The present invention relates to a method for making high-resolution measurements of biological (and non biological) thermal diffusivity and thermal conductivity. The resolution is such that measurement of the thermal diffusivities/conductivities of individual biological cells is feasible (Resolution can also reach sub-cell resolution (cell organels)). The present invention also relates to an associated biosensor. In addition, the present invention relates to an associated kit facilitating performance of the method.
With a 90% mortality rate, cancer metastasis, or the spread of cancerous cells from a primary tumor to seed secondary tumors, accounts for the majority of deaths among cancer patients9,10. Surgery, chemo-therapy and radiation-therapy, are ineffective in treating disseminated metastatic cells5; however recent progress in functionalized magnetic and plasmonic nanoparticles has led photothermal3,4 and magneto-thermal2 therapies to potentially target only cancerous cells throughout the body. Because the cellular response to overheating is highly dependent on both the temperature and the exposure time, and effects range from improved diffusion rate across the cellular membrane to irreversible damage and protein denaturation11, precise information regarding the transient thermal energy distribution within the cell is required to efficiently target cancerous cells without affecting adjacent healthy cells. In addition to cancer therapies, several imaging techniques, such as photoacoustic6,7 and photothermal8 imaging, require the generation of confined heat pulses using pulsed laser sources. Thus, cellular thermal diffusivity, as a measure of the transient thermal response of a cell to a change in temperature, becomes a fundamental property to calculate the required exposure time and intensity based on the requirements of the applications. Although there are standard techniques for measuring thermal diffusivity, such as the transient plane or line sources and laser flashing methods, they currently lack the spatial resolution needed to measure diffusivity at the micron scale. Moreover, due to the irregular cellular curvilinear shapes, single-cell thermal diffusivity measurement requires a flexible sensor that is capable of following their contours.
The ability to manipulate low dimensional physics phenomena within nanostructures has always led to innovative techniques in determining physical properties of living cells, such as electrical12, optical13 and mechanical14,15. Among the different nanostructures, 2D nanostructures, such as nanomembranes (NMs), are unrivalled in their scalability for high-yield manufacture and, with the current transfer techniques, are less challenging in their manipulation compared with lower-dimensional nanostructures16. Furthermore, due to their extremely small flexural rigidity, NMs are highly flexible and can follow curvilinear surfaces17,18. The operation principle of our novel technique relies on the ability to spectrally shift the bandgap photoluminescence (PL) emission of gallium nitride (GaN) NMs through laser-induced heating due to the increased phonons-boundary-scattering rate. GaN NMs are just used for demonstration, other nanostructures or materials can be engineered to perform the same functionality.
A method for measuring thermal diffusivity comprises, in accordance with the present invention, (i) providing a microscale biological sample, (ii) placing a metallic disk atop the biological sample, (iii) disposing a nanomembrane over the biological sample and over the metallic disc so that the nanomembrane, the metallic disk and the biological sample are in thermal equilibrium with one another, (iv) directing a laser beam to fall onto the nanomembrane over the biological sample, (v) operating a radiation sensor to detect photoluminescent radiation emitted by the nanomembrane in response to the laser beam, (vi) determining a spectral shift in the detected photoluminescent radiation emitted by the nanomembrane, and (vii) calculating thermal diffusivity/conductivity from the determined spectral shift of the photoluminescence.
Pursuant to a feature of the invention, the metallic disk is pre-attached to the nanomembrane. The placing of the metallic disk and the disposing of the nanomembrane comprise positioning the nanomembrane and the metallic disk together atop the biological sample. Typically, the nanomembrane is provided with the metallic disk lying thereon, so that the method further contemplates flipping the nanomembrane so that the disk is underneath. The positioning of the nanomembrane and the metallic disk is performed after the flipping of the nanomembrane.
Another feature of the invention is without the usage of a metallic disk. In this case, the NM is formed from a material which can be excited with a wavelength that is not absorbed by the underlying biological (or non-organic) material.
Pursuant to another feature of the invention, a kit for use in making measurements of thermal diffusivity of microscale biological material comprises at least one nanomembrane having a maximum edge dimension in a microscale range and at least one metallic disk having a maximum dimension substantially less than a smallest dimension of the nanomembrane. The term “microscale” is used herein to denote sizes on the same order as that of living cells and clumps of cells. The nanomembranes are typically so small that a microscope is required to enable manipulation by a user.
