclone 40.
In the embodiment of
In an embodiment, a lower edge of the first particle outlet 590 is arranged at a higher vertical level than at least some of the heat exchanger tubes 820, which are arranged in the interior 11 of the loopseal heat exchanger 10. This has the effect that, in use, at least some of the heat exchanger tubes 820 are arranged in a bed of particulate material, since the first particle outlet 590 defines the surface of the bed of particulate material within the loopseal heat exchanger 10. Preferably, a lower edge of the first particle outlet 590 is arranged at a higher vertical level than at least half of the heat exchanger tubes that are arranged in the interior 11 of the loopseal heat exchanger 10. More preferably, a lower edge of the first particle outlet 590 is arranged at a higher vertical level than all the heat exchanger tubes that are arranged in the interior 11 of the loopseal heat exchanger 10.
A first wall 510 of the walls 500 separates the first compartment 21 from the second compartment 22. The first wall 510 may be a vertical wall 505. In an embodiment, the first wall 510 extends from the bottom of the first compartment 21 and/or the bottom of the second 22 compartment upwards. By having different compartments, a gas lock may arranged locally near the inlet 31 as will be detailed below. The first wall 510 may be planar. At least a part of the first wall 510 may be common to the first compartment 21 and the second compartment 22. Thus, in an embodiment, a part of the first wall 510 limits both the first compartment 21 and the second compartment 22. More specifically, a part of the first wall 510 limits the first compartment 21 and the same part of the first wall 510 limits also the second compartment 22.
As for the terms used throughout this description, unless otherwise specified, two different compartments (21, 22) are separated by a wall 500 that extends from the bottom of both the compartments upwards (21, 22). Preferably, the bottom of the first compartment 21 is located at the same vertical level as the bottom of the second compartment 22. Preferably, the ceiling of the first compartment 21 is arranged at the same vertical level as the ceiling of the second compartment 22. In case the bottoms are located at different heights, compartments (21, 22) are separated by a wall that extends from the bottom of the lower compartment upwards to the bottom of the higher compartment. The wall may extend even further upwards. However, as indicated e.g. in
The first wall limits 510 (e.g. from below and/or from top) a first channel 512 for conveying bed material. In
The loopseal heat exchanger 10 further comprises a first ash removal channel (211, 421) configured to convey ash out of the first compartment 21 or the second compartment 22. Preferably, the first ash removal channel (211, 421) is configured to convey ash from the bottom of the first compartment 21 or from the bottom of the second compartment 22. This has the effect that ash will not accumulate within the loopseal heat exchanger 10, which improves the heat recovering capacity of the loopseal heat exchanger 10. In the alternative, the first ash removal channel (211, 421) may be arranged in a vertical wall of the loopseal heat exchanger. However, for purposes of emptying the loopseal heat exchanger for maintenance, a lower edge of the first ash removal channel is preferably located at most 50 cm above the bottom of the loopseal heat exchanger 10.
Moreover, the first ash removal channel (211, 421) is arranged at a lower level than the first particle outlet 590. As indicated above, in such an arrangement, the loopseal heat exchanger 10 functions as a sieve separating heavy ash from particulate material. The heavy ash can then be collected from the bottom of the first or the second compartment (21, 22) to the first ash removal channel (211, 421). When the bed material in the loopseal heat exchanger 10 is fluidized, the loopseal heat exchanger 10 furthermore functions as an air sieve, which even more effectively separates the heavy ash from the particulate material. The first ash removal channel (211, 421) may be arranged relative to the first particle outlet 590 such that a top edge of the first ash removal channel (211, 421) is arranged at a lower level than a lower edge of the first particle outlet 590. The term “lower level” refers to a vertical level, i.e. a vertical position.
In an embodiment, a top edge of the first ash removal channel (211, 421) is arranged at a lower level than a lower edge of the first particle outlet 590. In an embodiment, a top edge of the first ash removal channel (211, 421) is arranged at least 50 cm or at least 1 m lower than a lower edge of the first particle outlet 590. In an embodiment, a lower edge of the first particle outlet 590 is arranged at least 1.5 m or at least 2 m above the bottom of the loopseal heat exchanger. Correspondingly, in an embodiment, a lower edge of the first particle outlet 590 is arranged at least 1 m or at least 1.5 m above an upper edge of the first ash removal channel (211, 421).
