The present invention relates to a cylinder with a position feedback sensor developed in connection with hydraulic cylinders, particularly of the type used in steering cylinders in power steering systems for vehicles. However, features of the invention are also relevant to pneumatic cylinders and other industrial applications.
The basic principles of a hydraulic cylinder are well known in the prior art; for example, as illustrated by
Position sensing of a piston rod P is critical in applications where precise location of the rod is required to be controlled, such as in steering applications (e.g. drive-by-wire or fly-by-wire). The Intellinder system achieves these precision goals, however, it is possible that the piston rod assembly and markings can be damaged, worn away or obscured by particulate which will affect position feedback capabilities, leading to reduced performance.
Other prior art examples with similar basic operation are found in US2013/0312601, WO00/77472 and WO2006/066161. These devices all feature a piston rod with markings for location control, however, as in prior art
The present invention seeks to provide a cylinder assembly with a position feedback sensor that mitigates some of the problems identified with conventional designs where position feedback is desirable.
In one broad aspect of the invention there is provided a cylinder, e.g. a hydraulic cylinder, according to claim 1. Particularly, all of the markings made to a piston rod and/or piston for the purposes of position feedback are maintained within the cylinder barrel at all times during operation, i.e. even when at a maximal extension of the piston rod, the markings, or a substantive portion of the markings used for position feedback, are not exposed outside of the barrel/cylinder wall. A sensor mounted on or through the cylinder wall is then able to monitor/sense the required position feedback information from the piston rod for communication to a control system. Enclosing the piston rod carrying the markings entirely within a cylinder barrel provides protection from the external environment, e.g. dust/dirt/impact, and removes the requirement for load bearing materials to be in direct contact with the piston rod. Potentially a cylinder according to the invention also reduces system space requirements, complexity and component count while increasing steering angle potential.
The markings can be retained within the cylinder barrel by virtue of the extent/freedom of movement of the piston rod. In other words, in practice, movement of the piston rod is limited by a member abutting against the piston (ring or head) but this can take several different configurations still falling within the scope of the invention.
The general principles of the invention are applicable to many cylinder types and applications.
The general operation of a cylinder acted on by fluid pressure is well known and will not be explained in detail herein. Furthermore, the operating fluid of the cylinder is not limited by the invention, i.e. principles of the invention could be applied to both hydraulic and pneumatic cylinder systems.
Piston rod 12 is arranged for sliding movement by virtue of gland guide rings and seals 14A/14B which make cylinder barrel 11 oil tight to the external environment. Furthermore, pistons 15A/15B assist in locating piston rod 12 in its coaxial position while also providing a surface against which fluid directed into/out of the cylinder barrel 11 can act to cause movement of the piston rod 12. Barrel 11 is effectively divided into five chambers 16A, 16B, 16C, 16D and 16E by virtue of the multi-piston configuration illustrated.
It will be apparent that, according to
By contrast,
In the illustrated embodiment a mid-barrel gland assembly 17A/17B, either side of the sensor position (effectively creating a fixed central chamber 16C), is provided to isolate the delicate optical sensing head H of sensor S from conditions within the barrel. As mentioned previously, sensor S is preferably of the Intellinder™ type supplied by Parker-Hannifin, but alternative systems may be available which are capable of monitoring a series of markings for the purposes of position feedback.
According to a preferred form of the invention, the centre portion 12C of piston rod 12 is provided with markings M that are intended to be monitored/read by sensor S for feedback of position information to a control means. The appearance of these markings (M) is likely to take the form as illustrated by
In the illustrated form, the maximum “stroke” of the piston rod 12 relative to the barrel 11 is defined by the freedom of movement of a piston 15 (A & B) and where it can abut against either gland assembly 14 or a mid-barrel gland assembly 17. There may be alternative embodiments which control the freedom of movement of the piston/piston rod and achieve the advantage of the invention, namely a relatively central mounting position of sensor S that enables markings M on rod portion 12C to be retained entirely within the barrel, without the influence of external factors.
It may be possible to present a simplified form of cylinder where a single (e.g. extra wide) piston, that may have the markings thereon, is mounted on a rod extending from both ends. The widened piston markings would be in communication with the sensor.
Many components used in the cylinder of the invention, such as O-rings and the fluid delivery system are well known to those skilled in the art and have not been specified. Likewise, manufacturing techniques and materials for implementing the invention are well known in the art.
Number | Date | Country | Kind |
---|---|---|---|
1422236.8 | Dec 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/053809 | 12/11/2015 | WO | 00 |