This invention relates to a LED lighting circuit.
Tapped linear driver, or called as stepped LED driver, is a low cost LED driving technology that does not need a switched mode power supply. It dynamically bypasses one or more LED segment in a series connection of LED segments such that the forward voltage of the rest LED segments in the electrical loop matches the amplitude of the input voltage. The input voltage is usually the AC mains voltage. US20150108909A1 discloses such a tapped linear driver. Even further, it bypasses the LED segment in a binary manner. More specifically, taking the three segments' state as a 3-bit binary code, each segment corresponding to one bit, 1 means one segment is not bypassed and 0 means that segment is bypassed, the three segments are switched as 000, 001, 010, 011, 100, 101, 110 and 111.
A basic idea of embodiments of the invention is clamping the voltage of the switches to avoid current spikes, via a buffer component that is connected to an anode and a cathode of a series string of at least two LED segments. A discharge of the buffer component still flows through on LED segment to prevent power loss. Preferably, the buffer component also clamps the voltage of a current source circuit. Another basic idea of the embodiments of the invention is providing a circuit with robust surge protection, by using buffer components respectively in parallel with LEDs and with a current source for the LEDs.
According to a basic embodiment, it is provided an LED lighting circuit, comprising an input adapted to receive an input voltage, a plurality of LED segments connected in series and to the input, a buffer component connected to an anode and a cathode of a series string of at least two of the plurality of LED segments with respective switches, a current source circuit in series connection with a parallel connection of the buffer component and the at least two LED segments, across the input; further comprising a further buffer component across the current source circuit, wherein said buffer component and the further buffer component is in series connection.
This embodiment further improves the efficiency, EMI margin and THD. The efficiency can be increased by around 5% than the known circuit, EMI margin is 20 dB and THD is 3%. It can also mitigate surge risk to the LED and to the current source, since the buffer component can also shunt the surge current to the ground (another polarity of the input). Thus a double function of the two buffer components is provided.
In a further embodiment, said buffer component comprises a capacitor, said capacitor is adapted to buffer a voltage across the at least two LED segments when the switches of the at least two LED segment are open, and discharge via one switch of one LED segment and the other LED segment when the switch of the one LED segment closes while the switch of the other LED segment is still open.
This embodiment further defines the operation of the buffer component in reducing the input current spike.
In a further embodiment, it further a switching arrangement comprising a plurality of switches (Q1, Q2, Q3, Q4) each of which is in parallel with a respective LED segment to selectively bypass none or at least one LED segment so as to match the forward voltage of the rest of the plurality of LED segments with an instantaneous amplitude of the input voltage.
In this embodiment, a tapped linear driver (switched segments) topology is used. The voltage change will not be applied to the current source circuit, and there is less input current spikes.
In a further embodiment, said buffer component is adapted to stabilize a voltage across the at least two LED segments, thereby stabilizing a voltage across the current source circuit, when a switch of the at least two LED segments is switched.
This embodiment further defines the operation of the buffer component in reducing the input current spike.
In a further embodiment, the input comprises a positive terminal to connect an anode of the series plurality of LED segments, and a negative terminal to connect, via the current source circuit, a cathode of the series plurality of LED segments, and the buffer component is connected across the anode and the cathode of the series plurality of LED segments.
In this embodiment, the buffer component is connected across the whole series plurality of LED segments.
Alternatively, the buffer component can connect to a series connection of only a subset LED segments of the plurality of LED segments.
And it further comprises a diode forwarded from the cathode of the series plurality of LED segments to an interconnection of said buffer component and the further buffer component.
In a further embodiment, it further comprises a plurality of capacitors each of which is in parallel with one LED segment respectively, and a plurality of diodes each of which is between one switch and one capacitor to block a discharge of the capacitor via the switch such that the current flowing terminals of the switch is decoupled from discharging energy of that parallel capacitor.
Those capacitors further reduce flicker of the LED segments.
In a further embodiment, the input is adapted to receive a rectified AC mains voltage as the input voltage. The AC mains voltage may be 110V AC in the US or Japan, or 220/230V AC in Europe and China.