In an embodiment, the first ash removal channel 211 is configured to let out ash from the first compartment 21. As indicated above, in an embodiment, the first wall 510 extends from the bottom of the second compartment upwards. In such an embodiment, the first wall 510 may hinder the flow of ash from the second compartment 22 to the first compartment 21. Therefore, at least in such an embodiment, the loopseal heat exchanger preferably comprises a second ash removal channel 421 configured to let out ash from the second compartment 22. Preferably the second ash removal channel 421 is configured to let out ash from a bottom of the second compartment 22. The second ash removal channel 421 may be arranged in a vertical wall of the loopseal heat exchanger. In an embodiment, the second ash removal channel 421 is arranged at a lower level than the first particle outlet 590. The second ash removal channel 421 may be arranged relative to the first particle outlet 590 such that a top edge of the second ash removal channel 421 is arranged at a lower level than a lower edge of the first particle outlet 590. As for the vertical distances between the first particle outlet 590 and the second ash removal channel 421, the same distances apply as recited above for the first particle outlet 590 and the first ash removal channel 211. As for the vertical position of the second ash removal channel 421 relative to the bottom of the loopseal heat exchanger, the same distance apply as recited above for the first ash removal channel 211.
Referring to
As indicated in
As indicated above in connection with the first wall 510, depending on the structure of the second wall 520, the ash may not, in all cases, be able to flow from the third compartment 23 to the first compartment 21. Therefore, in an embodiment the loopseal heat exchanger 10 comprises a third ash removal channel 431 configured to let out ash from the third compartment 23. The third ash removal channel 431 may be configured to let out ash from the bottom of the third compartment 23. The third ash removal channel 431 may arranged at a lower level than the first particle outlet 590 in the same sense as discussed above for the first ash removal channel 211. As for the vertical distance between the first particle outlet 590 and the third ash removal channel 431, the same distances apply as recited above for the first particle outlet and the first ash removal channel.
When the ash is removed from the loopseal heat exchanger 10, and as indicated above, the ash in preferably not conveyed into the furnace 50 of the fluidized bed boiler 1. Since the ash is hot, it contains recoverable heat. Thus, in a preferred embodiment, the circulating fluidized bed boiler 1 comprises an ash cooler 600 (
Moreover, preferably the ash cooler 600 is configured to receive bed material only from the loopseal 5 of the fluidized bed boiler 1. Preferably the ash cooler 600 is configured to receive bed material only from loopseal heat exchanger(s) of the fluidized bed boiler 1. Preferably the ash cooler 600 is configured to receive bed material only from that loopseal heat exchanger 10 that comprises the first ash removal channel 211. Moreover, the ash cooler 600 is configured to receive bed material from the loopseal heat exchanger 10 such that the ash is not conveyed via the furnace 50 from the loopseal heat exchanger 10 to the ash cooler 600. The ash cooler 600 may include a heat transfer medium circulation for recovering heat from the ash. The ash cooler 600 may comprise a screw conveyor. The ash cooler 600 may comprise a screw conveyor, wherein the screw conveyor is equipped with a circulation of cooling medium, such a water.
In an embodiment, the system comprises another ash cooler 650 configured receive bottom ash from the furnace 50 and to cool the bottom ash received from the furnace 50. The other ash cooler 650 may include a heat transfer medium circulation for recovering heat from the ash. The other ash cooler 650 may comprise a water-cooled screw conveyor, as indicated above.
To enhance the flow of bed material within the loopseal heat exchanger 10, the loopseal heat exchanger comprises nozzles 900 (see
In an embodiment, some first nozzles 910 of the nozzles 900 are configured to drive ash towards the first ash removal channel 212 by a flow of the fluidizing gas. The first nozzles 910 may be arranged to direct the flow of fluidizing air into a direction. The direction may be e.g. substantially vertical, or the direction may form an angle of at most 60 degrees with the vertical, to fluidize the bed material. To drive ash, the projection of the direction of the flow of fluidizing air onto a horizontal plane has a non-zero length. Moreover the direction of the projection indicates the direction to which the ash is driven. Such a guiding may be obtained e.g. when at least a nozzle 900 is not axially symmetric about a vertical axis. The nozzle may be axially symmetric such that the axis of symmetry is tilted towards the first ash removal channel 212 (see
In an embodiment where the loopseal heat exchanger 10 comprises the second ash removal channel 421, at least some second nozzles 920 of the nozzles 900 are configured to drive ash towards, or mainly towards, the second ash removal channel 421 by a flow of the fluidizing gas. Provided that the loopseal heat exchangers has a second compartment, the second nozzles 920 may be arranged within the second compartment 22. What has been said about the shape and orientation of the first nozzles 910 applies to second nozzles 920 mutatis mutandis.
