Embodiments of the present disclosure relate to a pneumatic vacuum elevator and more particularly, to a system that stabilize and guide support of cabin movement with the pneumatic elevator.
Pneumatic vacuum elevators are typically used in countervailing weights in order to facilitate a cabin moving up and down between various layers or floors at various heights inside the vertical passageways of office buildings, hospitals, factories and similar structures. The pneumatic vacuum elevators use air pressure to cause the motion of the cabin within a thoroughfare or tubular cylinder that uses the air within it as a working fluid upon the confines of the cabin. Transmission of the pneumatic vacuum elevators are supported and guided by a mechanical device such as a guide rail. Generally, the guide rail is a part of an inner working mechanism of most of the pneumatic vacuum elevators and lift shafts. The guide rail is fixed on two sides of the shaft, wherein the one side of the guide rail guides the pneumatic vacuum elevator and the other side for the counterweight. In tandem, the guide rail operates both as stabilization within the shaft during routine use and as a safety system in case of emergency stops. Various types of guide rails are available which enables smooth ride of the cabin inside the vertical passageways.
Conventionally, the guide rail available in market for transmission of the cabin of the pneumatic vacuum elevator includes one or more wheels coupled to the cabin for ascending and descending motion of the elevator. However, such conventional system with the one or more wheels causes vibration which creates anxiety for the users. Furthermore, such conventional guide rail mechanism generates friction and noise during up and down motion of the pneumatic vacuum elevator.
Hence, there is a need for an improved guide rail-pillar system of pneumatic vacuum elevator and a method to operate the same in order to address the aforementioned issues.
In accordance with one embodiment of a present disclosure, a guide rail-pillar system is disclosed, The system includes at least one guide rail pillar to guide an actuation of a cabin of a pneumatic vacuum elevator, wherein the at least one guide rail pillar is disposed at an external cylinder assembly. The at least one guide rail pillar includes a first surface. A curved structure is extruded from a first surface of the at least one guide rail pillar, wherein the curved structure enables movement of the cabin in a vertical direction. The at least one guide rail pillar includes at least two grooves disposed on lateral sides. The at least two grooves accommodates a covering sheet for enclosing the external cylinder assembly. The at least one guide rail pillar includes at least three ribs. The at least three ribs connects the at least one guide rail pillar with a base ring and the external cylinder assembly.
In accordance with another embodiment of the present disclosure, a pneumatic vacuum elevator with a guide rail pillar system is disclosed. The pneumatic vacuum elevator includes a cabin to carry a passenger for transiting across one or more floors of a building. The pneumatic vacuum elevator includes a guide rail pillar system which includes at least one guide rail pillar disposed at an external cylinder assembly. The at least one guide rail pillar guides an actuation of the cabin of the pneumatic vacuum elevator. The at least one guide rail pillar also includes a curved structure extruded from a first surface of the at least one guide rail pillar, wherein the curved structure enables movement of the cabin in a vertical direction. The at least one guide rail pillar also includes at least two grooves disposed on lateral sides. The at least two grooves accommodates a covering sheet for enclosing the external cylinder assembly. The at least one guide rail pillar includes at least three ribs. The at least three ribs connects the at least one guide rail pillar with a base ring and the external cylinder assembly.
In accordance with yet another embodiment of the present disclosure, a method for providing actuation of a cabin by a guide rail pillar system of a pneumatic vacuum elevator is disclosed. The method includes providing at least one guide rail pillar for guiding an actuation of a cabin of the pneumatic vacuum elevator, wherein the at least one guide rail pillar is disposed at an external cylinder assembly. The method also includes extruding a curved structure from a first surface of the at least one guide rail pillar for enabling movement of the cabin in a vertical direction. The method also includes forming at least two grooves disposed on lateral sides of the at least one guide rail pillar to accommodate a covering sheet for enclosing the external cylinder assembly. The method also includes disposing at least three ribs located on a second surface of the at least one guide rail pillar to connect the at least one guide rail pillar with a base ring and the external cylinder assembly.
