The present disclosure relates to a cleaning unit used in tobacco industry machines, for removing contaminations from a train of rod-like elements, a tobacco industry machine for producing multi-segment filter rods and a method for cleaning a train of rod-like elements.
Tobacco industry products, such as cigarettes, may comprise segment filters with various filtering materials such as activated charcoal in a form of a loose granulate located between neighboring segments of a solid form. A segment with activated charcoal can be formed by placing the charcoal between the neighboring solid segments, which typically have a form of rod-like elements having filtering properties or rod-like elements having non-filtering properties, for example comprising aromatic capsules. Manufacturers of filters comprising charcoal or other granulate material aim for placement of portions of the loose material such that the segments neighboring a compartment for granulate materials and other segments in the train of segments are not contaminated with this material. Moreover, manufacturers expect that the granulate material does not get in between side edges of a wrapper which are joined with glue. In case of activated charcoal, charcoal particles which got in between the wrapper and the segments, or between surfaces of the wrapper, are easily visible in a final product. Therefore, there is a need to remove particles of material which are on the segments, before wrapping the train of segments with the wrapper.
There are known various methods for removing contaminations.
A U.S. patent U.S. Pat. No. 3,482,488 discloses a device for removing contaminations from rod-like elements by means of a rotating brush. A drawback of this solution is a low cleaning efficiency.
Removing contaminations by means of suction nozzles is known i.a. from a European patent EP2286681B1. However the solution presented therein removes only a portion of contaminations and does not prevent an uncontrolled dislocation of the contaminations.
A PCT application WO2016139198, in the name of the present applicant, discloses suction nozzles arranged on both sides of a moving train of segments.
In case of high production speeds, particles of a granulate material (and more generally: loose material), which were not placed in a compartment between the segments, may rebound from the segments and constructional elements of a machine and move above the moving train of segments in a completely uncontrollable manner. None of the abovementioned documents discloses a solution, which would eliminate or limit this phenomenon.
The aim of the present invention is to provide a device for producing multi-segment filter rods comprising loose material, wherein particles of the material, which are not placed in compartments between solid segments or are lifted from the surface of the segments, are prevented from displacing in the direction of movement of the train of segments, i.e. that they are prevented from displacing between the consecutive assemblies of the device or zones in which consecutive operations of a filter rods production process take place.
There is disclosed a cleaning unit for tobacco industry machines. The tobacco industry machine is configured to process a moving train of rod-like elements separated by compartments and partially wrapped with a wrapper, wherein the compartments are filled with a loose material forming segments of the loose material. The cleaning unit is positioned in the tobacco industry machine in a cleaning zone that is located between: a filling zone for filling the loose material into the compartments between the rod-like elements and a garniture zone for forming the train of the rod-like elements to a continuous filter rod. The cleaning unit is configured to remove contaminations of the loose material from the rod-like elements, the segments of the loose material and the wrapper; The cleaning unit comprises: at least one cleaning element, located in the cleaning zone, for removing the contaminations of the loose material from the rod-like elements; at least one suction element for removing the contaminations of the loose material from the rod-like elements; a shifting mechanism configured to move covering elements to positions in which the covering elements at least partially cover the compartments filled with the loose material between the rod-like elements during the movement of the train in a vicinity of the suction nozzle. The covering elements, at a portion of their track of movement, are configured to move in parallel to the direction of movement of the rod-like elements. The cleaning unit further comprises an outlet partition at an outlet from the cleaning zone for limiting an uncontrolled displacement of contaminations from the cleaning zone to the garniture zone, located above the train of the rod-like elements and having a passage through which the covering elements pass.
The cleaning unit may comprise the inlet partition located at the inlet to the cleaning zone for limiting the uncontrolled displacement of contaminations from the filling zone to the cleaning zone.
The cleaning unit may comprise an end partition located at the inlet of the garniture zone, for limiting the uncontrolled dislocation of the contaminations from the cleaning zone to the garniture zone located above the train of the rod-like elements and having a notch, through which the edge of the wrapper passes.
The cleaning unit may comprise a shield partition having a surface which is in parallel to the direction of movement, located in front of the end partition with respect to the direction of movement, for limiting the uncontrolled dislocation of the contaminations from the cleaning zone on to the rod-like elements of the train.
The cleaning unit may further comprise an initial partition located at the outlet of the filling zone, for limiting the uncontrolled dislocation of the contaminations from the filling zone to the cleaning zone.
At least one partition may be positioned transversally to the direction of movement.
At least one partition may have a form of a flat plate.
At least one partition may have a form or arched shaped plate.
At least one partition may have the main surface directed at an acute angle with respect to the direction of movement.
The covering element may have a thin-walled covering element.
The suction element may have a form of a suction nozzle having longitudinal suction opening.
The cleaning element may be a scraping element in a form of a brush.
The cleaning element may be a scraping element in a form of a compressed air nozzle.