Moreover, when the loopseal heat exchanger comprises the third ash removal channel 431, at least some third nozzles 930 of the nozzles 900 are preferably configured to drive ash towards the third ash removal channel 431 by a flow of the fluidizing gas. The third nozzles 930 may be arranged within the third compartment 23. What has been said about the shape and orientation of the first nozzles 910 applies to third nozzles 930 mutatis mutandis.
Referring to
Preferably, the third channel 532 and the second particle outlet 542 are configured such that a lower edge of the second particle outlet 542 is located at a higher vertical level than an upper edge of the third channel 532. Because of this difference in the vertical level, in use, a reasonably thick layer of bed material exists within the bypass chamber 200. This layer forms a first gas lock such that the fluidizing gas of the furnace does not flow in the wrong direction. More preferably, the third channel 532 and the second particle outlet 542 are configured such that a lower edge of the second particle outlet 542 is located at least 500 mm, such as from 500 mm to 700 mm, higher than an upper edge of the third channel. This height of the bed material in the first gas lock has been found to be suitable in practical industrial applications.
As for the terms used throughout this description, unless otherwise specified, two different chambers are separated by a wall that extends from the ceiling of both the chambers downwards. In case the ceilings are located at different heights, chambers are separated by a wall that extends from the ceiling of the higher-located chamber downwards to the ceiling of the lower-located chamber. The wall may extend even further downwards. However, as indicated e.g. in
Except for the walls 500, the bypass chamber 200 may be free from heat exchanger tubes. In principle, also a wall 500 or walls of the bypass chamber 200 may be free from heat exchanger tubes. The bypass chamber 200 can be used to bypass the heat exchanger tubes 820 of the second compartment 22. The bypass chamber 200 can be used to bypass the heat exchanger tubes 830 of the third compartment 23. In effect, the bypass chamber 200 may be used to convey bed material through the loopseal heat exchanger 10 by recovering at most only a little heat from the bed material.
As for the flow of bed material through the second compartment 22, referring to
When the loopseal heat exchanger comprises the fifth wall 550 limiting the inlet chamber 100, the fifth wall 550 limits a fifth channel 552 for conveying bed material from the inlet chamber 100 to the feeding chamber 150. As indicated above, the first wall 510 limits the first channel 512 for conveying bed material from the first compartment 21 to the second compartment 22. By arranging the first 512 and the fifth 552 channels such that the first channel 512 is at a higher vertical level than the fifth channel 552, the feeding chamber 150 forms a second gas lock. Also the second gas lock prevents the air of the furnace from flowing in the wrong direction. Therefore, in an embodiment, the first channel 512 and the fifth channel 552 are configured such that a lower edge of the first channel 512 is located higher than an upper edge of the fifth channel 552. In this way, the feeding chamber forms the second gas lock. Preferably, the first channel 512 and the fifth channel 552 are configured such that a lower edge of the first channel is located at least 500 mm, such as from 500 mm to 700 mm, higher than an upper edge of the fifth channel. This height of the bed material in the second gas lock has been found to be suitable in practical industrial applications.
The flow of bed material within the loopseal heat exchanger 10 can be controlled by the degree of fluidization. To control the flow of bed material within the loopseal heat exchanger 10, the loopseal heat exchanger comprises a first group of nozzles 901 configured to fluidize bed material at a first location within the loopseal heat exchanger and second group of nozzles 902 configured to fluidize bed material at a second location within the loopseal heat exchanger, the second location being different from the first location. As is evident, the nozzles 901, 902 of the groups belong to the set of the nozzles 900. Air flow through the first group of nozzles 901 is controllable. Air flow through the second group of nozzles 902 is controllable. Moreover, air flow through also other nozzles 900 may be controllable.
To control the degree of fluidization in at least these two locations independently of each other, the circulating fluidized bed boiler comprises a control unit CPU configured to
To control the flow of bed material within the bypass chamber 200, the loopseal heat exchanger comprises primary nozzles 942 (i.e. a first group of nozzles 901) arranged within the bypass chamber, as indicated in
To control the flow of bed material into the bypass chamber 200, the circulating fluidized bed boiler 1 comprises a control unit CPU configured to control [i] the flow of air through the primary nozzles 942 and [ii] the flow of air through the secondary nozzles 944 independently of the flow of air through the primary nozzles 942. As an example, when the primary nozzles are used to fluidize bed material and the secondary nozzles are not used to fluidize bed material, the easiest path for the bed material is through the bypass chamber. In this case, most of the bed material bypasses the heat exchanger tubes 820 of the second compartment 22. Conversely, when the primary nozzles are not used for fluidization, and the second nozzles are used, the bypass chamber poses strong flow resistance, and most bed material is flown through the second compartment.
