The present invention relates to a filter assembly and filtering, for example for telecommunications.
Filters are widely used in telecommunications. Their applications include in base stations, in radar systems, in amplifier linearization, in point-to-point radio and in RF signal cancellation, to name but a few. Which filter to use depends on the application but there are certain desirable characteristics that filters share. For example, the amount of insertion loss in the pass-band of a filter should be as low as possible whilst the attenuation in the stop-band should be high as possible. Furthermore, in some applications, the guard band, which is the frequency separation between the pass-band and stop-band, needs to be very small. This requires a filter of high order to be deployed. A high order filter is, of course, one that includes a high number of resonators. A high order filter is, of course, more technically complex and large than a corresponding filter of a lower order. Furthermore, even though increasing the order of the filter increases the attenuation in the stop-band, it inevitably increases attenuation in the pass-band too.
Generally, a demand for higher attenuation in the stop-band is driven by demands for higher isolation between transmit and receive channels. Accordingly, much attention is focussed on techniques that allow the insertion of a transmission zero, also known as a notch, in the response of the filter. This transmission zero is normally introduced in the stop-band of the filter so that attenuation is increased.
The transmission zero can in introduced in a variety of ways depending in the type of filter. For example, in cavity filters, the transmission zero is introduced by providing additional coupling between the non-adjacent cavities of the filter. This coupling causes the transmission zero in the filter's response and its exact position of the transmission zero is dependent on the parameters of the particular filter's circuitry.
On the other hand, for surface mount technology filters, the best way to implement a transmission zero is less obvious. One known approach is to take advantage of the cascade connection of a band-stop (notch) filter with a filter into which a transmission zero needs to be inserted. However, this approach is difficult as it depends on the quality (Q) factor of the notch filter, which itself represents the effect of the transmission zero on the overall performance of the filter, in particular its insertion loss in the pass-band.
Two known ways of realising a notch using surface mount technology are shown in
The reader is referred to the appended independent claims. Some preferred features are laid out in the dependent claims.
An example of the present invention is a filter assembly comprising a first filter, a notch filter, and a phase-shifter. The first filter has a stop-band. The filter assembly is configured to, in use, split the output of the first filter into a main signal on a first path and a secondary signal on a parallel path, and to pass the signal on the parallel path through the notch filter having a stop-band corresponding to the pass-band of the first filter and, or including, through the phase-shifter so as to be phase-shifted at least substantially into anti-phase to the main signal to provide an adjustment signal. The filter assembly is further configured to combine the adjustment signal with the main signal so as to provide the main signal attenuated in the stop-band.
Preferred embodiments provide a filter assembly having both a high stop-band attenuation and a low pass-band insertion loss.
Preferred embodiments may be considered as feed-forward filters with a broad transmission zero, in other words a broad and deep notch. Preferred embodiments provide improved attenuation in the stop-band with little change in pass-band insertion loss.
The present invention also relates to corresponding methods.
Embodiments of the present invention will now be described by way of example and with reference to the drawings, in which:
When considering the known approach shown in
The inventor realised that it would be possible to introduce a broad transmission zero (also known as a notch) into a filter assembly's attenuation characteristic by coupling a small part of the signal output from a ceramic filter into a notch filter block. This is in order to produce a signal which, in the stop-band, is similar in magnitude but in anti-phase to the main signal output from the ceramic filter. The main signal and correction signal are then combined. In consequence, there is little increase in insertion loss but significant extra attenuation in the stop-band. This can be considered as a “feed-forward” correction.
More specifically, as shown in
The output 34 of the circulator 28 is connected to a frequency dependent phase shifter 36 which is connected to an amplifier 38. The amplifier 38 has an output 40 which is provided as an input to the second directional coupler 22.
The first ceramic filter 12 and the second ceramic filter 30 have similar pass-band characteristics.
The operation of the filter assembly shown in
The filtered signal S1 is then passed to the directional coupler 18 which has a very low attenuation in the main output signal Si provided at output 20 but creates a relatively low power replica signal, denoted Φf(ω) at its secondary output 24, of the filtered signal S1.
The replica signal Φf(ω) is then passed through the notch filter 26 to provide at the notch filter output 34 a processed signal 42 that is greatly attenuated in the pass-band of the second filter 30 but has minimal effect in its pass-band. The processed signal 42 is then phase-adjusted in the phase shifter 36 and then amplified by amplifier 38, and the resultant signal Φf(ω) is fed to the second directional coupler 22.
In the second directional coupler 22, the main signal Si and the correction signal Φf(ω) are combined to provide an output signal S2. In the pass-band the correction signal Φf(ω) is relatively small and so has little or no effect on the insertion loss performance. However, in the stop-band the correction signal Φf(ω) is, as intended, basically equal in magnitude and in antiphase to the main signal Si. This results in a greater stop-band attenuation, as is desirable. In consequence, a sharp stop-band attenuation characteristic is seen as a function of frequency going between pass-band and stop-band.
As regards some implementation details, in the example shown in
Furthermore, the power of the signal in the ‘feed-forward’ branch, namely via the notch filter 26, phase shifter 38 and amplifier 38, prior to the second directional coupler 22, specifically correction signal Φf(ω), is about 10 dB below the main signal Si. This enables the amplifier 38 to be low power and to provide an output signal S2 which is of good linearity.
Still furthermore, the phase of the correction signal Φf(ω) is controlled to be in anti-phase with the phase of the replica signal Φf(ω) in the feed-forward branch in the frequency range where increased attenuation is sought. This may be represented as
Φf(ω)=Φ(ω)+K, where K is a constant.
To illustrate further, examples of the signals in the filter shown in
As shown in
The
In the examples described above with reference to
The present invention may be embodied in other specific forms without departing from its essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Date | Country | Kind |
---|---|---|---|
12290396.6 | Nov 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/003190 | 10/23/2013 | WO | 00 |