The invention will be more readily understood in view of the following description when accompanied by the below figures and wherein like reference numerals represent like elements:
In one example, a direct digital synthesis circuit includes a plurality of current sources, an output circuit, and a logical multiplier circuit. The output circuit provides a synthesized waveform output and includes a first and second branch. The logical multiplier circuit is operatively coupled to the plurality of current sources and to the output circuit. The logical multiplier circuit is operative to receive a plurality of signals. The logical multiplier circuit is also operative to selectively increase a first current flow through the first branch by a determined magnitude and decrease a second current flow through the second branch by the determined magnitude based on the plurality of signals. The synthesized waveform is based on the first and second currents.
In one example, the first branch includes a first resistive element operatively coupled to the logical multiplier circuit. The second branch includes a second resistive element operatively coupled to the logical multiplier circuit.
In one example, the output circuit includes a resistive element operatively coupled between the first and second branches. The first branch includes a first current source operatively coupled to the logical multiplier circuit and to the resistive element. The second branch includes a second current source operatively coupled to the logical multiplier circuit and to the resistive element.
In one example, the logical multiplier circuit includes a plurality of logical multiplication cells, such as an initial cell and a next cell, that each include a plurality of metal oxide semiconductor field effect transistor (MOSFET) logical multiplication stages. The synthesized waveform has up to the 4N-2 harmonic suppressed. It will also be recognized that some higher harmonics may also be suppressed.
In one example, the plurality of current sources are operative to receive a modulating signal. The determined magnitude is based on the modulating signal.
In one example, the plurality of MOSFET logical multiplication stages comprise a first, second, and third MOSFET. The first MOSFET includes a first terminal operatively coupled to the output circuit. The second MOSFET includes a second terminal operatively coupled to the output circuit. The third MOSFET includes a third terminal operatively coupled to at least one of the plurality of current sources and a fourth terminal operatively coupled to a fifth terminal of the first MOSFET and to a sixth terminal of the second MOSFET.
In one example, an integrated circuit includes a subcarrier oscillator circuit, a control signal generator, and the direct digital synthesis circuit. The subcarrier oscillator circuit is operative to generate a subcarrier frequency. The control signal generator is operative to receive the subcarrier frequency and generate the plurality of signals based thereon.
In one example, the integrated circuit includes a radio frequency mixer that is operative to generate a radio frequency signal based on the synthesized waveform.
In one example, the subcarrier oscillator is operative to receive a frequency modulating signal and generate the subcarrier frequency based thereon.
In one example, a modulation system includes an input circuit, and a modulation circuit. The input circuit is operative to generate a baseband signal. The modulation circuit includes a baseband circuit, the subcarrier oscillator, the control signal generator, and the direct digital synthesis circuit. The baseband circuit is operative to receive the baseband signal and generate the modulating signal based thereon.
As used herein, the term circuit and/or device can include an electronic circuit, one or more processors (e.g., shared, dedicated, or group of processors such as but not limited to microprocessors, DSPs, or central processing units) and memory that execute one or more software or firmware programs, a combinational logic circuit, an ASIC, and/or other suitable components that provide the described functionality.
Referring now to
The modulation circuit 104 may be operative to receive the baseband signal 107 and generate a modulated signal 109 based thereon. The modulated signal 109 is of a type that is compatible with the output device 106, such as an analog TV or TV receiver. For example, if the output device 106 is capable of receiving a frequency modulated (FM) signal, the modulation circuit 104 may receive the baseband signal 107 and generate an FM modulated signal. The modulation circuit 104 may include a direct digital synthesis circuit 108. The direct digital synthesis circuit 108 may be operative to suppress harmonics of subcarriers that include audio and/or video information, which are typically included in the modulated signal 109. Suppressing harmonics in subcarriers may effectively reduce inference with adjacent frequency bands or channels.
The output device 106 may be operative to receive the modulated signal 109 and generate an audio and/or video output based thereon. The output device 106 may be any suitable device capable of generating an audio and/or video output. Exemplary output devices 106 include, but are not limited to, a television, a radio, or any other suitable device.
