The invention relates to a gasification apparatus and method for treatment of organic feedstocks such as organic waste, and to a method for such treatment.
EP2063965 (Brookes) describes a gasifier, in which there is a primary chamber for waste gasification, and synthetic gases from this gasification are fed into a secondary chamber to drive the gasification process.
The invention is directed towards improving efficiency of such a gasifier type.
A gasification apparatus is set out in claims 1 to 28 appended hereto. A gasification method is set out in appended claims 29 to 42.
Also, we describe a gasification apparatus comprising:
Preferably, there is a fan downstream of the secondary chamber and a controller configured to dynamically control flow of gases in the chambers according to sensed pressures and temperatures in said chambers, said controlled flow including flow through the secondary chamber around said baffles to optimise combustion in an after-burner phase and said control including controlling flow rate caused by the downstream fan.
Preferably, the controller is configured to cause said after-burner phase for passage through the secondary chamber to have a duration of at least 3 seconds. Preferably, the fan is an induced draft fan.
Preferably, the apparatus includes a valve at a secondary chamber outlet for directing gases downstream under normal process conditions or to a safety vent through a diverter valve. Preferably, the safety vent comprises a flue with a barometric damper. Preferably, there is a heat exchanger downstream of the secondary chamber, said heat exchanger being linked to a heat recovery system.
The apparatus may further comprise a filter downstream of the heat exchanger, and the filter preferably comprises a reagent dosing apparatus followed by a ceramic filter apparatus.
Preferably, the reagent dosing apparatus is configured to add controlled quantities of treatment substances, for example, urea, calcium carbonate, sodium bicarbonate and activated carbon. Preferably, the substances are suitable to neutralise or remove potentially harmful substances in the exhaust gases.
Preferably, the primary chamber comprises at least one air inlet for inlet of air over the hearth, under control of the pressure created in the mixing chamber by the mixing chamber air inlet pump.
Preferably, the controller is configured to cause air flows through the air inlet valves to maintain both optimal synthetic gas to air ratio and a desired pressure differential between the primary chamber and the mixing chamber for maintaining a negative pressure oxygen deprived environment within the primary chamber. Preferably, the controller is configured to maintain a pressure in the range of −50 Pa to −200 Pa (−5 mm to −20 mm H2O) in said oxygen deprived environment.
Preferably, the controller is configured to control the mixing chamber air inlet pump to maintain temperature in the secondary chamber in the range of 850° C. and 1050° C.
Preferably, the controller is configured such that if the temperature in the secondary chamber begins to increase above a target, the mixing chamber air inlet pump increases the supply of air until the temperature drops back to at or near a target temperature for steady-state operation.
Preferably, the mixing chamber includes a burner for process start-up, and the controller is configured to shut down the burner when an autothermic stage is reached with a target temperature for the primary chamber. Preferably, the burner is located in a lower portion of the mixing chamber.
Preferably, said opening between the primary chamber and the mixing chamber comprises an aperture in a dividing wall between said chambers and said aperture is situated at least 250 mm above a top level of the augers in the primary chamber.
Preferably, the controller is configured to control said secondary chamber outlet valve to assist with control of temperature in the secondary chamber during start-up.
Preferably, the controller is configured to modulate said valve between 0% and 100% opening by the controller (100).
The controller may be configured to cause flow of gases from the secondary chamber at a temperature in the range of 700° C. and 900° C. and to control the heat exchanger (60) to reduce the temperature of the gases to a value in the range of 160° C. to 200° C.
The apparatus may further comprise temperature sensors at an inlet of the heat exchanger and at an outlet of the heat exchanger and the controller is configured to modulate the downstream fan and the mixing chamber air inlet fan to maintain exhaust gas temperatures from the secondary chamber within a desired range.
Preferably, the controller is configured to actuate a diverter damper valve to divert exhaust gases to atmosphere if temperature at the heat exchanger inlet exceeds a threshold.
