This invention is related with a coal feeding system which provides vertically feeding of dry pulverized coal and oxygen on concentric separate pipes directly to the upper level of the reactor at entrained flow gasifiers.
Entrained flow gasifiers are the systems which pulverized coal is sprayed and gasified at high temperatures. During the gasification process, the coal ash is melted and taken out from the bottom of the system and produced tar and contaminants are cracked due to the high temperature. The gasification efficiency is quite high (>% 90) due to the small fuel size (˜100 micron)
Coal feeding systems have major importance at the entrained flow gasifiers. One of the coal feeding methods in pressurized entrained flow gasifiers is mixing the coal with some amount of water (slurry) and feeding it to the reactor with a high pressure shiny pump, while another one is feeding the coal as fluidized state with a carrier gas at the pressurized bunkers. In atmospheric gasifiers coal is generally transferred to the reactor with a pneumatic transfer method. As well as mixed feeding of coal and oxygen, separate feeding is also used in the existing technique.
Current known situation of the technique states a pulverized coal burner in a US patent document numbered as U.S. Pat. No. 8,196,531.
The US patent document numbered as U.S. Pat. No. 5,451,034 is about a method which is used for spraying pulverized coal and gas oxidant in the burner and the device developed for this purpose.
A US patent numbered as U.S. Pat. No. 4,903,901 states a device and method used in transferring of solid particles, especially pulverized coal, with a controlled flow.
A US patent numbered as U.S. Pat. No. 6,319,458 states a device used in spraying the pulverized coal.
A Canadian patent document numbered as CA2695025 states a gasification reactor and pulverized coal feeding method for this reactor. At this document it is stated that pulverized coal is fed to the reactor with nitrogen as a carrier gas. There are two separate nitrogen flow sources. The coal mass flow rate can be adjusted with the nitrogen flow rate. The gasification oxidant is also provided from pulverized coal feeder and the reactor temperature can be controlled by adjusting the oxidant and pulverized coal carrying nitrogen flow.
The main aim of this invention is separately spraying the pulverized coal and oxygen directly to the upper level of the reactor through a vertically oriented device.
The main aim of this device is preventing coal and oxygen from contacting directly until the reactor and eliminating the risks of direct contact of the coal and oxygen together by transferring them separately until the reactor volume.
Another aim of this device is the reducing the maintenance caused by erosion by eliminating the elbows, moving parts etc.
“A Coal Feeding System”, which is built in order to achieve this invention's purpose, is shown in attached figures. These figures are labeled as follows:
Each part of the system is numbered and labeled as follows:
A coal feeding system (1) comprising;
at least one top intake (2) for nitrogen/air supply through the coal feeding system (1),
at least one side intake (3) for nitrogen/air supply through the coal feeding system (1),
at least one air chamber (4) for the storage of air/nitrogen supplied from side intake (3),
at least one oxygen supply port (5) for supplying the oxygen through the coal feeding system (1),
at least one ultrasonic sensor port (6) for observation of coal flow by an ultrasonic sensor,
at least one inner concentric pipe (7) for the flow of the air or nitrogen supplied from the top intake (2) and the side intake (3) through the air chamber and inner holes respectively and the coal supplied from the screw feeder (B) to the reactor (R),
at least one outer concentric pipe (8) for the flow of the oxygen, supplied from the oxygen supply port (5) to the reactor (R) (
The coal feeding system in accordance with the present invention (1) is a system (1) which has a spraying methodology based on ejector principle.
The system (1) generally operates with a coal bunker (K) which has a rectangular section and sloped 60° for smooth feeding on one side, a screw feeder (B) which is used for adjusting the coal feeding rate, and a reactor (R) where the high temperature (˜1500° C.) gasification takes place.
Top intake (2) is used for air/nitrogen supply from top of the coal feeding system (1) through the reactor (R).
Side intake (3) is used for air/nitrogen supply from side of the coal feeding system through the reactor (R).
Air supply chamber (4) supplies air/nitrogen to the inner concentric pipe (7) taken from the side intake (3), through preferentially three holes which increase air nitrogen velocity.
