The present application relates to a laser for real-time generation of high-order frequency-doubled (second-harmonic) laser modes with polarisation control. The laser typically is in the form of a green digital laser for on-demand intra-cavity selective excitation of second harmonic higher-order modes.
Green laser beams are generated using frequency doubling or nonlinear wave mixing techniques and have been extensively used in laser detection, spectroscopy, laser ranging, ocean exploitation, medical surgeries, particle manipulation, quantum communication and military applications.
The general scheme that has been prevalent for nonlinear wave mixing has normally involved using laser beams with a Gaussian TEM00 profile since they are emitted by most laser resonators. The generated green laser beam from either inside or outside the laser cavity will then be customised and shaped using additional optical elements such as apertures, lenses and diffractive optical elements to the desired beam profile.
However, the normal approach of initially frequency doubling the beam and then later manipulating the spatial profile of the beam is cumbersome.
The present invention seeks to address this by providing an improved method to realise on-demand arbitrarily spatial shaping of frequency doubled laser modes within a laser cavity.
According to the present invention there is provided a frequency double or mixing laser including:
a laser pump;
a rear optical element/s;
a Brewster window;
a laser generator medium;
an output coupler; and
a nonlinear crystal located inside the resonator cavity.
The nonlinear crystal may be located inside the resonator cavity before the output coupler
In one example embodiment, the rear optical element creates a standing or travelling wave resonator.
The laser may further include at least one optical element that controls the phase or/and the amplitude of the fundamental laser beam to a high-order.
In this example, the further at least one optical element modulates a high-order fundamental laser beam to achieve phase-matching inside the nonlinear crystal for the generation of the frequency doubled or mixed high-order laser beam.
Additionally, the at least one optical element is a spatial light modulator device designed to operate as a digitally addressed holographic mirror to display grey-scale image.
The nonlinear crystal may be positioned where the high-order fundamental beam is collinear.
In one example, the laser pump is a diode laser pump.
The laser generator medium may be an Nd:YAG crystal.
An example of a nonlinear crystal is a Potassium Titanyl Phosphate (KTP) crystal.
The Brewster window is preferably included in the laser resonator cavity to control the polarization to either horizontal or vertical or both.
The system and methodology described herein relate to a frequency doubling or wave mixing laser typically in the form of a green digital laser for on-demand intra-cavity selective excitation of second harmonic higher-order modes.
Referring to the accompanying Figures, a green digital laser 10 is described.
The laser 10 includes a laser pump 12 in the form of a diode laser pump which is arranged in an end-pump configuration. The laser 10 can also be a side pumped system as shown in
The utilisation of the diode laser as a source of energy for the laser 10 provides an advantage of having a source with a stable frequency, high brightness, long lifetime and better efficiency, especially when an end-pump setup is used such that the pump mode and the fundamental mode are matched.
A rear optical element 14 in the form of a mirror is used to create an L-shaped resonator to allow an end-pump configuration. The rear optical element 14 creates a standing or travelling wave resonator.
A Brewster window 16 allows the correct polarisation to be chosen for the spatial light modulator (SLM) 18 which will be described in more detail below.
The Brewster window 16 is included in the laser resonator cavity to control the polarization to either horizontal or vertical. In
A laser generator medium 20 in the illustrated embodiment is an Nd:YAG crystal.
In the prototype, the applicant's diode end-pumped Nd:YAG solid-state digital laser was used.
The Nd:YAG operates at 1064 nm to create the fundamental frequency for pumping the intracavity nonlinear crystal 24 so as to generate a second harmonic frequency at 532 nm and cause the laser 10 to emit a green laser beam.
One advantage of using the digital laser is its ability of generating and switching between spatial high-order modes in real-time just by displaying a grey-scale digital hologram image on the screen of the Spatial Light Modulator (SLM) that has been integrated as the end-mirror of the resonator.
The laser 10 also includes an output coupler 22 and importantly a nonlinear crystal 24 located inside the resonator cavity.
In one example, the nonlinear crystal 24 is located inside the resonator cavity before the output coupler.
In the prototype, the nonlinear crystal 24 used was a Potassium Titanyl Phosphate (KTP) crystal but it will be appreciated that any suitable nonlinear crystal can be used.
The nonlinear KTP crystal was chosen since it has a relatively high SHG coefficient, high damage threshold, great optical nonlinearity and an excellent thermal stability.