Preferably, the controller is configured to maintain the temperature of the primary chamber in the range of 500° C. to 1000° C., and of the secondary chamber in the range of 550° C. to 1200° C.
Preferably, the controller is configured to maintain the temperature of the heat exchanger inlet in the range of 600° C. to 850° C. and of the heat exchanger outlet in the range of 160° C. and 220° C.
We also describe gasification methods as set out in the accompanying claims 26 to 36.
The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only with reference to the accompanying drawings in which:
On the top right of the gasifier 10, as viewed in
Under normal operation, the valve 40 is open to allow flow of hot exhaust gases to a heat exchanger 60. In the event of a fault the valve 40 closes and the valve 40A opens to route the gases upwardly into a flue 50 incorporating a barometric damper 41, as best shown in
The barometric damper 41 is not included in the process under normal operating conditions. The gas flow through the process is entirely regulated by an induced draft extraction fan 80 which is installed downstream of a filter stage 70. The barometric damper 41 cools the exhaust gases in a safety by-pass manner before discharge to atmosphere in the event that the heat exchanger and filter are not being used.
As shown specifically in
a head tank 62,
a vent tank 63,
an Organic Rankine Cycle Engine ORC 64,
a dry cooler 65, and
an expansion tank 66.
Advantageous aspects of the heat exchange system 61 are its flexibility and versatility of energy output devices. It is possible to generate electricity, provide steam or hot water, provide chilling and refrigeration and combinations of these to meet the user's requirements.
Downstream of the heat exchanger 60 the filter stage 70 has a reagent dosing station 71 followed by a ceramic filter 72. Downstream of the filter stage 70 there is the induced draft fan 80 which sucks gas through the whole plant in a dynamic manner according to sensors, as described in more detail below.
The fan 80 delivers cooled and clean draft out a flue 90.
Upstream of the primary chamber 20 the feed-hopper 21 delivers the organic feedstock into the primary chamber 20 by means of a series of independently-driven augers 38. The loading hopper 21 is configured to provide an air lock function to eliminate uncontrolled air entering the primary chamber 20.
The primary chamber 20 has an open lid section for ease of access for servicing and maintenance. This is achieved by unbolting and mechanically lifting (forklift). However, it is envisaged that it may include hydraulic rams for opening and closing.
An access and inspection hatch is provided adjacent to the mixing chamber 30 at the inlet of the secondary chamber 35.
The primary chamber 20 augers 38 are for conveying the feedstock being gasified, at a required rate. The augers have individual auger motors, which enables better control of flow of waste materials in the primary chamber 20 and also have a reverse function for quick and non-disruptive clearance of blockages and jamming that can occur from time to time in normal operation. Removable bearings and mounts at the ash end (right hand side as viewed in
Referring also to
The action of the downstream fan 80 causes the flow A to become a flow B of synthetic gases and air downwards along the vertical length of the mixing chamber 30 and then laterally into the secondary chamber 35 where it is directed through several 90° turns by means of baffles 29 (
Under normal operation, combustion occurs in the mixing chamber 30 between the oxygen (air) supplied by the secondary fan 26 and the gases coming off the gasifying material in the primary chamber 20. In addition, small quantities of air can be drawn into the primary chamber through three 75 mm diameter automatically-actuated air control (e.g. Belimo™) valves 27. These valves are positioned strategically along the side wall of the primary chamber 20 and are operated intermittently from the central control processor 100 in conjunction with the induced draft (“ID”) fan 80 to control the temperature in the primary chamber 20 about a set point using signals from temperature probes in the primary chamber 20.
The mixed gases enter the mixing chamber 30 where they ignite and are conveyed vertically downwards (Flow B). The mixing chamber may also be referred to as “the cracking zone”, where further oxidation occurs in a turbulent combustion phase. This turbulence is continued into the secondary chamber (Flow C) or afterburner chamber 35 where the gases are made to abruptly change direction several times before exiting the secondary chamber.
