The machine and the method relate to 3D objects manufacturing technologies and in particular to high throughput machines.
Printing of three-dimensional (3D) objects is a fast developing industry. The term “printing” includes a variety of additive manufacturing (AM) processes to create a three-dimensional object. In additive processes the 3D object is produced by successive dispensing of layers of material laid down on top or bottom of previously deposited layer. The 3D objects can be manufactured of almost any shape or geometry. The objects are produced from a computer generated 3D model and the equipment producing a 3D object is usually computer controlled.
3D objects are created by different additive processes such as inkjet printing, filament extrusion, powder sintering and others. The materials used for the 3D objects creation could be dispensed in liquid form and hardened by actinic radiation. Extruded or sintered materials do not require hardening by actinic radiation.
Additive manufacturing devices usually use a material dispensing or writing head or element to deposit the material in order to construct a solid 3D object. The material dispensing head typically deposits layer after layer, gradually adding object details building the three-dimensional (3D) object representation. A movement system supplies movement in space in three directions, typically, along the X-Y and Z axes. In some machine implementations, the support or platform with the 3D object is moved in the three directions. Machine implementations where the support with the 3D object is moved in two, for example, X and Y direction, and the material dispensing head moves in Z-axis direction exist. Other machine implementations with different split of the movement between the support with the 3D object platform and material dispensing head are known. The larger the 3D object to be created, the larger is the machine and change of material dispensing direction (for example, reciprocate) takes more time since the machine has to overcome inertia generated by the moving support or material dispensing head. This significantly reduces the throughput of the 3D object creation machine.
U.S. Pat. Nos. 4,976,582, 7,331,750, 7,735,390 and 8,456,124 disclose mechanisms where the material dispensing head is suspended on a number of kinematic levers. Change of relative positon of the levers moves the connected to the levers head in all three (X-Y-Z) directions and can position it in any point in space. Such multi-lever mechanisms have been adapted for creation of smaller 3D objects. Printers including such mechanisms are currently termed Delta (A) printers. With the Delta technology, the levers that move the head, which could be a material dispensing head, move in a synchronized simultaneous movement and their movements are complement each other. The movement of the levers is such that regardless the direction they move the material distribution head, the head remains in a plane parallel to the support on which the 3D object to be created is placed. The Delta machines can move the material dispensing head at a speed far exceeding the speed the conventional X-Y axes machines can move.
The Delta printers are mostly extrusion type machines and are designed to dispense material from a filament. The filament is an easily melting and fast-congealing plastic strip that is pulled from a storage reel. Such arrangement decreases the weight of the material dispensing head and does not resist fast movements of the material dispensing head.
Increase in throughput of a machine for manufacture of large size 3D objects has been provided by a combination of a large size main material dispensing head with a satellite lightweight material dispensing head. A motion system could move each material dispensing head along a path identical to the other dispensing head path or move it along a path different from the path of the other material dispensing head. Such complementary movement support increase in machine throughput.
The satellite material dispensing head could be configured to dispense material including the point coinciding with the point where the axis of symmetry of the main material dispensing head intersects the plane where the main material dispensing head is depositing the material. The satellite material dispensing head could be configured to support linear movement in X and Y direction. In some examples, the satellite material dispensing head could be configured also to move in direction of Z axis.
In addition to linear movement, the satellite material dispensing head can move in an oscillating type movement along and across the main material dispensing head travel direction and the amplitude and frequency of the oscillating type movement of the satellite materia' dispensing head could be variable.
The motion system of the 3D object manufacturing machine could be configured to move the main material dispensing head and hold in place the satellite material dispensing head and vice versa.
The material that the main material dispensing head and satellite material dispensing head dispense could be gel, plastic filament or other similar materials.
Both the main and satellite material dispensing heads could dispense identical material. Both the main and satellite material dispensing heads could dispense a layer of material of similar or identical thickness or each of the material dispensing heads could deposit a layer of material of different and variable thickness.
The satellite material dispensing head also could dispense a material different in at least one parameter from the material the main material dispensing head dispenses or extrudes.
The machine could include one or more material solidifying energy sources configured to harden or solidify the layer of deposited material. The energy sources could be such as ultraviolet energy sources, heat energy sources, microwave energy sources and others as it could be required to solidify the extruded material. In some examples, where the extruded material is extruded from a filament no solidifying energy is required as the material will cool down and solidify.
Increase in throughput of a machine for manufacture of large size 3D objects could be provided by a combination of a large size main material dispensing head with a satellite lightweight material dispensing head. The motion system could move each material dispensing head along a path identical to the other dispensing head path or move it along a path different from the path of the other material dispensing head increasing the machine throughput.