The same idea can be used to control how the bed material is divided in between the second and third compartments. By controlling the flow of fluidizing gas through the nozzles, it is possible to affect the flow of the bed material within the loopseal heat exchanger.
As an example, when the second nozzles 920 are used to fluidize bed material and the third nozzles 930 are not used to fluidize bed material, the easiest path for the bed material is through the second compartment 22. In this case, the third compartment 23 is not used for recovering heat from bed material. Conversely, when the third nozzles 930 are used to fluidized bed material and the second nozzles 920 are not used to fluidize bed material, the easiest path for the bed material is through the third compartment 23. In this case, the second compartment 22 is not used for recovering heat from bed material.
In the alternative, a feeding chamber 150 may comprise nozzles for fluidizing the bed material in the feeding chamber 150. The nozzles of the feeding chamber 150 that are closer to the second compartment 22 than to the third compartment may be referred to as nozzles A 954 (see
As is evident, by locally controlling the fluidization, as indicated above, it is possible to affect the division ratios of the bed material. First, as indicated above, by using the primary 942 and secondary nozzles 944, one may control the amount of bed material bypassing the heat exchanger tubes 820, 830 relative to the amount of bed material received in the loopseal heat exchanger 10. Second, as indicated above, by using [i] the second 920 and third 930 nozzles or [ii] the nozzles A 954 and the nozzles B 952, one may control the amount of bed material entering the second compartment 22 relative to the total amount of bed material entering the second 22 and the third 23 compartment.
Also, as indicated in
Typically, the control of bed material flow within the loopseal of
As indicated in
As for the control of bed material flow within the loopseal of
As for the control of bed material flow within the loopseal of
In this way, the embodiment of
Referring to
Referring to
Referring to
The discharge chamber 420 may be referred to as a discharge upleg 420. In the discharge upleg 420, the flow of bed material may be substantially upwards, as indicated in
The fluidizing gas may be conveyed with the bed material to the furnace 50 via the pipeline 15. In the embodiment of
The temperature within a loopseal 5 is typically very high. It has been noticed that if regular heat exchanger tubes 810, 820 are used in the first 21 or second 22 compartment, two problems arise. First, since a regular heat exchanger tube conducts heat well, the temperature of the outer surface of the regular heat exchanger tubes will decrease because of the steam flowing inside the tube. As a result, the temperature of the outer surface of the regular heat exchanger tubes may decrease so much that corrosive compounds (e.g. alkali halides, such as alkali chlorides) may condense on the tubes. This poses corrosion problems. Second, the flow of bed material causes abrasion on the tubes. Moreover, the tubes need to withstand high pressures. Thus, durable heat exchanger tubes for the purpose are very expensive.
Referring to
In an embodiment, at least some of the heat exchanger tubes 820 of the first or second compartment comprise an inner pipe 822 configured to convey heat transfer medium such as water and/or steam, an outer pipe 826 configured to protect the inner heat exchanger tube 824, and some thermally insulating material in between the inner pipe and the outer pipe.
The heat exchanger tubes 820 may comprise at least a straight portion extending in a longitudinal direction of the tube. The inner pipe 822 may comprise at least a straight portion extending in the longitudinal direction of the tube 820. The outer pipe 826 may comprise at least a straight portion extending in the longitudinal direction of the tube 820 coaxially with the straight portion of the inner pipe 822. The inner diameter of the outer pipe 826 may be e.g. at least 1 mm more than the outer diameter of the inner pipe 822. The inner diameter of the outer pipe 826 may be e.g. from 1 mm 10 mm more than the outer diameter of the inner pipe 822. Thus, the thickness of the layer of the thermally insulating material 824 in between the inner pipe 822 and the outer pipe 826 may be e.g. from 0.5 mm to 5 mm, such as from 1 mm to 4 mm, such as from 1 mm to 2 mm.
The walls 500 of the loopseal heat exchanger may comprise heat transfer tubes. In an embodiment, a wall 500 of the walls 500 comprises heat transfer tubes. In an embodiment, also other walls (500, 505, 510, 520, 530, 540, 550, 560) of the loopseal heat exchanger 10 comprise heat transfer tubes. Also a heat transfer tube of a wall 500 may comprise an inner pipe and a coaxial outer pipe, wherein some thermally insulating material is arranged in between the inner and outer pipe. In addition, the heat transfer tubes of the walls wall may be formed of inner pipes and a coaxial outer pipes, wherein some thermally insulating material is arranged in between the inner and outer pipes. What has been said about the structure of heat exchanger tubes (within the second compartment) applies to heat transfer tubes (or the walls).
Referring to
Referring to
As indicated in
Referring to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2016/050760 | 11/1/2016 | WO | 00 |