The hearth 24 comprises high temperature resistant modular precast concrete units that interlock and are scalloped to accommodate the augers 38 used to propel the feedstock through the primary chamber. The heat generated by combustion of synthetic gases in the secondary chamber is conducted through the hearth 24 and generates the heat in the primary chamber 20 that sustains the autothermic gasification reaction and destruction of the feedstock. The manner in which the feedstock is conveyed by the augers 38 exposes the feedstock to heat that is absorbed and conducted through the hearth 24.
There is a flow of high temperature exhaust gases C which are the products of combustion of the synthetic gases controlled by the induced draft (ID) fan 80 (located downstream of the ceramic filter stage 70) which draws the exhaust gases out into the valve 40 from the secondary chamber 35.
The primary, mixing and secondary chambers 20, 30 and 35 respectively have pressure sensors linked with the controller 100. The fan 80 is controlled according to pressure differences across these chambers, which are designed to regulate the velocities of the exhaust gases throughout the process within the range of 0.6 to 1.2 m/s. This flow rate is designed to at least achieve the retention of exhaust gases within the gasifier for significantly longer than the regulatory (EU) stipulation of greater than 2.0 seconds at 850° C.
Typically, in the primary chamber 20 the temperature provided by the bed or hearth 24 is greater than 850° C. and there is typically a dwell time of the feedstock in the range of 30 to 90 minutes in the primary chamber 20 depending on the auger speed and resultant feed rate. Waste feedstock of high calorific value will require slower feed rates and vice versa.
The control of flow of the mixed gas (Flow C) through the secondary chamber 35 and out to the valve 40 is achieved by modulating the ID fan 80. The temperature in the secondary chamber 35 is controlled by modulating the air coming from the secondary fan 26. Under normal operation, the temperature in the secondary chamber is maintained at about 950° C. If the temperature in the secondary chamber begins to increase, the secondary fan 26 increases the supply of air until the temperature drops back to at or near the control temperature of 950° C. In this way, steady-state operation is maintained.
The primary chamber 20 relies solely on the gasification reaction to break down and destroy the organic material received at the intake hopper 21. There are no points of ingress of uncontrolled unregulated air, leaving only the controlled automated modulating valves 27 which are actuated to control the pressure difference between the primary chamber 20 and the secondary chamber 35.
The controller (programmable logic controller, PLC) 100 controls the valves according to pressure differentials so that the primary chamber valves 27 allow sufficient air into the zones of the primary chamber to maintain a pressure difference that maintains the target exhaust gas flow rates and velocities. The pressure differential sensor levels respond according to the throughput of the feedstock and the calorific value of that feedstock.
The synthetic gases are extracted from the primary chamber 20 by means of the modulating induced draft (ID) fan 80 located at the downstream point of the whole process (after the heat recovery 60/61 and filter 70 stages). The ID fan 80 is therefore integral to the control of flow of all the gases generated in the process.
The valve 40 has a default position of venting to atmosphere via the valve 40A and the flue 50 so that the hot gases exit safely in the event of a fault in the pneumatic air supply or electrical components, or other components of the system. The main control valve 40 and the diverter valve 40A are pneumatically activated. In the event of power failure, an accumulator will provide sufficient pressure to position the valves in the default position until power is restored.
The ash collection system 36 eliminates potential ingress of uncontrolled air via the exit end of the primary chamber 20. This is by way of a series of baffles that become sealed by the flow of exiting ash and the enclosed sealed ash removal system.
The products of combustion of the synthetic gas (exhaust gases) are drawn by the ID fan 80 through the secondary chamber 35 via the series of 90° bends formed by baffle walls 29 within the chamber, as shown in
The hearth 24 heat sustains the autothermic gasification reaction in the primary chamber 20 and the distance travelled and velocity of the exhaust gases are controlled to retain the exhaust in the secondary chamber 35 for at least 3 seconds, i.e. longer than the standards stipulated in most international emissions quality standards for thermal oxidation of harmful pollutant substances. This achieves an excellent quality of combustion. The ID fan 80 is the principal means of regulating the quality of combustion, using inputs from sensors of the temperatures and pressures throughout the process. The controller 100 determines the required fan speed to optimise both the quality of combustion and the thermal energy recovered.