Referring now to
The filter 156 may be operative to receive the synthesized waveform 164 and provide a filtered synthesized waveform 166 with additional harmonics suppressed. For example, if the first nine harmonics are suppressed in the synthesized waveform 164, the filter 156 may be operative to filter additional harmonics greater than the first nine harmonics. The mixer 158 may be operative to receive the filtered synthesized waveform 166 and generate the modulated signal 109 based thereon. Although, in this example, the mixer 158 generates the modulated signal 109 based the filtered synthesized waveform 166, skilled artisans will appreciate that the mixer 158 may generate the modulated signal 109 based on the synthesized waveform 164.
Referring now to
The output circuit 200 is operative to provide an output for the synthesized waveform 164. The output circuit 200 may include a first and second branch 206, 208. The first and second branches 206, 208 are operative to work in conjunction in order to provide the synthesized waveform 164. More specifically, the first and second branches 206, 208 are operative to provide a first and second current I3, I4 based on control signals 1, 2, . . . n. When the first current I3 is increased by a determined magnitude, the second current I4 is decreased by the same determined magnitude and vice versa.
The current source circuit 204 may be operative to receive a bias signal 209. The determined magnitude may be based on the bias signal 209 received by the current source circuit 204. In some embodiments, the bias signal 209 may be the amplitude modulating signal 162. In other embodiments, where the modulating signal is the frequency modulating signal 163, the bias signal 209 may be a constant value. The current source circuit 204 may include a plurality of current sources 210, 211, . . . , 212 operative to provide current. The logical multiplier circuit 202 may be operative to receive the control signals 1, 2 . . . , N and selectively steer current through the first and second branches 206, 208. More specifically, the logical multiplier circuit 202 may include a plurality logical multiplication cells 213, 214, . . . , 215. Logical multiplier cell 213 may be referred to as an initial cell whereas logical multiplier cells 214, . . . , 215 may be referred to as next cells. The logical multiplication cells 213, 214, . . . , 215 are operative to multiply current provided by the current source circuit 204 by a 1 or 0 based on signals 1, 2, . . . , n. In this manner, each logical multiplication cell 213, 214, . . . , 215 acts as a plurality of switches and the logical multiplication cells 213, 214, . . . , 215 act collectively to steer the current provided by the current source circuit 204 between the first and second branch 206, 208. For example, the first current I3 may be steered through the first branch 206 and the second current I4 may be steered through the second branch 208. When the logical multiplication cells 213, 214, . . . , 215 collectively act to increase (or decrease) the first current I3 by the determined magnitude, the second current I4 is decreased (or increased) by the same determined magnitude. The synthesized waveform 164 may be based on a combination or summation of the first and second currents I3, I4.
The harmonics suppressed in the synthesized waveform 164 may be based on the number of logical multiplication cells 213, 214, . . . , 215. For example, each of the logical multiplication cells 213, 214, . . . , 215 may be operative to include a unique weighted current flow, which may be determined from a system of linear Fourier transform equations. A summation of the weighted currents from N logical multiplication cells 213, 214, . . . , 215 may provide suppression of up to the 4N-2 harmonic in the synthesized waveform 164. Thus, if it is desirable to suppress the sixth harmonic from the synthesized waveform 164, the logical multiplication circuit 202 would require two logical multiplication cells.
If it is desired to suppress more harmonics, the logic multiplication cells 213, 214, . . . , 215, current sources 210, 211, . . . , 212, and control signals 1, 2, . . . , N can be expanded accordingly. For example, for every next logical multiplication cell 214, . . . , 215 added, an additional two current sources may be added along with two additional control signals. It will be recognized that adding the additional control signals would require a reconfiguration of the control signals 1, 2, . . . , N and the current supplied by the current sources 210, 211, . . . , 212. The equations, listed below, can be used to determine the value of the current supplied by the current sources 210, 211, . . . , 212 and the shape of the control signals 1, 2, . . . , n.
