A MERS-CoV Receptor Decoy

Information

  • Research Project
  • 8981265
  • ApplicationId
    8981265
  • Core Project Number
    R44AI114023
  • Full Project Number
    2R44AI114023-02A1
  • Serial Number
    114023
  • FOA Number
    PA-14-071
  • Sub Project Id
  • Project Start Date
    6/1/2014 - 10 years ago
  • Project End Date
    7/31/2017 - 6 years ago
  • Program Officer Name
    STEMMY, ERIK J.
  • Budget Start Date
    8/14/2015 - 8 years ago
  • Budget End Date
    7/31/2016 - 7 years ago
  • Fiscal Year
    2015
  • Support Year
    02
  • Suffix
    A1
  • Award Notice Date
    8/14/2015 - 8 years ago

A MERS-CoV Receptor Decoy

? DESCRIPTION (provided by applicant): Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human health threat with a ~35% case fatality rate. MERS-CoV uses dipeptidyl peptidase 4 (DPP4), a cell surface protein, to enter and infect cells. During our Phase I study, using a transient plant expression system, we produced fusions of human DPP4 and the human immunoglobulin Fc sequences of IgG1, IgA1 and IgA2, to produce receptor decoys to block cellular infection with MERS-CoV. We demonstrated that DPP4-Fc binds to the S1 domain of MERS-CoV S protein, and that DPP4-Fc is a more potent inhibitor of MERS-CoV cellular infection than soluble DPP4. We showed that a DPP4-Fc fusion based on IgA1 might possibly be more effective than one based on IgG1. In addition, we demonstrated that binding and virus neutralization could be improved by more than 10-fold by modifying a single amino acid where human DPP4 and MERS-CoV spike protein contact. DPP4-Fc is also expected to have superior pharmacokinetics, as Fc will confer a long circulating half-life and the ability to be delivered to airway mucosal surfaces, the site of MERS-CoV infection. In a phase II study, we will produce new DPP4-Fc constructs to improve DPP4's affinity for MERS-CoV spike protein, and eliminate DPP4's peptidase activity by mutating the active site. We will optimize new constructs to improve expression in plants and to produce DPP4-Fc with human-like N-linked glycans. New DPP4-Fc fusions will be ranked for MERS-CoV spike protein-binding by ELISA and tested for the ability to neutralize MERS-CoV infection in susceptible cells. The best performing DPP4-Fc variants will be tested for protective efficacy in a mouse MERS model, evaluating both intraperitoneal and intranasal routes of administration. We will scale up production and purification of our lead molecule to purify 7 grams of DPP4-Fc, which will be used for a pilot 2-week repeat-dose safety/toxicology study in rats. We will evaluate safety and quantify DPP4-Fc in serum to obtain pharmacokinetic parameters. We will also screen for anti-DPP4-Fc antibodies in these studies.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R44
  • Administering IC
    AI
  • Application Type
    2
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    801833
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:801833\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    PLANET BIOTECHNOLOGY, INC.
  • Organization Department
  • Organization DUNS
    052917593
  • Organization City
    HAYWARD
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    945452740
  • Organization District
    UNITED STATES