The satellite material dispensing head could be configured to dispense material including the point coinciding with the point where the axis of symmetry of the main material dispensing head intersects the material deposition plane. The satellite material dispensing head could be configured to follow the main material dispensing head or to support additional linear movement in X and Y direction. in some examples, the satellite material dispensing head could be configured to move in direction of Z axis. In addition to linear movement, the satellite material dispensing head can move in an oscillating type movement along and across the main material dispensing head travel direction and the amplitude and frequency of the oscillating type movement of the satellite material dispensing head could be variable.
In one example, the main material dispensing head is a multilink mechanism similar to satellite material dispensing head attached to a carrier configured to move the main material dispensing head on a distance exceeding span of the multilink mechanism.
The material that the main material dispensing head and satellite material dispensing head dispense could be gel, plastic filament or other similar materials.
Both the main and satellite material dispensing heads could dispense identical material. Both the main and satellite material dispensing heads could dispense a layer of material of similar or identical thickness or each of the material dispensing heads could deposit a layer of material of different and variable thickness.
The satellite material dispensing head also could dispense a material different in at least one parameter from the material the main material dispensing head dispenses or extrudes.
The machine could include one or more material solidifying energy sources configured to harden or solidify the layer of deposited material. The energy sources could be such as ultraviolet energy sources, heat energy sources, microwave energy sources and others as it could be required to solidify the extruded material. In some examples, where the extruded material is extruded from a filament no solidifying energy is required as the material will cool down and solidify.
The satellite material dispensing head can move in an oscillating type movement along and across the main material dispensing head travel direction and the amplitude and frequency of the oscillating type movement of the satellite material dispensing head could be variable.
The motion system of the 3D object manufacturing machine could be configured to move the main material dispensing head and hold in place the satellite material dispensing head and vice versa.
The material that the main material dispensing head and satellite material dispensing head dispense could be gel, filament or other similar materials.
Both the main and satellite material dispensing heads could dispense identical material. Both the main and satellite material dispensing heads could dispense a layer of material of similar or identical thickness or each of the material dispensing heads could deposit a layer of material of different thickness.
The satellite material dispensing head also could dispense a material different in at least one parameter from the material the main material dispensing head dispenses.
The machine could include one or more material solidifying energy sources configured to harden or solidify the layer of deposited material. The energy sources could be such as ultraviolet energy sources, heat energy sources, microwave energy sources and others as it could be required to solidify the extruded material. In some examples, where the extruded material is extruded from a filament no solidifying energy could be required as the material will cool down and solidify.
Reference is made to
3D object 108 is manufactured from material 124 dispensed or extruded through nozzle (not shown) of main material dispensing head 116. Material 124 could be such as gel disclosed in European Patent Application EP 15150125.1 to the assignee of the present application or a standard 3D plastic filament commercially available from a number of retail stores, e.g. from MATTERHACKERS, Lake Forest, Calif. 92630 U.S.A., or 3D Filament Manufacturing Company, Canal Fulton, Ohio 44614 U.S.A. Reference numeral 128 marks axis of symmetry of the main material dispensing head. Axis of symmetry 128 could pass through the center of the nozzle (not shown) or extrusion opening of main material dispensing head 116.
A lever 132 holds satellite material dispensing head 136. Satellite material dispensing head 136 is configured to rotate 360 degrees around axis of symmetry 128 of main material dispensing head 116 and move along the Z-axis. Satellite material dispensing head 136 could also be configured to support linear movement in X and Y direction with the help of a motion system 138. Satellite material dispensing head 136 dispenses or extrudes material identical to the material the main material dispensing head extrudes. In one example, satellite material dispensing head 136 could be configured to extrude a material different in at least one parameter from the material 124 the main material dispensing head 116 extrudes. The parameter could be diameter of the extruded strip, color of the extruded strip and others.
3D object manufacturing machine 100 further includes a motion system and a motion system controller 152 that could be a personal computer (PC) configured to control and move at least the main material dispensing head 116 along a predetermined path. The predetermined path usually corresponds to the layout of the 3D object to be manufactured. The motion system controller 152 is also configured to control and move satellite material dispensing head 136 or 204 along the predetermined path of main material dispensing head 116.
The 3D object to be manufactured could be of regular, like 3D object 108, or arbitrary geometric shape and the predetermined path could include one or more path segments, where the main material dispensing head 116 changes the travel direction. At the predetermined path segments, where main material dispensing head 116 changes the travel direction, the motion system controller 152 is configured to move satellite material dispensing head 136 or 208 in a direction different from the direction main material dispensing head 116 moves.