Many other nonlinear crystals can be incorporated into the laser 10 for frequency doubling or wave mixing of high-order modes. Such nonlinear crystals are BBO (β-barium borate), KDP (potassium dihydrogen phosphate), LiNbO3 (lithium niobate), and LiB305 (lithium triborate) to name a few examples.
These nonlinear crystals have the appropriate optical properties such as strong birefringent, crystal symmetry, high damage threshold and a good transparency for both the fundamental pump beam and the frequency doubled or mixed beam.
In any event, the nonlinear crystal 24 is positioned where the high-order fundamental beam is collinear.
The laser 10 includes at least one further optical elements in the form of the SLM 18 that controls the phase or/and the amplitude of the fundamental laser beam to a high-order.
The SLM 18 is designed to operate as a digitally addressed holographic mirror to display gray-scale image
The SLM 18 modulates a high-order fundamental laser beam to achieve phase-matching inside the nonlinear crystal for the generation of the frequency doubled or mixed high-order laser beam.
The incorporation of the SLM 18 in the laser cavity creates an advantage of allowing extensive dynamic range of phase holograms to be introduced on the fundamental mode inside the laser cavity such that the phase matching inside the non-linear crystal of the fundamental mode and the generated second harmonic mode produces a wide range of spatial profiles that can either be out-of-phase, quasi-phase or purely in-phase.
The laser 10 of
By way of background it is noted that there are three types of frequency mixing; there is second harmonic generation (SHG), sum frequency generation (SFG) and difference-frequency generation (DFG).
All these three frequency mixing processes involve two pump waves, the fundamental frequencies, w1 and w2, incident on a nonlinear medium that generates a new wave of frequency w3. The generated frequency w3 could either be the sum or difference of w1 and w2, or the second harmonic frequency of each fundamental frequency where both have the same frequency w1, and the generated second harmonic beam will have a frequency of w2=w1+w1.
These frequency mixing concepts can be applied to other nonlinear optical interaction but for purposes of illustration only the description will mainly concentrate on the second harmonic generation which is also termed as frequency doubling.
Frequency doubling is generated by the second susceptibility, if one considers a vector field E=(Ex, Ey, Ez), the second order dielectric polarization P(2) can be written as follow:
with the dielectric constant of ϵ0=8.85×10−12 As/(Vm), and dij the nonlinearity coefficients. Furthermore, for loss-free materials, only 10 out of 18 nonlinearity coefficients are independent. Also depending on the symmetry of the crystal, the number of the independent coefficients is considerably reduced so that most frequency doubling crystals will have only two or three independents, and non-zero coefficients remaining. In the case of the KTP, the remaining nonlinearity coefficients are shown in Tab. 1: If a field E(1) at the fundamental frequency w1 is incident onto the crystal, a field E(2) at the second harmonic frequency w2=2w1 is generated at the expense of the fundamental frequency.
If we consider the propagation in the z-direction only, the transformation of the field and the electric polarisation into the complex notations is as follows:
E
(1)=½(A(1)ei(ω
P
(1)=½(Pc(1)+Pc*(1)) (3)
The electric field P acts as the source for both fields E(1) and E(2) which means that the propagation of each wave is described by the following wave equation:
where c0 is the speed of light in the medium. The electric field polarization P is given by the sum of the field E(1)+E(2). From Eq. 1, the amplitude A for the second harmonic and the fundamental is given as follow:
where Pc(2)(w) represents the components of Pc(2) that oscillates at the frequency ω. The SHG process is then described by the interaction of the two coupled wave equations, Eq. 5 and Eq. 6 inside the nonlinear medium. The amplitude A(2) only increases significantly for Δk=2k1−k2=0, this is also known as phase-matching. If we consider the frequency doubling as the annihilation of two photons with energy ℏw2, into one photon with energy the phase-matching condition is equivalent to the conservation of momentum:
ℏk1+ℏk1=ℏk2 (7)
Since the wave number is related to the frequency and the speed of light using k=w/c, this relation means that the fundamental wave and the second harmonic must propagate with the same speed to avoid destructive interference of the second harmonic along the propagation directions which then avoids dispersion. It is also possible to split the fundamental wave into an extraordinary wave and an ordinary wave to attain phase matching. The parameter phase mismatch, Δk, is then used to assess the degree of these phase analogous phenomena.