On start-up of the process, an auxiliary burner and fan 28, located at the bottom of the mixing chamber 30, is switched on using an external energy source. The mixing chamber 30 is in fluid communication with the primary chamber 20 via the aperture 25 in the dividing wall (Flow A). This aperture is 1.5 metres wide and is situated at least 250 mm above the top level of the augers 38 in the primary chamber 20. The mixing chamber 30 is in fluid communication with the mixing zone (Flow B) followed by the secondary chamber 35 (Flow C,
The heat generated by the auxiliary burner slowly heats the secondary chamber 35. The roof of the secondary chamber 24 constitutes the floor of the primary chamber and is made of heat-conductive materials. Heat from the secondary chamber 35 is conducted through this floor, or hearth, to heat the primary chamber. When the temperature in the primary chamber exceeds 500° C., material to be gasified is drawn into the primary chamber 20 by means of a series of augers 38 which connect the feed-hopper 21 with the primary chamber 20.
As the temperature increases in the primary chamber 20, the material begins to gasify and the synthetic gases are carried through the aperture 25 to combust in the flame from the auxiliary burner 28 in the mixing chamber 30. This causes the temperature in the secondary chamber 35 to increase further. As the temperatures in both the primary and secondary chambers begin to reach target levels, the auxiliary burner 28 is switched off and the process becomes fully autothermic.
During the start-up cycle, the valve 40 is closed and the diverter valve 40A at the base of the stack maintains temperature in the secondary chamber 35. The operation of this valve is modulated between 0 and 100% opening by the controller 100. On completion of the start-up phase, the valve 40A is closed and will only open on emergency to divert the hot gases to the stack 50.
Flows of air and gases through the system are primarily controlled by the induced draft fan 80 downstream which maintains constant negative pressure throughout the system. The air valves 27 along the side-wall of the primary chamber 20 allow the ingress of oxygen (air) into the primary chamber 20 so that minor adjustment of temperatures and pressure can be achieved. The operation of these valves and the ID fan 80 are automatically controlled from the central controller 100 via pressure sensors and temperature probes deployed in the primary and secondary chambers.
The gasification and exhaust extraction process only reduces the exhaust gases to about 800° C. at the point of egress from the secondary chamber 35. This excess heat is then recovered via the heat recovery unit 60/61. On exit from the heat exchanger 60, the exhaust gases are between 160° C. and 200° C. and therefore can be finally treated and filtered by the filter 70 for removal of any remaining particulates and substances to ensure total compliance with the prevailing emissions standards at the location of installation.
The reagent dosing 71 involves adding controlled quantities of treatment substances such as (but not limited to) urea, calcium carbonate, sodium bicarbonate and activated carbon. These substances neutralise or remove harmful substances in the exhaust gases that are regulated by law such as (but not limited to) NOX, SOX, HCL, Dioxins, Phthalates, heavy metals.
The exhaust gases are processed initially by the heat pipe heat exchanger 60 to cool the outlet temperature from a range of 740° C. to 800° C. to 160° C. to 180° C.
The output from the heat exchanger 60 provides the thermal energy in a variety of formats to suit the end user's requirements, such as hot water, steam, and thermal oil. This gives the end user the ability to utilize the thermal energy for a variety of applications:
Heating
Cooling/refrigeration
Process steam
ORC (Organic Rankine Cycle) power generation
Micro steam turbine/engine power generation.