The control signals for the initial logical multiplier cell 213 may be represented with the following equations:
where c0 (t) is the first control signal for the initial logical multiplier cell 213, c′0 (t) is the second control signal for the initial logical multiplier cell 213, and T is the period of the subcarrier frequency.
The control signals c0(t) and c1(t) may control the initial logical multiplier cell 213 to generate an initial waveform represented by the following equation:
for odd values of n
where fo(t) is the initial waveform, Ao is the amplitude of the initial waveform, and T is the period of the subcarrier frequency.
The control signals for each next logical multiplier cell 214, . . . , 215 may be represented with the following equation:
where ci(t) and c′i(t) represents the control signals for the next logical multiplication cells 214, . . . , 215, T is the period of the subcarrier frequency, and wi is the width of the rectangular wave pulses.
The control signals ci(t) and c′i(t) may control each next logical multiplier cell 214, . . . , 215 to generate next waveforms represented by the following equation:
where fi(t)=0 for all even n and fi(t) represents each next waveform, Ai is the amplitude if each next waveform, T is the period of the subcarrier frequency, and wi is the width of each next waveform.
If there are N-1 widths, wi, for each next multiplier cell 214, . . . , 215, the widths may be represented with the following equation:
where N is the total number of logical multiplication cells 213, 214, . . . , 215 and T is the period of the subcarrier frequency.
The initial fo(t) and next fi(t) may be combined to form the synthesized waveform 164, which may be represented by the following equation:
for n odd
where f(t) is the synthesized waveform 164, Ao is the amplitude of the initial waveform, Ai is the amplitude if each next waveform, and T is the period of the subcarrier frequency.
Since only odd harmonics occur in the synthesized waveform 164, the amplitude for each odd harmonic may be represented with the following equation:
where A(n) is the amplitude of each odd harmonic, Ao is the amplitude of the initial waveform, Ai is the amplitude of each next waveform, and N is the total number of logical multiplication cells 213, 214, . . . , 215.
The relative amplitudes of the current sources 210, 211, . . . , 212 may be determined by setting the amplitudes of the harmonics, A(n), to a desired value and solving for A0 through AN-1 from the following linear system:
where A(n) is the amplitude for each harmonic, A0 is the amplitude for the initial waveform, AN-1 is the amplitude for each next waveform, and the gi(n) are scaling factors for the relative contribution to the nth harmonic amplitude from the ith logical multiplication cell.
For example, if suppression of harmonics above the first harmonic is desired, A(1) may be set to 1 and A(3) to A(2N-1) may be set to 0. While the above linear system only specifies harmonic amplitudes to the A(2N-1) harmonic, skilled artisans will appreciate that all harmonic amplitudes through A(4N-2) may be suppressed. It will also be recognized that some higher harmonics may also be suppressed.
The scaling factors for the relative contribution to the nth harmonic amplitude from the ith logical multiplication cell may be represented with the following equations:
where g0(n) is the scaling factor for the first logical multiplication cell, and the gi(n) are the scaling factors for the next logical multiplication cells.
The current source values may be determined based on the amplitudes of the waveforms Ao, the amplitude of the initial waveform, and Ai, the amplitudes of each next waveform. For example, if there are three current sources, a first current source may provide current I1 and other current sources may provide current I2. The values of currents I1 and I2 may be determined with the following equations:
Referring now to
Resistance values for resistive elements 201 and 203 should be approximately equivalent. In some embodiments, the resistance values of resistive elements 201 and 203 are approximately 750 Ohms when Vs+ and Vs− are set to 1.8 Volts and 0 Volts, respectively. As previously discussed, during operation the first and second branches 206, 208 are operative to provide the first and second currents I3, I4 based on control signals 1, 2, 3, 4. The first and second currents I3, I4 act to generate a voltage output, Vout, at output terminals 220 and 222, which is a voltage representation of the synthesized waveform 164.