When there is a phase mismatch, Δk≠0, this means that different dipoles in the nonlinear crystals oscillate in different phases causing destructive interference within the crystal which will result to a low conversion efficiency of the SHG. This results to the fundamental pump frequency being un-depleted such that the amplitude A(2)<<A(1), and the solution of the coupled equations, Eq. 5 and Eq. 6, for a crystal length, L, being given as:
The above solution clearly shows that the phase mismatch analogous of the coupled equations uses natural birefringence that exists in many nonlinear crystals for either phase matching or quasi phase matching. The term natural birefringence describes the dependency of the refractive index on the direction of polarization of the beam. The angle tuning of the pump beam with respect to the different axes of the nonlinear crystal allows for different polarization combinations to be achieved where there is phase matching.
For nonlinear crystal with refractive index n, the intensities I1 and I2 of the fundamental wave and the second harmonic wave are given as follow:
where deff is the effective nonlinear coefficient. The conversion efficiency is defined as the fraction of the fundamental beam power that is converted into the SHG:
where z is the crystal separation and L is the length of the crystal. It is clear from Eq. 11 that at distance z=L, 57% of the fundamental beam power can be converted into the second harmonic beam. For a KTP crystal of length 10 mm, the fundamental beam intensity, I1(0), that will be required to convert 57% of the fundamental power into the SHG, where the fundamental wavelength is 1064 nm, will be 0.026 GW/cm2. This is significantly less than the KTP crystal damage threshold of 3-3.5 GW/cm2.
In circular symmetry, the power Pw of the Gaussian beam with beam radius w and peak intensity I0 is given by:
It must be noted that increasing the Gaussian mode order and size of the fundamental pump beam will lead to a low conversion efficiency of the SHG beam such that the wings of SHG structure will be less pronounced since the wings of the pump will have less intensity. This will result in the intensity of the second harmonic field not to be perfectly Gaussian and the SHG power will then be expressed as:
Due to the high-intensity level of the beam inside the laser resonator compared to the beam intensity outside, the KTP crystal was placed inside the laser resonator to generate frequency doubled laser beam, as shown in
As stated previously, the fundamental beam at 1064 nm is generated by the active medium Nd: YAG and focused to the KTP. From chosen mirrors in
Thus, the average intensity I of the fundamental beam inside the Nd: YAG crystal can be calculated using steady-state conditions for round trip:
R′=e
[(2g
l)/(1+2I/I
)+2α
l] (16)
where Is is the saturated intensity, g0 l is the small-signal gain and the α0l is the loss per transit. This steady-state condition is only valid for low signal gain, and high reflectance R because the z-dependence of the fundamental wave intensity inside the KTP is neglected. The second harmonic wave output power is given as follow:
where A1 is the cross-sectional area of the fundamental beam in the Nd: YAG. One must also keep in mind that although if all the fundamental beam power can be converted into the second harmonic, the conversion efficiency of the KTP crystal may be extremely low. Typically, for diode-pumped Nd: YAG lasers with an efficiency of 48%, the conversion efficiency can be as low as 9.5%.
Looking at both circular and rectangular symmetry laser modes, the electric field distribution of circular and rectangular laser modes can be written as follow, derived from wave equation:
where Lpl is the Laguerre polynomials of order p and l; while Hn and Hm are Hermite polynomials of order n and m; and the Lauguerre-Gaussian mode Gouy phase
and for Hermite-Gaussian mode the Gouy phase is
All other parameters have their usual meaning.
The lowest-order beam of both Laguerre-Gaussian (LG0,0) and HermiteGaussian (HG0,0) beam has a Gaussian beam profile and is obtained by setting p=l=0 and n=m=0, in Eq. (18) and Eq. (19) respectively. These solutions are often referred to as TEMpl and TEMmn beams, where TEM stands for transverse electric magnetic, within the paraxial approximation, both electric and magnetic fields of the EM wave are, in fact, approximately transverse to the z-direction. The intensity distribution of the TEMpl consists of rings of a central loop for null l indices, and on the other hand for null p indices they take a pattern of petal-like structure. The intensity distribution is given by the absolute square of Eq. 18 and Eq. 19.
For both circular and rectangular symmetries, the propagation and divergence of both (LGpl)i and (HGmn) modes respectively is shown to be:
where w0 and θ0 represents the waist radius and the angle of divergence of the lowest-order fundamental Gaussian beam. The Rayleigh range is defined the same as in Gaussian beam using the following equation:
The beam radius describe by Eq. 20 and Eq. 24 are as a function of the propagation distance from the waist position.