Oxygen feeding port (5) is used for feeding of the oxygen to the coal feeding system (1).
Ultrasonic sensor port (6) is used for the coal flow monitoring at the inner concentric pipe (7) with the ultrasonic sensor at this port.
Inner concentric pipe (7) is the pipe which is surrounded by outer concentric pipe (8), is used for transferring the coal from the screw feeder (B) and the air/nitrogen from the top intake (2), the side intake (3), and through air supply chamber (4) holes to the reactor (R).
Outer concentric pipe (8) is a pipe used for transferring oxygen from the oxygen port (5) to the reactor (R) and preferentially produced with a 15° slope through the inner concentric pipe (7) at the reactor (R) side.
The coal feeding system of the invention (1) provides coal feeding for an entrained flow gasification system. The coal taken from the coal bunker (K) is adjusted to a prespecified mass flow rate with the screw feeder (B) by adjusting rpm of the screw and transferred to the coal feeding system (1). The air/nitrogen provided with a pressure of 5-7 bars through the side intake (3) creates a vacuum at the entrance of the coal feeding system (1). This vacuum is broken by the air/nitrogen which is provided about five times of the side intake (3) mass flow rate from the top intake (2) to the inner concentric pipe (7) which is welded at the outer shell of the screw feeder (B) and a nitrogen, column is created. Due to the broken vacuum, uncontrolled coal suction is prevented and only the desired amount of coal, adjusted by the screw feeder (B), is released at this nitrogen column for spraying. The coal particles dragged by nitrogen streamline are sprayed to the reactor (R). The gasification oxygen is provided from the oxygen port (5) through the outer concentric pipe (8) without mixing the coal. Since the outer concentric pipe (8) which the oxygen passes through and the inner concentric pipe (7) which the coal passes through are two seperate pipes, the coal and the oxygen meets at the very entrance of the reactor (R) and this prevents the risks brought by the mixing of pulverized coal and oxygen.
Within the coal feeding system (1) of the subject of the invention, the air/nitrogen provided from the side intake (3) fills the air supply chamber (4) and is transferred from here to inner concentric pipe (7) through the holes which have milimetric dimensions. The holes are connecting the air supply chamber (4) to the inner concentric pipe (7) and the air/nitrogen gains velocity at these holes. These holes have milimetric dimensions and have an angle about −60° with the horizontal plane
The flow of nitrogen/air to the end of the inner concentric pipe (7) having this angled high speed of air/nitrogen creates a vacuum at the top entrance of the coal feeding system (1). A nitrogen/air flow starts through this vacuum from the top intake (2) which creates a nitrogen/air column and pulverized particles are entrained and sprayed with this column of nitrogen/air created in the inner concentric pipe (7) to the reactor (R). The oxygen necessary for gasification is provided from the oxygen port (5). After initial entrance of the system, oxygen then passes to outer concentric pipe (8) and flows through the reactor where oxygen, at the exit of the outer concentric pipe (8), located in the reactor (R) meets with the oxygen/air and pulverized coal particles coming from the inner concentric pipe (7). At the reactor side tip of the coal feeding system (1) the oxygen and the coal and air/nitrogen mixture are came in contact and the gasification reactions start inside the reactor. This seperate feeding of coal particles and the oxygen prevents the flashback risks. The oxygen flows from the outer concentric pipe (8) also cools down the inner concentric pipe and materials inside which minimizes the effect of temperature and thereby also contributes to the security of the coal feeding system (1). Coal flow monitoring is provided by an ultrasonic sensor mounted to the ultrasonic sensor port included to the coal feeding system (6).
Various kinds of applications can be developed with the concept of this invention (1), and cannot be bounded with the examples given in this document.
Number | Date | Country | Kind |
---|---|---|---|
2014/07552 | Jun 2014 | TR | national |
This application is the national phase entry of International Application No. PCT/IB2015/054834, filed on Jun. 26, 2015, which is based upon and claims priority to Turkish Application No. TR2014/07552, tiled on Jun. 27, 2014, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/054834 | 6/26/2015 | WO | 00 |