The kit preferably comprises a plurality of nanomembranes each having a maximally sized edge dimension in a microscale range and further comprises a plurality of metallic disks each having a maximum dimension substantially less than a smallest dimension of each of the nanomembranes. Where the metallic disks are circular, they may have a diameter of between one half and one-twentieth that of an edge of a square nanomembrane.
The disks are preferably made of a material taken from the group consisting of gold, a gold alloy, platinum, and a platinum alloy, Aluminum, Silver (many of the metals will function at different wavelengths) and are each fastened to a respective one of the nanomembranes.
The present invention provides a method and apparatus for measuring single-cell thermal diffusivity. Here, the present approach of measuring the thermal diffusivity of single-cells has only a 2.2% error rate. We base our technique on increasing the diffusive phonon-boundary-scattering rate in nanomembranes to induce a considerable spectral dependence of the excitonic-bandgap emission over excitation-laser intensity. We further demonstrate that once in contact with organic or inorganic material, the nanomembranes' emission spectral-shift functions as an indicator of the material's thermal diffusivity. Due to the prior absence of a single-cell thermal diffusivity sensor, we anticipate our novel technique to enable an efficient single-cell targeting using nanoheaters, allow better modeling of thermal distribution within cells and potentially enable novel diagnostic techniques based on variations of single-cell thermal diffusivities.
As illustrated in
Prior to demonstrating thermal diffusivity measurements of single-cells with the GaN NMs, it is imperative to study the effect of laser-induced local heating on the PL emission from NMs. Once excited by a 325 nm (3.81 eV) continuous-wave laser, photo-excited free-excitons emit a series of optical and acoustic phonons while relaxing towards their energy band minimum to conserve energy and momentum simultaneously (
To measure the PL emission from the GaN NMs, we transferred the GaN NMs 16 to a copper grid 22, and focused a 325 nm laser beam 12 onto the NMs to a 3 μm spot size, as schematically presented in
To quantitatively estimate κNM based on the spectral shift, we numerically solved the steady-state heat equation using MATLAB and then fitted the experimental data. Using the following equation:
−κNMWNM∇2T+htot(T−Tα)+∈σSB(T4−Tα4)−Qexc(x,y), (1)
where T and Ta are the NM and ambient temperatures, respectively. htot, ∈ and σSB are the convection heat transfer coefficient, the GaN emissivity and the Stefan-Boltzmann constant, respectively. Finally, Qexc(x, y) is the heat generated within the NM due to excitation laser, modelled by a Gaussian distribution. The simulated steady-state heat distribution across the NM, plotted in the inset of
In our attempt to establish a solid theoretical foundation for our novel NM-based thermal diffusivity sensing technique, we first find an analytical solution to the heat diffusion equation. We simplified our NM/cell system to a semi-infinite homogenous medium which had an adiabatic surface and was heated by a Gaussian heat source. The rise in peak temperature at the heating source (at the NM) is then given by,
where A and σ are the Gaussian heat source (laser) amplitude and standard deviation, respectively; κcell and αcell are the cell thermal conductivity and diffusivity, respectively; and t represents the heating time32. It is apparent from the above solution that the NM emission, as a function of ΔT, depends on both κcell and αcell which should not be the case for a thermal diffusivity measurement technique. However, the ratio of the temperature changes due to different heating periods, Rt
Because the NM thickness used in this study (35 nm) was much less than the penetration depth of 325 nm radiation in GaN (˜85 nm), approximately 50% of the optical energy was transmitted through the NM. This transmitted energy, depending on the underlying cell's optical properties, was absorbed, transmitted or reflected back to the NM. Therefore, the generated heat energy, and hence the observed PL energy shift, became functions of the cell's optical properties. To address this issue, we inserted a 250 nm thin layer of Au under the NM to prevent UV radiation from reaching the cancer cell, while at the same time, due to its high thermal diffusivity (17a mm2/s), does not interfere with heat diffusion from the NM to the cancer cell. Unfortunately, as demonstrated by the simulation results (
To verify the ability of the described experimental design to measure thermal diffusivity, we first transferred the NMs to several materials of known thermal diffusivities (αmaterial) and recorded
Through several lithography, metal evaporation and plasma etching techniques, we fabricated 40 μm wide, 35 nm thick GaN NMs with 3 μm wide, 250 nm thick Au microdisks attached to them (
was calculated for the NMs on the different materials
is plotted versus αmaterial
over αmaterial is observed at both the experimental and analytical solutions, higher
values are analytically calculated than experimentally measured at lower αmaterial. This discrepancy arose because the analytical solution did not account any heat loss from the NM surface, whether convection or radiation.