In the illustrated example embodied, the generation of high-order Laguerre-Gaussian (LGp,l) and high-order Hermit-Gaussian (HGm,n) modes, the planoconcave diode end-pumped solid-state digital laser resonator of length 164 mm, was intracavity inserted with a nonlinear KTP crystal closer to the flat output coupler mirror and a spatial light modulation (SLM) to act as a digital holographic end-mirror of resonator cavity, as shown by the schematic of the experimental setup in
The SLM was encoded with a reflective grey-scale (0-255) digital holographic image that was displayed on the screen of the SLM inside the laser resonator cavity. The holographic image was encoded to simultaneously control both the phase and amplitude of the fundamental 1064 nm pump mode. The phase of the digital holographic image was used to control the mode size of the incident fundamental pump mode on to the KTP crystal and the amplitude of the digital holographic image was used to control type and order of the fundamental pump mode to be either HGm,n or LGp,l respectively. Since the SLM was a phase-only device, yet most of the desired holograms required both the amplitude and phase change to the field, the amplitude effect was encoded on the phase-only SLM using the well-known method of complex amplitude modulation.
The amplitude of the digital holographic image was encoded to have varying width thickness that were designed to be 98% match each null of the LGp,l or HGm,n mode, for order p,l=0, 1, 2 and m,n=0, 1, 2. The SLM was also encoded with digital holograms that had varies radius of curvature phases, R, from 200 mm to 500 mm with a step size of 50 mm. This was to easily control the mode radius size, w1, of the fundamental 1064 nm pump mode, and most importantly to also control the angle of acceptance, ψj, of the fundamental mode propagating inside the KTP crystal.
The angle tuning of the fundamental 1064 nm pump mode was achieved by varying the radius of curvature of the end-mirror which allowed for various phase-matching conditions of the natural birefringence properties of the nonlinear KTP crystal to be possible for both perfect and quasi-phase matching. The simulated angle of acceptance, ψj, of the fundamental pump mode on to the KTP crystal decreases when the radius of curvature, R, of the holographic end-mirror is varied from R=200 mm, to R=400 mm, (ψj,R400<<ψj,R200) as shown in
The propagation of the SHG mode with a radius size, w2, and an amplitude structure, A(2), inside the KTP crystal is designed to be collinear and have a plane wavefront along the entire crystal length, L, as the two faces of the crystal are designed to be flat. Therefore the fundamental pump mode with an amplitude structure, A(1) that has a varying mode radius size, w1(z), along the KTP crystal length, like in the case of tight focusing using a curved mirror of R=200 mm, will result in the SHG mode not fully matching the phase, the mode structure profile and the radius size of the fundamental pump mode along the entire crystal length from ZL to Z0, and this will result to the SHG mode not maintaining the mode structure profile of the fundamental pump mode as illustrated in
This is because along the propagation direction, Z, the fundamental pump mode acquires a phase shift which differs from that of a plane wave even though the optical frequency is constant and this phase difference is called the Gouy phase shift:
This means that the phase fronts have to propagate somewhat faster leading to an effectively increased local phase velocity. This phase difference is then translated to the created SHG modes such that it results to a slight increased distanced between the wavefronts of modes, w2
The ψj represents the different variation in the Gouy phases on the SHG modes with different orders j. It must be understood that the phase shift of a Gaussian beam is not exactly the same as for a plane wave. A Gaussian beam can be considered as a superposition of plane waves with different propagation directions. Those plane wave components with propagation directions different from the beam axis experience smaller phase shifts along the propagation direction, z, and the overall phase shift will arises from a superposition of all these components. For higher-order transverse modes such as LGp,l and HGm,n, the Gouy phase shift is stronger by a factor of 2p+l+1 and m+n+1 respectively; and this show that the resonance frequencies of higher-order modes in optical resonators will be high. This will then be compensated by adjusting the radius of curvature, R, of the end-mirror such that the propagation wavefront is collinear and plane inside the entire KTP crystal length.
From Eq. 32 it must be understood that when j=0, the fundamental pump mode will be collinear and have a plane wavefront inside the entire crystal length such that the Gouy phase shift will be constant with ψj=0. This will result to a perfectly phased matched high-order SHG mode that will reproduce the profile structure of the high-order fundamental pump mode.
For the generation of quasi-phased high-order SHG modes, j≥0, and this will results to some of the high-order SHG modes experiencing a phase shift and others not, and those SHG modes that experience a phase shift will produce a mode profile structure that will have a central maximum, that will be surrounded by a phased locked SHG mode. For the generation of non-phased high-order SHG modes, the structure of the fundamental mode will not be reproducible at all on the frequency doubled SHG mode. The intensity profile of the SHG mode will have mostly a dominant central maximum only, when j>0, as all of the SHG modes will experience a Gouy phase shift that will be out-of-phase with the fundamental pump mode, even though the laser will be generating a frequency doubled SHG laser beam.