To further clarify the advantages and features of the present disclosure, a more particular description of the disclosure will follow by reference to specific embodiments thereof, which are illustrated in the appended figures. It is to be appreciated that these figures depict only typical embodiments of the disclosure and are therefore not to be considered limiting in scope. The disclosure will be described and explained with additional specificity and detail with the appended figures.
The disclosure will be described and explained with additional specificity and detail with the accompanying figures in which:
Further, those skilled in the art will appreciate that elements in the figures are illustrated for simplicity and may not have necessarily been drawn to scale. Furthermore, in terms of the construction of the device, one or more components of the device may have been represented in the figures by conventional symbols, and the figures may show only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the figures with details that will be readily apparent to those skilled in the art having the benefit of the description herein.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiment illustrated in the figures and specific language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Such alterations and further modifications in the illustrated system, and such further applications of the principles of the disclosure as would normally occur to those skilled in the art are to be construed as being within the scope of the present disclosure.
The terms “comprises”, “comprising”, or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a process or method that comprises a list of steps does not include only those steps but may include other steps not expressly listed or inherent to such a process or method. Similarly, one or more devices or sub-systems or elements or structures or components preceded by “comprises . . . a” does not, without more constraints, preclude the existence of other devices, sub-systems, elements, structures, components, additional devices, additional sub-systems, additional elements, additional structures or additional components. Appearances of the phrase “in an embodiment”, “in another embodiment” and similar language throughout this specification may, but not necessarily do, all refer to the same embodiment.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. The system, methods, and examples provided herein are only illustrative and not intended to be limiting.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings. The singular forms “a”,“an” and “the” include plural references unless the context clearly dictates otherwise.
Embodiments of the present disclosure relate to a guide rail pillar system. The system includes at least one guide rail pillar to guide an actuation of a cabin of a pneumatic vacuum elevator, wherein the at least one guide rail pillar is disposed at an external cylinder assembly. The at least one guide rail pillar includes a first surface, A curved structure is extruded from a first surface of the at least one guide rail pillar, wherein the curved structure enables movement of the cabin in a vertical direction. The at least one guide rail pillar includes at least two grooves disposed on lateral sides. The at least two grooves accommodates a covering sheet for enclosing the external cylinder assembly. The at least one guide rail pillar includes at least three ribs. The at least three ribs connects the at least one guide rail pillar with a base ring and the external cylinder assembly.
The at least one guide rail pillar 110 includes a first surface 125. A curved structure 130 is extruded from the first surface 125 of the at least one guide rail pillar 110, wherein the curved structure 130 enables movement of the cabin 115 in a vertical direction. In one embodiment, the first surface 125 may include an internal surface of the at least one guide rail pillar 110. In such embodiment, the at least one guide rail pillar 110 may include a hollow tunnel 128 coupled to the first surface 125. The at least one guide rail pillar 110 is placed at one or more sides of the external cylinder assembly at an evenly spaced intervals.
The at least one guide rail pillar 110 includes at least two grooves 135 disposed on lateral sides. The at least two grooves 135 accommodates a covering sheet 140 for enclosing the external cylinder assembly. The at least two grooves 135 also grasps a rubber block 138 in between the covering sheet 140 to lock an air gap. In one embodiment, the covering sheet 140 may include a polycarbonate sheet for providing visibility in one or more directions from inside of the cabin 115. The at least two grooves 135 accommodates the covering sheet 140 between the at least one guide rail pillar 110 which is placed on four sides of external cylinder for 360-degree visibility from inside of the cabin 115 of the pneumatic vacuum elevator while in riding condition. In such embodiment, the at least one guide rail pillar 110 may include two guide rail pillars.
The at least one guide rail pillar 110 includes at least three ribs 150 located at a second surface 155. In one embodiment, the second surface 155 may include a top surface of the at least one gamete rail pillar 110. The at least three ribs 150 positioned on the top surface of the at least one guide rail pillar 110 is used for connecting the base ring 120, top and bottom for external cylinder assembly (not shown in
The pneumatic vacuum elevator 160 includes a guide rail pillar system 100 which includes at least one guide rail pillar disposed at an external cylinder assembly. The guide rail pillar system 100 is substantially similar to a guide rail pillar system of
The method 200 also includes extruding a curved structure from a first surface of the at least one guide rail pillar for enabling movement of the cabin in a vertical direction in step 220. In one embodiment, extruding the curved structure from the first surface of the at least one guide rail pillar may include extruding the curved structure from an internal surface of the at least one guide rail pillar, wherein the curved structure is protruded in an outward direction. In such embodiment, the at least one guide rail pillar with the curved structure is placed at one or more sides of the external cylinder assembly at an evenly spaced intervals.