Next we demonstrate the applicability of our technique to biological cells. First, we constructed a calibration curve (red dotted curve in
equal to 2.05 (Supplementary Information), which yielded αcell equal to 0.123 mm2/s. Interestingly, the measured αcell was slightly less than that of water (0.143 mm2/s), which is consistent with the fact that water normally accounts for approximately 80% of the cell's weight. Furthermore, the water content within living cells harbors a large composition of macromolecules, such as proteins, having calculated thermal conductivities less than water33,34, thereby contributing to a lower thermal conductivity of living cells35.
The measurement resolution of our thermal diffusivity measuring technique (δα) is limited by experimental setup as well as by measured sample properties. Over the range of 3.33 eV to 3.42 eV, the average spectral resolution of the 2400 lines grating (δEGR) used in the above measurements is 0.137 meV, which yields a value of 0.25° C. for δT. Because δRt
In conclusion, we developed a novel thermal diffusivity measuring technique based on the transient response of GaN NMs to laser-induced heating. We also successfully measured, for the first time, the thermal diffusivity of cancerous cells to enable high-precision single-cell targeting using nanoparticles based hyperthermia treatment. Moreover, measuring the thermal diffusivities yields a more controllable experimental design for therapeutic or imaging techniques dealing with transient temperature variations within the cells. While we measured diffusivity for single cells, the spatial resolution can be increased or decreased, with a shorter or longer pulse width, respectively, to measure the diffusivity of subcellular regions or cell clusters and whole tissues. Finally, as demonstrated, the presented technique is not limited to biomedical applications and can also be employed in non-biological samples.
NM Fabrication.
Using a VEECO GEN930 plasma-assisted molecular beam epitaxy (PAMBE) system, a 35 nm thick indium gallium nitride (InGaN) sacrificial layer was grown at 560° C., followed by 40 nm thick GaN grown at 640° C., on a 500 nm GaN on a sapphire template wafer. The wafer was then cleaved into 1 cm2 pieces, which were subsequently degreased in acetone and isopropanol (IPA) for 5 mins and then cleaned in nitric acid (HNO3) at 65° C. for 15 mins for surface oxide removal. A thin layer of platinum metal (150 nm) was then deposited near the edge of the top surface. Finally, a layer of AZ resist was spin-coated and patterned into 40 μm wide disks, followed by inductively coupled plasma (ICP) reactive ion etching (RIE) using an Argon (Ar)/Chlorine (Cl)-based recipe to expose the InGaN sacrificial layer. The remaining photoresist was then removed with acetone, and the sample was cleaned in IPA.
Au Microdisk Fabrication.
A 250 nm thick layer of Au was evaporated onto the sample, followed by a spin-coated layer of SU8-2000.5 photoresist which was then patterned into 4 μm disks. Using Ar-bombardment in an ICP reactor, 150 nm of Au was removed, followed by 10 seconds immersion in potassium iodide (KI)/iodine (I2) based Au etchant to etch away the remaining 100 nm, leaving behind the intact GaN structure. Finally, oxygen (O2) plasma was used to remove the remaining SU-8 photoresist.
NM Exfoliation.
The samples were immersed in a bath containing CH3 OH. H2O2 (35%). HF(40%) (1:2:2). Back light illumination was performed by focusing light coming from a 200 W mercury (Hg) arc lamp onto the sample. To selectively etch the InGaN sacrificial layer, any photon energies higher than the GaN bandgap was blocked by placing a polished GaN wafer on top of the etching bate36. Once the InGaN was completely etched, the samples were gently cleaned by dipping them in IPA and were then dried using a critical point dryer (CPD) to enable proper exfoliation of the NM.
PL Measurement.