The dimensions of the intracavity nonlinear KTP crystal was 3 mm×3 mm×5 mm and it was mounted inside a copper block that was not temperature controlled. The nonlinear KTP crystal was highly reflective for 532 nm on the left face diagonal of the crystal where the fundamental 1064 nm pump mode would be first incident on the KTP crystal, and the right face diagonal of the crystal was highly non-reflective for 532 nm. Both 1064 nm and 532 nm beams exited the output coupler mirror (M2) parallel to each other. We used a beam splitter that acted as a wavelength separator (WS) to separate the 1064 nm and 532 nm wavelengths beams. Lens f1 and f2 were used to relay image the plane of the output coupler mirror for 1064 nm onto the CCD1, and Lens f3 and f4 and were used to relay image the plane of the output couple mirror for 532 nm onto CCD2 camera, for the characterization of the frequency doubled SHG laser modes.
The method used to excite high-order modes from the laser cavity was by employing computer-generated hologram masks which were encoded as pixelated grey (0-255) images as shown in
The 2D-intensity distribution profiles shown 6 were captured at the output coupler mirror of the laser resonator. The spatial profile of these fundamental high-order modes remained constant both in the near-held and at the far-held. This suggest that the generated fundamental laser modes are pure and of high quality. The experimental results of the mode radius sizes, w1, of both the fundamental high-order LGp,l and HGm,n modes at the output coupler were compared to the theoretical solution shown in
The results in
The results of pumping the nonlinear KTP crystal with the fundamental high-order (LGp,l and HGm,n) modes, w, for the SHG of frequency doubled high-order (LGp,l and HGm,n) modes, 2w, is shown in
The near-field spatial intensity profiles of the SHG LGp,l modes, 2w, in
This phenomena also occurs for the SHG of HGm,n modes, 2w, as shown in
The non-reproducibility of the far-field spatial intensity profiles of the SHG LGp,l and SHG HGm,n modes when compared to the near-field spatial intensity profiles, which is similar to the fundamental pump mode, is due to quasi-phase matching of the modes inside the KTP crystal. The SHG high-order modes experience various Gouy phases, where some of the phases of the SHG modes are partly in-phase and others out-phase with the fundamental pump mode.
The generation of high-order quasi-phased SHG modes at far-field shows that fundamental pump mode was not propagating perfectly collinearly inside the entire length of the nonlinear KTP crystal. This resulted to some of the SHG modes to be in-phase at the near-field and some to be out-of-phase with the fundamental pump mode. To achieve perfect phase-matching, the radius of curvature, R, of the end-mirror was increased in steps of 50 mm by simply displaying rewritable digital holograms of appropriate R on the SLM without any realignment of the laser resonator. This incremental adjustment allowed for the evaluation of the correct radius of curvature to be selected where the fundamental pump mode will have a constant mode radius, w1
It was discovered that when the end-mirror is set at R=400 mm which equated to a fundamental Gaussian (LG00 or HG00) mode radius size of w1
It is clear in
The experimental results of the SHG LGp,l and HGm,n mode radius sizes, w2
Thus the higher-order Laguerre-Gaussian and Hermite-Gaussian modes operating at 1064 nm have successfully been converted to higher-order Laguerre-Gaussian and Hermite-Gaussian modes operating at 532 nm. Since the length of the nonlinear crystal, KTP, used was only 5 mm. The fundamental beam intensity I1 (0) required to convert fundamental power into the second harmonic was 0.0213 GW/cm2, which was in good agreement with the theory. It is noted that to achieve a higher conversion efficiency and be able to generate other higher-order modes, a longer KTP with a bigger area should be used.
It will thus be appreciated that the laser 10 allows the generation of real-time, intracavity both quasi-phase and purely in-phase frequency doubled high-order Laguerre-Gaussian Modes and Hermit-Gaussian modes respectively in a single laser resonator, with single polarization that is either vertical or horizontal. In the case of a dual laser as shown in
When these high-order Gaussian modes are purely in-phase they are reproducible both in the near field and far field.
Number | Date | Country | Kind |
---|---|---|---|
2018/03687 | Jun 2018 | ZA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/054629 | 6/4/2019 | WO | 00 |