In a further embodiment, said switching arrangement is adapted to: not bypass a first LED segment and bypass a second LED segment when the instantaneous amplitude of the input voltage is in a first range; bypass the first LED segment and not bypass the second LED segment when the instantaneous amplitude of the input voltage is in a second range higher than the first range; and not bypass the first LED segment and the second LED segment when the instantaneous amplitude of the input voltage is in a third range higher than the second range.
This embodiment provides an application of the basic embodiment in binary tapped linear. Alternatively, the basic embodiment can also be used with normal tapped linear driver wherein the LED segments are turned on/off progressively/accumulatively in a manner of 001, 011, and 111 wherein three bits indicates the state of a respective LED segment.
Another aspect of the invention provides a lighting device comprising the LED lighting circuit according to the above embodiment. The lighting device could be preferably a road light.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
For a better understanding of the invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:
The invention will be described with reference to the Figures.
During switching period, there is high dv/dt on switching MOSFET Q1˜Q4. As the rectified input voltage (between Vbus and GND) at the time of switching considered to be constant, there will be big voltage spike on current source circuit B1 which made EMI poor. Also since the impedance of the current source circuit B1 is slowly responsive, high spike in input current is caused which made THD worse and also produces some noise due to circuit oscillating.
Another circuit is showed in
A basic embodiment of the invention proposes a buffer component connected to an anode and a cathode of a series string of at least two LED segments. This buffer component buffers a voltage across the at least two LED segments when the switches of the at least two LED segment are open, and discharges via one switch of one LED segment and the other LED segment when the switch of the one LED segment closes while the switch of the other LED segment is still open. Thus the voltage across the at least two LED segments is stabilized to prevent voltage/current spikes, and energy discharged by the buffer component still flows through the other LED segment and the efficiency is high.
More specially, as shown in
Let Q1 to Q4 are all turned off when the instantaneous amplitude of the AC mains voltage is at peak. As the amplitude goes down, Q1 is switched from off to on to bypass the LED segment LED1. At the point of switching, the input voltage is considered to be constant. C9 keeps the voltage from the positive output of the rectifier to the cathode of the LED segments. Thus the voltage across the current source circuit B1 is also kept. There is no voltage/current spike. C9 is discharged though the pass:
Q1-DS→D2→C2//LED2→D3→C3//LED3→D4→C4//LED4→D5
Wherein DS means from drain to source, and // means parallel connection.
The discharging current drives the LED segments LED2 to LED4 thus the embodiment has a higher efficiency than the circuit in
A further embodiment is adding a further buffer component in parallel with the current source circuit. As shown in
The voltage across the current source circuit is also stabilized by the capacitor C5. In case the MOSFET is turned on, the voltage across the current source circuit intends to increase but it will be first clamped by C5's voltage plus the forward voltage of D5. C5 is discharged though the pass:
C9→Q1-DS→D2→C2//LED2→D3→C3//LED3→D4→C4//LED4→B1
During Q1 switching, the voltage drop on LED1 will be applied to B1'S source point in very short time.
V
source1
=V
bus
−Vled1−Vled2−Vled3−Vled4 (1) (Q1˜Q4 off)
V
source2
=V
bus
−V
Rdson
−Vled2−Vled3−Vled4 (2) (Q1 on, Q2˜Q3 off)
By Equation 2-Eqution 1, we can gain the voltage changing on B1 during Q1 turning on.
ΔVsource=Vled1−VRdson (3)
B1 is linear current source, the resistance of B1 at the period of Q1 turning on can be calculated by equation (4).
R
B1
=V
source1
/I
in (4)
The current delta during Q1 turning on:
I
peak
=ΔV
source
/R
B1 (5)
The spike Ipeak is calculated by equation 5. This spike current make EMI, THD worse. Furthermore, it produce oscillating between pins of Q1 which reduce hi-pot performance.
Without C9 the response speed of B1 is much slower than turning on speed of Q1. With C1, we can see ΔVsource across the current source is reduced, RBI is increased. Obviously Ipeak changed smaller, input current become smooth (green channel in
The current source circuit can be implemented by bipolar transistor or MOSFET. Variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure and the appended claims. For example, the current source circuit can be moved from the cathode of the LED segments to the anode of the LED segments, namely a high side driving. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. A computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2018/105114 | Sep 2018 | CN | national |
18204436.2 | Nov 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/073386 | 9/3/2019 | WO | 00 |