There is also disclosed a machine for tobacco industry for producing multi-segment filter rods comprising: a feeding unit for arranging, in a spaced relationship, rod-like elements in a train on a wrapper placed on a garniture belt; a supplying unit for supplying a loose material into compartments between the rod-like elements; a cleaning unit for removing contaminations of the loose material from the rod-like elements; a garniture unit for wrapping the wrapper around the rod-like elements and the loose material to form a continuous filter rod; a cutting head for cutting the continuous rod into multi-segment filter rods. The cleaning unit may be the unit as described above.
There is also disclosed a method for cleaning a train of rod-like elements during production of filter rods in a tobacco industry machine, wherein the tobacco industry machine is configured to process a moving train of rod-like elements separated by compartments and partially wrapped with a wrapper, wherein the compartments are filled with a loose material forming segments of the loose material. The method comprises removing contaminations of the loose material in a cleaning zone by moving covering elements to positions in which the covering elements at least partially cover the compartments filled with the loose material between the rod-like elements during the movement of the train in a vicinity of a cleaning element, wherein the covering elements in part of their track of movement are moved in parallel to the direction of movement of the rod-like elements. The method comprises limiting uncontrolled displacement of the contaminations from the cleaning zone by providing an outlet partition at an outlet of the cleaning zone, above the train of rod-like elements, the outlet partition comprising a passage, through which the covering elements pass.
By use of the method according to the invention, an uncontrolled displacement of the contaminations from the cleaning zone is limited by application of an outlet partition at an outlet of the cleaning zone, above the train of rod-like elements, comprising a passage, through which the covering elements pass.
The solution according to the invention provides very efficient cleaning of the rod-like elements while maintaining a high degree of filling of the compartments with the loose material.
The present invention is shown by means of example embodiments in a drawing, in which:
The cleaning unit 104, located next to the filling unit 103, is equipped with covering elements 10 mounted on a chain transporter 15, shown in
In the presented solution, above the track of movement of the train ST2, there is located a cleaning element in the presented embodiment having a form of at least one brush 11, 11′, for sweeping the contaminations, in a form of the loose material 102, away from the surface of segments S1, S2. Therefore, the brush 11, 11′ is a contaminations sweeping element. As shown in
The cleaning element may also have a form of a compressed air nozzle, which removes contaminations of the side surface of the elements S1, S2, by blowing them out.
The cleaning element may have a form of an element made of soft plastic covering an edge for removing the contaminations. The plastic cleaning element may be fixed or may be rotatable.
The train ST2 leaving the cleaning zone Z2 is prepared for forming the continuous filter rod CR from the train, which is realized in the garniture zone Z3. In the garniture zone Z3 there is a glue nozzle 13 and guiding elements (not shown in the drawing for clarity, but known from the prior art) for bending the edges of the wrapper in order to join these edges and glue them in order to form a continuous filter rod.
Filling the chamber 105 with the loose material 102 from the pocket 103A may result in that not the whole amount of loose material is transferred to the chamber 105. A portion of particles, which have certain velocity, may rebound from the rod-like elements S1, S2 or from the wrapper 101, and subsequently fall onto the surface of the elements S1, S2, wherein the falling of the particles of the loose material 102 may occur in any location, for example just before gluing of the edges of the wrapper.
Cleaning the contaminations of the loose material in the cleaning unit 104 by means of the cleaning element 11, 11′ and the suction nozzle 12 may result in removal of most of the contaminations. However, there is a risk that some contaminations are lifted above the elements S1, S2 but not received by the suction nozzle 12. Therefore, there is a risk that these contaminations will fall further away on the elements S1, S2 or will get in between the edges of the wrapper which will be glued together with the contamination between these surfaces. In order to eliminate the risk of uncontrollable displacement of the contaminations between the filling unit 103, the cleaning unit 104 and the garniture unit 6, partitions 14, 124, 34, 44, 54 are provided and arranged above the moving train of segments. Due to the fact that the zones of operation of the units may differ from the area occupied by the units themselves, the problem of contaminations displacement may be defined as uncontrollable displacement of the contaminations between the filling zone Z1, the cleaning zone Z2 and the garniture zone Z3 for forming the rod.
In the presented solution there is a significantly high risk of contaminations displacement between the cleaning zone Z2 and the garniture zone Z3, because not all particles of the loose material which are lifted by the cleaning element can be received by the suction nozzle 12. These particles may fall again on the rod-like elements S1, S2. The outlet partition 34, located on the side of the garniture zone Z3 (at the outlet from the cleaning zone Z2), is intended to limit the uncontrolled displacement of the particles of the loose material from the cleaning zone Z2 to the garniture zone Z3. The inlet partition 24 is located on the side of the filling zone Z1 (at the inlet to the cleaning zone Z2) and is intended to limit the uncontrolled displacement of the particles of the material from the filling zone Z1 to the cleaning zone Z2. The outlet partition 34 and the inlet partition 24 may be similar to each other. The outlet partition 34 and the inlet partition 24 may be formed as a single part or as multipart partitions.
Number | Date | Country | Kind |
---|---|---|---|
PL418553 | Sep 2016 | PL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/072035 | 9/2/2017 | WO | 00 |