The PL emission from the NM was measured by focusing radiation from a helium-cadmium (He—Cd) gas laser to an average spot of 3 μm in diameter. The PL signal was then collected and sent to a 2400 line diffraction grating for dispersion. We pulsed the laser by passing the beam through a high-speed chopper. (More details are described in the Supplementary Information)
Cell Culture.
Breast cancer cell lines (MCF-7) were purchased from ATCC (Manassas, Va., USA). The MCF-7 cells were cultured in MEM medium supplemented with 10% foetal bovine serum (FBS) and Penicillin/Streptomycin solution (100 units/ml penicillin, 100 μg/ml streptomycin) and maintained in a humidified incubator at 37° C. and 5% CO2. In all assays, the cells used were from passages 5-25 and were used in suspension or plated on a glass slide (Fisher Scientific Ltd, UK) pre-coated with attachment factor protein (1×; Fisher Scientific Ltd, UK) for 30 minutes at 37° C. Finally, the MCF-7 cells were seeded at a density of 3×105 cells/mL (9×104 cells/cm2) and incubated at 37° C. and 5% CO2 in a humidified incubator for 24 hours before transferring the NMs onto the cells.
COMSOL Multiphysics Simulation.
The cell was modelled as a cylinder with a 5 μm radius and a 10 μm height. Because water normally accounts for approximately 80% of the cell's weight, we used water thermal conductivity and diffusivity to model the thermal properties of living cells. Because cells have even lower thermal diffusivities than water, heat energy will be further confined in case of cells. Regarding the thermal properties of gallium nitride (GaN) and gold (Au), we used the values available in the COMSOL libraries. The following time-dependent heat diffusion equation was solved for the NM/Au microdisk/cell system:
where α, ρ, Cp and Q are the thermal diffusivity, density, specific heat capacity at constant pressure and heat source power per unit volume, respectively. The initial temperature was set at 37° C. Convection cooling from the NM is taken into account by having a column of air on the NM.
Experimental Optical Setup.
As shown in Error! Reference source not found.5, 325 nm laser radiation, originating from a helium-cadmium (He—Cd) laser 50, was first chopped into 6 μs or 100 μs pulses using a Scitec 310CD high-speed optical chopper 52 with an in-house drilled 400 μm wide hole 54. The generated pulses 56 had a very low duty cycle (1.27×10−3) to ensure that all of the laser-generated heat energy during one pulse is dissipated before the incoming second heating pulse. A set of optical density filters 58 were used to vary the laser radiation intensity from 0.027 to 1.235 mW/μm2. After locating the Au microdisk (not shown), which is attached to the NM 58, the laser beam pulses 56 were reflected by a beam splitter 60 and focused to a spot of 3 μm in diameter using a 40× UV objective lens 62. The sample 64 was left on a thermo-electric controller 66, set at 37° C., long enough to reach thermal equilibrium prior to performing the measurement. The photoluminescence emission 68 from the NM 58, was then collected by the same objective 62, transmitted through the beam splitter 60, filtered at 70 and dispersed by a 2400 line grating 72 onto a charge-coupled device (CCD) camera 74. Each measurement consisted of collecting the PL emission at different laser radiation intensities and different chopping speeds.
Prior to measuring the thermal diffusivities of cells, we transferred the NMs onto materials of known thermal diffusivities to calibrate the measured signal. Because the fabrication/growth procedure of any material affects its final thermal diffusivity, we could not rely on standard available thermal diffusivities and had to measure the thermal diffusivities ourselves. The measured thermal diffusivities of the materials, which were measured using laser flash technique, are listed in
Error! Reference source not found.10 shows a sample of the measured PL emissions from NMs on cells. At both long (100 μs) and short (6 μs) pulse widths, the PL emission from the NM attached to the cancer cell emitted at the same peak emission when the excitation intensity was 0.027 mW/μm2. As the excitation intensity increased, the PL emission from the NM got spectrally redshifted due to the laser-induced heating. As observed, the redshift was higher for a 100 μs pulse width than a 6 μs pulse. We then converted the energy shifts into temperature shifts (using Varshni's equation). Finally, the ratio between the two shifts was calculated and used to estimate the thermal diffusivities (using the calibration curve constructed above,
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/050269 | 1/18/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62280224 | Jan 2016 | US |