The invention finds application in energy installations such as a piezoelectric reactor of renewable energy under conditions of variable hydrostatic pressure.
Tidal and wave generators of energy are known, which derive it from the fluctuating change in the level of water basins. Also known are piezoelectric measuring devices and energy collectors in the conditions of variable pressure applied to them (for example, from pedestrian or car traffic, from variable acoustic pressure, and others). Also, water and mercury barometers are known, which include hydro-chambers with a free surface located horizontally and a vertical part located in a tube with a closed upper end.
The task of the present invention is to provide a device that serves as a piezoelectric reactor of renewable energy in the conditions of variable hydrostatic pressure in energy installations.
The task is achieved by means of a device that consists of the following elements:
During its operation, the “liquid plate” (3) is exposed to the influence of variable atmospheric pressure, which causes synchronous fluctuations in the height of the liquid (2) in the “liquid column” (4), accompanied by the corresponding contraction or expansion of the vacuum volume (6). In turn, this causes fluctuations in the hydrostatic pressure throughout the volume of the “liquid plate” (3), applied unilaterally to the single-sided piezoelectric collectors (7) and bilaterally to the double-sided piezoelectric collectors (8). As a result, the collectors (7) and (8) generate piezoelectric energy, which they transmit through the electrical network (9) to one or more storage devices (10), from which this energy can subsequently be withdrawn. This energy generation process continues as long as the “liquid plate” (3) remains exposed to the changing atmospheric pressure.
In its action, the motor-oscillating mechanism (11), drawing energy from the electrical network (9) or from the battery devices (10), begins to rhythmically move the tube (5) up and down, which causes synchronous fluctuations in the height of the liquid (2) in the “liquid column” (4). On the upward stroke of the motor oscillating mechanism (11), the valve (12) initially remains closed under the pressure from above of the atmospheric pressure and the internal suction downwards of the liquid (2) which rises in the “liquid column” (4) under the pressure of the atmospheric pressure on the surface of the “liquid plate” (3). Then, when the specified length is reached, the flexible connection (14) is stretched, causing tension on the trigger (13) and causing the valve (12) to open. In this case, the liquid (2) in the “liquid column” (4) remains unsupported and drops sharply from the level at the upper end of the “liquid column” (4) to the level of the surface of the “liquid plate” (3). On the next downward stroke of the motor oscillating mechanism (11), the tube (5) is immersed back into the liquid (2) and the flexible connection (14) is released, and the valve (12) remains open under the pressure of the air from the inside, forced out of the liquid (2), which enters back into the “liquid column”. This mechanical oscillatory process induces a series of high-frequency shock oscillations in the hydrostatic pressure throughout the volume of the “liquid plate” (3), according to the so-called Pascal's Second Law, also called the Steven-Pascal Law, first demonstrated by Blaise Pascal's experiment in 1646, and in a large number of subsequent demonstrations. This alternating pressure is applied unilaterally to the single-sided piezoelectric collectors (7) and bilaterally to the double-sided piezoelectric collectors (8). As a result, the collectors (7) and (8) generate piezoelectric energy, which they transmit through the electrical network (9) to the storage devices (10), from which this energy can subsequently be withdrawn. This process of energy generation continues as the motor oscillating mechanism creates fluctuations in the height of the “liquid column” (4).
The invention has application in energy installations such as a piezoelectric reactor of renewable energy in conditions of variable hydrostatic pressure. At the same time, there is the possibility of a very high energy performance, provided by the admissible unlimited large ratio between the volumes of the “liquid plate” and the “liquid column”, and the admissible unlimited large number and area of the piezoelectric collectors that can be added to same “liquid column”.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/BG2020/000015 | 4/7/2020 | WO |