The present invention relates generally to patient imaging. More particularly, the invention relates to real-time biofeedback to a patient for self-positioning and 3D surface imaging during radiotherapy treatment.
Room-mounted stereoscopic surface imaging solutions for imaging, cancer radiotherapy and other procedures exist. These are expensive, require room modifications for mounting, and have challenges when imaging patients in closed bore imaging and/or radiotherapy systems, e.g. CT, MRI and PET scanners, Halcyon, TomoTherapy. There are also challenges with room-mounted systems where the gantry can obscure the view of the camera system. The increased distance between the cameras and the patients also limits the achievable accuracy and precision of the system.
Furthermore, many patients undergo a battery of exhaustive treatments involving highly restrictive and uncomfortable adjunct equipment to immobilize the patient's position. E.g. 74% of head and neck cancer patients receive radiotherapy, the majority of which require a facemask to pin their head to the treatment couch. The limitations of current radiotherapy treatments require the patient to be completely still during treatment delivery thus necessitating the uncomfortable and claustrophobic immobilization equipment. A technology that adapts to the patient would negate the need for these uncomfortable adjunct immobilization devices in addition to increasing treatment efficiency as current immobilization devices are time-consuming and cumbersome to setup. Facemasks also add build-up material which increases the radiation dose to the patient's skin, increasing the likelihood of toxicities, therefore a further benefit of removing the mask and similar devices is improved safety and outcomes for the patient.
To address the needs in the art, a patient-guided surface stereoscopic imaging and biofeedback system that includes a patient couch mounting system, an array of at least two imaging sensors, a viewing screen configured to display images from the imaging sensors, a controller configured to control the imaging sensors and the viewing screen, where the patient couch mounting system is configured to position the imaging sensors for imaging a patient under test on a patient couch from multiple viewing angles, wherein the patient couch mounting system is fixedly attachable to the patient couch, where the viewing screen is disposed in a position that is viewable by the subject under test on the patient couch during the sensor imaging, where the imaging sensors, the viewing screen, and the controller are configured to output to a user 3D surface information of the patient under test, extrapolated 2D patient under test position information, and 1D patient under test position information, where the controller is configured to control the viewing screen to display the images from the imaging sensors, where the viewing screen further displays patient position boundary markers, where the patient position boundary markers are configured to overlay the displayed images on the viewing screen to provide biofeedback to a patient under test during radiotherapy treatment.
According to one aspect of the invention, the biofeedback informs the patient under test of a correct position to adjust to and to maintain.
In another aspect of the invention, the biofeedback system includes a gamified interface, an augmented reality interface, or a gamified interface and an augmented reality interface for visual biofeedback.
In a further aspect of the invention, the imaging sensors can include a camera, an infra-red imager, or an ultrasound imager, where the sensors are configured to operate independently or simultaneously.
According to one aspect of the invention, the imaging sensors are connected to the viewing screen, or separated from the viewing screen.
In yet another aspect of the invention, the imaging sensors are positioned over any region of the patient couch by the patient couch mounting system.
In another aspect of the invention, the imaging sensors and the viewing screen comprise a wireless connectivity, or a wired connectivity.
According to a further aspect of the invention, the patient couch mounting system is detachably mounted to the patient couch.
In one aspect of the invention, the patient-guided surface stereoscopic imaging and biofeedback system is integrated with a gating interface of a cancer therapy system.
In a further aspect of the invention, the patient-guided surface stereoscopic imaging and biofeedback system is compatible with photon therapy, or compatible with proton therapy.
In yet another aspect of the invention, the patient-guided surface stereoscopic imaging and biofeedback system is compatible with the controllable axes of a linear accelerator can include multileaf collimator positions, couch positions, couch angles, collimator angles, or gantry angles.
In a further aspect of the invention, the patient-guided surface stereoscopic imaging and biofeedback system is MRI compatible.
According to one aspect of the invention, the positioning of the imaging sensors or the viewing screen include automated or manual positioning.
In another aspect, the invention further includes collision detection for patient safety.
The current invention provides a couch-mounted stereoscopic surface imaging and biofeedback system.
In a further aspect of the invention, the imaging sensors can include a camera, an infra-red imager, or an ultrasound imager, where the sensors are configured to operate independently or simultaneously.
In one aspect of the invention, the imaging sensors are positioned over any region of the patient couch by the patient couch mounting system. Further, the positioning of the imaging sensors or the viewing screen include automated or manual positioning.
According to a further aspect of the invention, the patient couch mounting system is detachably mounted to the patient couch.
One embodiment of the invention is shown
In one embodiment, a patient is positioned under the feedback viewing screen showing an ideal position outline on the display. The patient matches their own image to the ideal position outline on the feedback viewing screen to achieve the required patient positioning for treatment without the need for an immobilization device. In one embodiment, the biofeedback system includes a gamified interface, where
According to the invention, regions can be selected on the 3D surface to extract specific 3D, 2D, or 1D surface position and motion information.
In a further aspect of the invention, the patient-guided surface stereoscopic imaging and biofeedback system is MRI compatible.
Mounting the system to the couch itself negates complications arising from the relative motion between the couch and conventional wall/ceiling-mounted devices, in addition to being more proximal to the patient enabling more precise measurements of the patient surface. Providing biofeedback to the patient provides a motion-management system to adapt to the patient's head and body position negating the need for the uncomfortable and potentially hazardous immobilization equipment.
The current invention has treatment applications that include brain, head and neck, breast, lung, thoracic, abdominal and pelvic medical imaging and radiotherapy procedures, including both photon and particle therapy applications.
The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art. All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/077685 | 10/11/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62570817 | Oct 2017 | US |