A Computer Modeling Approach to Create an Antifungal to Improve the Treatment of

Information

  • Research Project
  • 8411022
  • ApplicationId
    8411022
  • Core Project Number
    R43NS079204
  • Full Project Number
    1R43NS079204-01A1
  • Serial Number
    079204
  • FOA Number
    PA-11-096
  • Sub Project Id
  • Project Start Date
    8/1/2012 - 12 years ago
  • Project End Date
    7/31/2014 - 10 years ago
  • Program Officer Name
    FERTIG, STEPHANIE
  • Budget Start Date
    8/1/2012 - 12 years ago
  • Budget End Date
    7/31/2013 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    7/3/2012 - 12 years ago

A Computer Modeling Approach to Create an Antifungal to Improve the Treatment of

DESCRIPTION (provided by applicant): Cryptococcal meningitis (CM) continues to be a significant cause of mortality among HIV positive individuals, and a major world-wide health concern in developing regions including Africa and Southeast Asia. The estimated mortality rate is 20% for infected HIV positive individuals in North America, despite access to good healthcare. In sub-Saharan Africa, CM causes an estimated 530,000 deaths per year among HIV positive patients compared with 350,000 for tuberculosis in the general population. For decades, Amphotericin B (AmB) has been the mainstay therapeutic for CM. However, it often fails to cure or eradicate cryptococcal infections. AmB causes severe toxicities including nephrotoxicity and leukopenia, and is not available in an oral formulation. In this proposal, we plan to use homology modeling of fungal calcineurin and newly developed chemistry to discover an oral, well tolerated fungicidal drug with low toxicity to use in the treatment of CM. Amino acid sequence changes between human and fungal proteins will be exploited to modify the immunosuppressive molecules FK506 and ascomycin to create a non-toxic, new chemical entity that targets fungal calcineurin. This new therapeutic will have the potential to be employed as a single agent or in combination with AmB or orally available triazoles to improve survival rates and compliance with treatment regimens. Our Aims are: 1. Perform computational modeling of the ternary complex of Cryptococcal neoformans calcineurin/FKBP12/FK506 to design non-toxic small molecule inhibitors of C. neoformans calcineurin. 2. Synthesize a first generation library of 30 non-immunosuppressive fungal calcineurin inhibitors using a convergent approach; successive generations will be guided by empirical data from Aim 3. 3. Screen and select compounds for antifungal activity against strains of C. neoformans and emerging cryptococcal species, pk/pd properties, and iterate library based on observed SAR. PUBLIC HEALTH RELEVANCE: Cryptococcal meningitis (CM) continues to be a significant cause of mortality among HIV positive individuals, and a major world-wide health concern in developing regions including Africa and Southeast Asia where mortality rates reach 70%. There is a clear need for new, cost effective therapeutics which will enable patient compliance with treatment regimens. Amplyx proposes to create a new class of antifungal drugs with fungicidal activity against Cryptococcus which will simplify and reduce the duration of treatment regimens, and lower the mortality rates due to cryptococcosis.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R43
  • Administering IC
    NS
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    349999
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
  • Funding ICs
    NINDS:349999\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ADDT
  • Study Section Name
    AIDS Discovery and Development of Therapeutics Study Section
  • Organization Name
    AMPLYX PHARMACEUTICALS, INC.
  • Organization Department
  • Organization DUNS
    780230004
  • Organization City
    SAN DIEGO
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    92121
  • Organization District
    UNITED STATES