The method 200 also includes forming at least two grooves disposed on lateral sides of the at least one guide rail pillar to accommodate a covering sheet for enclosing the external cylinder assembly in step 230. In one embodiment, forming the at least two grooves on the lateral sides of the at least one guide rail pillar may include providing the at least two grooves disposed on the lateral sides of the at least one guide rail pillar in parallel to each other. In a specific embodiment, forming the at least two grooves disposed on the lateral sides of the at least one guide rail pillar to accommodate the covering sheet may including forming the at least two grooves to accommodate a polycarbonate sheet.
The method 200 also includes disposing at least three ribs located on a second surface of the at least one guide rail pillar to connect the at least one guide rail pillar with a base ring and the external cylinder assembly in step 240. In one embodiment, disposing the at least three ribs located on the second surface of the at least one guide rail pillar may include providing at least three semi-circular ribs located on the second surface of the at least one guide rail pillar. In such embodiment, the second surface may include a top surface of the at least one guide rail pillar. In one embodiment, the at least three ribs positioned on the top surface of the at least one guide rail pillar is used for connecting the base ring, top and bottom for external cylinder assembly.
Various embodiments of the present disclosure relate to a guide rail system which includes at least one guide rail pillar which includes at least three ribs for connecting the base ring and the external cylinder assembly and requires minimal handling process while installation and loading or unloading process.
Also, the at least three ribs of the at least one guide rail pillar connects the base ring and provides more strength and rigidity to shaft of the pneumatic vacuum elevator.
Moreover, the present disclosed system guides support of the cabin movement in upper & lower side without causing friction and thus reduces anxiety of the passenger within the elevator.
In addition, the at least two grooves grasp the covering sheet for enclosing the external cylinder assembly, wherein the covering sheet enables 360-degree visibility from inside of cabin while riding condition.
Furthermore, the curved structure enables vertical movement of the cabin in a smooth manner. Also, the hole inside the curved structure holds a cylinder connecting rod which connects the two cylinders for providing rigidity to the pneumatic vacuum elevator.
It will be understood by those skilled in the art that the foregoing general description and the following detailed description are exemplary and explanatory of the disclosure and are not intended to be restrictive thereof.
While specific language has been used to describe the disclosure, any limitations arising on account of the same are not intended. As would be apparent to a person skilled in the art, various working modifications may be made to the method in order to implement the inventive concept as taught herein.
The figures and the foregoing description give examples of embodiments. Those skilled in the art will appreciate that one or more of the described elements may well be combined into a single functional element. Alternatively, certain elements may be split into multiple functional elements. Elements from one embodiment may be added to another embodiment. For example, the order of processes described herein may be changed and are not limited to the manner described herein. Moreover, the actions of any flow diagram need not be implemented in the order shown; nor do all of the acts need to be necessarily performed. Also, those acts that are not dependent on other acts may be performed in parallel with the other acts. The scope of embodiments is by no means limited by these specific examples.
Number | Date | Country | Kind |
---|---|---|---|
202041023074 | Jun 2020 | IN | national |
This Application claims priority from a Patent application filed in India having Patent Application No. 202041023074, filed on Jun. 2, 2020, and titled “A GUIDE RAIL-PILLAR SYSTEM OF PNEUMATIC VACUUM ELEVATOR AND A METHOD TO OPERATE THE SAME” and a PCT Application No. PCT/M2020/058417 filed on Sep. 10, 2020, and titled “A GUIDE RAIL-PILLAR SYSTEM OF PNEUMATIC VACUUM ELEVATOR AND A METHOD TO OPERATE THE SAME”.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/058417 | 9/10/2020 | WO |