Motion system controller 152 in addition to motion system control, could also be configured to control the material dispensing or extrusion sequence by the main material dispensing head 116 and satellite material dispensing head 136 and 208 and the path of main material dispensing head 116 and satellite material dispensing heads 136 and 208. Motion system controller 152 could also be configured to receive the 3D object information from a CAD system and interpret it such as to operate the 3D object manufacturing machine to manufacture the 3D object.
In one example, satellite material dispensing head 136 or 208 moves in an oscillating type movement along and across the main material dispensing head 116 travel direction. The amplitude and frequency of the oscillating type movement of the satellite material dispensing head could be a variable frequency and magnitude amplitude.
For manufacture of a 3D object, controller 152 receives the three-dimensional object information from a CAD system (not shown) and according to the information received generates the 3D object layout. Controller 152 is operating the motion system and moves the main material dispensing head 116 along a pass determined by the 3D object layout. Satellite material dispensing head 136 or 208 is also moving along a path that could be partially overlapping and/or crossing the path of the main material dispensing head.
In one example, both the main 116 and satellite 136 or 208 material dispensing heads are dispensing identical material, although satellite material dispensing heads 136 and 208 could dispense a layer of material different in at least one parameter from the material the main material dispensing head dispenses. The parameter could be the thickness or diameter of the dispensed material, the color of the dispensed material and other parameters.
In another example, the satellite material dispensing head could be an inkjet head that dispenses color ink, including process color ink set to color already dispensed material 124.
In an additional example, satellite material dispensing head could be a Robotic spray dispensing head, such as air brush, that dispenses a two-component material like polyuria foam or polyurethane foam. Examples of such materials could be: “EasyFlo Spray foam FR8 Liquid Plastic” or similar polyurethane foams by any another manufacture. Both, the polyuria foam as well as polyurethane foam, could be dispensed only in the interior of the 3D object, creating a reinforced durable inner shell, without degrading the external appearance of the model.
In a further example, material such as “Styrocoat® Sprayable Plastic Coating” could be applied to the outer side of the shell. Such materials could enhance the strength of the 3D printed model and concurrently improve the external appearance of the 3D model. They could also enhance resistance to damage as well as smooth the layered texture surface. Styrocoat material are available in transparent form and could be dispensed over the color layer or coating, previously deposited, by the inkjet print head. Transparent coating will support and protect the 3D object color appearance.
The satellite material dispensing head movements, at least at segments of the pass determined by the 3D object layout. In the pass segments where the main material dispensing head 116 changes travel direction or pass direction, the satellite material dispensing head 136 could move in a direction different from the direction the main material dispensing head 116 is moving. Satellite material dispensing head could move in a different direction since it possesses capability of a linear movement in X and Y direction. Additionally, satellite material dispensing head could rotate 360 degrees around axis of symmetry 128 of the main material dispensing head 116 and also move in direction of Z axis.
As main material dispensing head 116 is leaving 3D object 108 layout and moves in the direction indicated by arrow 408, lightweight satellite material dispensing head 208 begins to dispense material 124 and move (
In a further example, both main material dispensing head 116 and satellite material dispensing head 208 travel together and dispense material 124 over the same segment of 3D object 108. Each head could dispense half of the amount of material 124 to facilitate smooth transition from one material dispensing head to another material dispensing head.
The process continues until satellite material dispensing head 136 accomplishes manufacture of segment 704 that enhances the strength of 3D object 108. As illustrated in
Reference is made to
The heavy main material dispensing head has been replaced by a lightweight head 802 suspended on a multilink mechanism 804 similar to multilink mechanism 204. Multilink mechanism 804 is mounted or attached to a carrier 808 configured to move main material dispensing head 802 on a distance exceeding the span of multilink mechanism 804. Main material dispensing head 802 is a lightweight head.
Carrier 808 moves main material dispensing head 802 along a predetermined path. The predetermined path usually corresponds to the layout of the 3D object to be manufactured. The 3D object to be manufactured could be of regular, like 3D object 108, or arbitrary geometric shape and the predetermined path could include one or more path segments, where the main material dispensing head 802 changes the travel direction. Since the main material dispensing head 802 is a lightweight head the sharp change of direction (for example, a corner or a sharp bend of the 3D object,
Additionally, main material dispensing head 802 is mounted on carrier 808 and a combination of movements similar to the movements described in relation to
The use of the satellite material dispensing head provides a distinct advantage over other 3D objects manufacturing machines by using for material dispensing the time it takes to the main material dispensing head to change travel direction.
Another advantage secured by the use of the satellite material dispensing head invention is that it could dispense material different from the material dispensed by the main material dispensing head in at least one parameter. It could also be used to dispense color, including process color.
The disclosed 3D objects manufacturing machine is expected to provide an increase of the machine throughput, use of a number of materials and addition of color to the 3D object to be manufactured.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2016/050147 | 2/9/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62132029 | Mar 2015 | US |