The present invention generally relates to furniture and the manufacture thereof. More specifically, the present invention relates to portable child booster seats.
Child booster seats are often used in flights, vehicles, homes, and restaurants to alleviate the sitting height level of small children on regular seats and chairs. When attached to a regular chair or seat, a child booster seat allows a child to sit safely, comfortably, and at the approximately same height level as a sitting adult. Child booster seats are also necessary for safety reasons, particularly in flights and vehicles where seat belts are employed to ensure the proper fastened conditions of the seat belts. Problem with existing booster seats is that they are heavy (each typically weighing 2 kg and up), bulky, not easily portable, and occupy considerable storage space when not in-use.
The present invention provides a collapsible child booster seat that addresses the problems of poor portability and stow-ability of traditional child booster seats. The booster seat in accordance to various embodiments of the present invention is based on the origami and popup technique, which is an art form of paper folding. The booster seat is light and easy to be folded flat into a compact form for storage and transport.
When laid open (before assembly), the booster seat can be viewed as one or more flat sheet materials shaped by cutout pattern(s) comprising a plurality of rigid substrates of specific shapes having flat surfaces connected by a network of integrated hinges. The shape of each of the rigid substrates and the placements of the hinges around the edges of each of the rigid substrates are designed for enabling the foldup and fold-flat actions of the assembled booster seat, and also according to the statics mechanics of the assembled booster seat.
In accordance to one embodiment, when folded flat (collapsed), the booster seat has a dimension of approximately 280 mm by 300 mm by 15 mm. Other dimensions are also possible in other embodiments. When folded up, the booster seat takes the shape of a small chair having a sitting surface and a backrest, or of a small chair having a sitting surface without any backrest or a stool.
Due to its internal double triangular structure, the weight of the occupant is transferred down to the base from both sides of the folded up booster seat and from the longitude axis of the booster seat. In an alternative embodiment, the weight is absorbed and transferred by the whole internal double triangular structure itself down to the support surface. The thicknesses, flexural, tensile, and compressive strength, and/or materials use of each individual rigid substrate can vary depending on the desired overall style, shape, and size of the folded up booster seat and for better sitting comfort, stability, sturdiness, and weight distribution.
When folded up, the chair-shape of the booster seat is upheld and secured using one or more locking means including, but not limited to, magnets or fast-release mechanical connectors.
In one embodiment, the booster seat comprises one or more built-in safety belt for securing the occupant to the booster seat. In another embodiment, the booster seat comprises one or more built-in straps for securing the booster seat to the chair or seat, or the support surface where it is placed upon.
Embodiments of the invention are described in more detail hereinafter with reference to the drawings, in which:
In the following description, product models and methods of manufacture of child booster seat are set forth as preferred examples. It will be apparent to those skilled in the art that modifications, including additions and/or substitutions may be made without departing from the scope and spirit of the invention. Specific details may be omitted so as not to obscure the invention; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
The booster seat in accordance to various embodiments of the present invention is based on the origami and popup technique, which is an art form of paper folding. The booster seat is light and easy to be folded into a compact form for storage and transport.
When laid open (before assembly), the booster seat can be viewed as one or more flat sheet materials shaped by cutout pattern(s) comprising a plurality of rigid substrates of specific shapes having flat surfaces connected by a network of integrated hinges. The shape of each of the rigid substrates and the placements of the hinges around the edges of each of the rigid substrates are designed specifically for enabling the foldup and fold-flat actions of the assembled booster seat, and also according to the statics mechanics of the assembled booster seat. The manufacture of the booster seat can be achieved through many different ways including, but not limited to:
Referring to
In accordance to one embodiment, when folded flat (collapsed), the booster seat has a dimension of approximately 280 mm by 300 mm by 15 mm. Other dimensions are also possible in other embodiments. When folded up, the booster seat takes the shape of a small chair having a sitting surface and a backrest, or of a small chair having a sitting surface without any backrest or a stool.
Due to its internal double triangular structure, the weight of the occupant is transferred down to the base from both sides of the folded up booster seat and from the longitude axis of the booster seat. In an alternative embodiment, the weight is absorbed and transferred by the whole internal double triangular structure itself down to the support surface. The thicknesses, flexural, tensile, and compressive strength, and/or materials use of each individual rigid substrate can vary depending on the desired overall style, shape, and size of the folded up booster seat and for better sitting comfort, stability, sturdiness, and weight distribution.
When folded up, the chair-shape of the booster seat is upheld and secured using one or more locking means including, but not limited to, magnets or fast-release mechanical connectors.
In one embodiment, the booster seat comprises one or more optional built-in safety belt for securing the occupant to the booster seat as shown in
The main advantage of the present invention is that the combination of structural strength, lightweight, and its ability to be folded flat and thin allow the child booster seat to fit in almost any carrying bag, giving it great portability and making it an ideal space saving solution. A test model made of 1.4 mm thick cardboard with adhesive tape can withstand the weight of an average adult. Another test model made of heat-pressed fiberglass in between two padded fabric as shown in
A practitioner skilled in the art should appreciate that the style, shape, and size of a folded up child booster seat in accordance to the present invention are heavily influenced by the design of the sheet material cutout pattern that dictate the number, sizes, and shapes of the rigid substrates and the placements of the integrated hinges around edges of the rigid substrates. As such, many different booster seat styles, shapes, and sizes are realizable by different sheet material cutout patterns. A practitioner skilled in the art should also appreciate that different designs of the sheet material cutout pattern can be used to assemble different types of furniture such as play furniture, high chair, bed, stroller, and bouncer for toddlers and infants.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated.
This is a national phase application of PCT/CN2016/086206 filed on 17 Jun. 2016 which claims priority to the U.S. Provisional Patent Application No. 62/180,618 filed on 17 Jun. 2015; the disclosures of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/086206 | 6/17/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62180618 | Jun 2015 | US |