In this example, the logical multiplication circuit 202 is implemented with initial logical multiplication cell 213 and next logical multiplication cell 214. Although only one next logical multiplication cell 214 is used in this example, skilled artisans will appreciate that more or less next logical multiplication cells 214, . . . , 215 may be used depending on the number of harmonics to be suppressed from the synthesized waveform 164. Logical multiplier cells 213, 214 may include multiple logical multiplication stages 250. In some embodiments, initial logical multiplication cell 213 may include two logical multiplication stages 250 and each next logical multiplication cell 214 may include four logical multiplication stages 250.
Each logical multiplication stage 250 may comprise three transistors 251, 253, 255. In some embodiments, transistors 251, 253, 255 may comprise metal oxide semiconductor transistors (MOSFETs). Although depicted as n-channel MOSFETs in this particular example, skilled artisans will appreciate that the logical multiplication stages 213, 214 may be implemented with p-channel MOSFETs or a combination of n-channel and p-channel MOSFETs (i.e., CMOS).
A drain terminal of transistors 251 and 253 may be operatively coupled to the output circuit 200. A source terminal of transistor 255 may be operatively coupled to the current source circuit 204. A drain terminal of transistor 255 may be operatively coupled to a source terminal of transistors 251 and 253. In addition, at least one logical multiplication stage 250 may be operatively coupled to Vs+.
A voltage divider circuit 256 is operative to provide a reference for the current source circuit 204. The voltage divider circuit 256 may comprise resistive elements 257 and 259 such as a resistor or other element(s) that provides a suitable resistance. Resistive elements 257 and 259 may be operatively coupled in series between Vs+ and Vs−. Although depicted as a negative voltage, skilled artisans will appreciate that Vs− may be any voltage that is less than Vs+ including ground. The voltage divider circuit 256 may be operatively coupled to the current source circuit 204 at node 258. The voltage divider circuit 256 may also be operatively coupled to a gate terminal of at least one transistor 251. The values of resistive elements 257 and 259 should be chosen such that the voltage at 258 provides a voltage reference for the current source circuit 204. For example, resistive elements 257 and 259 may be 6,000 Ohms and 12,000 Ohms, respectively, and Vs+ and Vs− may be 1.8 Volts and 0 Volts, respectively. However any suitable values and voltages may be used.
The current source circuit 204 may be implemented with three current sources 210, 211, 212. Although three current sources 210, 211, 212 are depicted in this example, skilled artisans will appreciate that more or less current sources may be used. Each current source 210, 211, 212 may be implemented in any suitable manner and in this particular example are configured with two transistors 261 and 263 operatively coupled in a cascode arrangement, however any suitable structure may be used. A gate terminal of transistor 263 may be operative to receive the bias signal 209. In this example, current source 211 provides current I1 and current sources 210 and 212 each provide half of current I2. In this manner, the logical multiplication circuit 202 may steer three source current magnitudes through the first and second branches 206, 208 in order to generate the synthesized waveform 164.
Referring now to
As with the embodiment disclosed in
Referring now to
The direct digital synthesis circuit 108 may be incorporated with any suitable apparatus as desired such as, but not limited to, a multimedia apparatus such as a DVD player, or other suitable device that may employ a DDS.
As noted above, the direct digital synthesis circuit, among other advantages, generates a synthesized waveform that suppresses subcarrier harmonics. The direct digital synthesis circuit may also exhibit improved common mode rejection over prior art circuits. In addition, the directed digital synthesis circuit may be implemented in a single integrated circuit or included in an integrated circuit with additional modulation components. Implementing the direct digital synthesis circuit in a single integrated circuit minimizes size and hence costs. Furthermore, the use of MOSFETs may allow for the direct digital synthesis circuit to operate with a reduced supply voltage, which reduces power consumption. Other advantages will be recognized by those of ordinary skill in the art.
While this disclosure includes particular examples, it is to be understood that the disclosure is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present disclosure upon a study of the drawings, the specification and the following claims.