On exiting the heat pipe heat exchanger 60, the remaining exhaust gases are further processed by the ceramic filter unit 70 with reagent dosing system 71. The ceramic filter 72 removes the fine particulate content to comply with the regulatory standards of less than 10 mg/Nm3 while the reagent dosing introduces a prescribed blend of additives to remove any remaining toxic constituents in the exhaust gas in compliance with the regulatory industrial emissions standards.
The apparatus may include a CO2/NO2 fire suppression system. Fires are extremely unlikely due to the absence of air, but in the event of an uncontrolled ingress of oxygen leading to combustion in the primary chamber, the PLC system will identify this and initiate an automated rapid shut down procedure where a compressed inert gas suppression system will extinguish and rapidly cool the primary chamber. Using water to extinguish a fire would be dangerous for the operator and potentially catastrophic for the equipment.
It will be appreciated that the invention provides an integrated waste-to-energy system based on the gasification of various organic waste streams having an inherent energy content (calorific value) that can be exploited to produce useable energy in various forms such as hot water, steam and/or electricity by the use of an Organic Rankine Cycle (ORC) engine downstream of the heat-exchanger.
The system offers a very advantageous method of waste treatment and disposal for many small to medium-sized industries with troublesome waste streams. In particular it offers a safe and environmentally friendly way of dealing with agricultural waste such as poultry manure/litter and many other animal by-products (ABP). It also has applications in the medical waste sector where the cost of treatment has escalated to alarming proportions in recent years.
The filter stage 70 can be designed to cope with emissions from both hazardous and non-hazardous waste streams and to provide for compliance with the most stringent European Industrial Emissions Standards. The ash residue which exits the end of the primary chamber is completely mineralised and may be used beneficially in many applications.
The controller 100 receives inputs from the following sensors:
The controller 100 controls the following to control operation of the gasifier to optimum conditions:
The PLC controller 100 is programmed to respond to changes in parameters within the system to maintain optimum temperatures required to sustain the gasification reaction and both the quantity of thermal energy consumed within the process and generated for heat recovery at the heat exchanger.
A reduction in temperature in the secondary chamber 35 may signify a reduction in calorific value of the organic material in the primary chamber. The PLC identifies this from the temperature sensors in the primary chamber 20 and increases the speed of the augers 38 to maintain a constant calorific content in the primary chamber 20. This may also then result in changes in pressure and temperature in the primary and secondary chambers which the PLC 100 will identify from the pressure sensors and temperature sensors in both chambers. In response the PLC can modulate the ID fan 80, the secondary fan and the primary chamber air valves 27 to balance the system and maintain optimum performance.
Energy recovered from the input material starts by being introduced from the hopper 21 into the (preheated) primary chamber 20 by the series of rotating screws 38. The preheating is done by the fossil fuel burner 28. As the material travels along this negative pressure chamber and having the correct temperature, syngas is released which then travels to the secondary chamber 35 for final combustion assisted by the secondary air injection point 26. The remaining material now in the form of ash is extracted by means of the rotating auger 36 to a final ash storage bin 37. The heated gas then is pulled to the heat exchanger 60 by means of the induced draft fan 80 where the energy is transferred for power and heat production. The remaining gas is then cleaned by the filter 70.
This controller 100 is responsible for safety, temperature, material level control, energy output control, ash removal, chamber pressure control, gas cleaning, start-up, shut-down procedures, data logging, fault diagnosis, alerts messaging and remote monitoring.
Table 1 describes function of some of the apparatus' components in more detail.
Table 2 is an example controller 100 logic flow.
Table 3 below gives preferred temperature ranges maintained by the controller 100 for operation of various components.
In another embodiment, and referring to
The invention is not limited to the embodiments described but may be varied in construction and detail according to the claims. For example, the system may be provided in a mobile containerised format. This type of configuration facilitates the rapid transportation of the system to the site of an emergency or to a remote location where it might help to solve a temporary waste problem in a military or industrial context.
Number | Date | Country | Kind |
---|---|---|---|
19192811.8 | Aug 2019 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/073166 | 8/19/2020 | WO |