The present invention relates to the field of phase shifter and antenna technology, particularly to the continually analog metamaterial-based variable capacitor.
The variable capacitor is a capacitor of which its capacitance can be adjusted within a certain range. It is widely used in the time-frequency response, frequency selection, phase shift control, transmission matching and other technology fields, especially the realization method based on the variable capacitor structure of phase shifter became the technical hot spot.
The phase shifters are widely used in many RF devices such as the phased array antennas, phase modulators and harmonic distortion cancelers. In order to obtain better application effect, the higher requirements such as the miniaturization, light weight, miniaturized, light weight, low insertion loss, and good flatness within the entire operating bandwidth, large phase shift range, wide operating bandwidth, good input and output port matching, low power consumption, and lower costs for the performance of phase shifters were also presented.
There are many realization methods of the existing phase shifters, but they all have certain application limitations. Among them, the active phase shifter consumes large power and has limited application scenarios. In the passive phase shifters, the switch-type phase shifters based on PIN diodes, CMOS, MEMS, etc. can't achieve the continuous phase adjustment, which are limited in the application scenarios that require the miniaturization and high phase shift accuracy; the reflective or variable capacitor phase shifters based on the variable capacitance diodes will reduce the figure of merit (FOM) due to the increased insertion loss in the high-frequency applications and affect performance indicators. In recent years, the variable capacitor phase shifters based on the ferroelectric thin film BST, liquid crystal and other metamaterials have received more and more attention because of their large adjustable range of dielectric constant or high FOM and the huge application prospect in the design research with the development of materials science. There were also many related patent applications, such as electronically steerable plane phased array antenna (201280058131.4), liquid crystal phase shifter and antenna (201810548743.0), a liquid crystal phase shifter and electronic equipment (201810333111.2) and MULTI-LAYERED SOFTWARE DEFINED ANTENNA AND METHOD OF MANUFACTURE (US 20180062266), but the existing designs require the longer transmission line to achieve 360° phase shift, thereby resulting in larger size, decreased FOM, etc., which are not conducive to the miniaturization and integration of RF microwave devices and antennas, but also reduce the design freedom of antennas. They are not conducive to the multi-polarization ability of antennas, and increase the design and processing difficulty of the feeding network; In addition, there is no better solution to minimize the influence of the bias circuit for adjusting the dielectric constant of metamaterial dielectric layer on the RF signal.
In order to overcome the existing technical deficiencies, the present invention discloses a metamaterial-based variable capacitor structure, the structure effectively reduces the size of the variable capacitance structure and the shunt attenuation of the radio frequency signal by the bias circuit, thereby improving the figure of merit (FOM) of the structure, largely solving the miniaturization, batching, integration and cost reduction problems of radio frequency microwave devices and antenna, and also adding more freedom to the antenna design.
Technical solution used in the present invention for solving the above-mentioned problems:
A metamaterial-based variable capacitor structure, comprising:
The first substrate (102) and the second substrate (103) set oppositely, and the metamaterial dielectric layer (107) located between the first substrate (102) and the second substrate (103);
The metal floor layer (104) between the first substrate (102) and the metamaterial dielectric layer (107); at least 2 gaps periodically arranged on the said metal floor layer (104);
The microstrip line (108) between the second substrate (103) and metamaterial dielectric layer (107), and the bias line (109) loaded on the microstrip line (108).
Preferably, the said microstrip line (108) has the periodically loaded branches (202), and two feeding terminals (111) and (112).
Preferably, the said metamaterial dielectric layer is composed of one or multiple layers of variable dielectric constant material, and the said material can be either the liquid crystal or ferroelectric film.
Preferably, the said structure further comprises:
The said metal floor layer (104) also has the isolation hole (106), and the said bias line (109) is further loaded with choke branches (110).
Preferably, the said gaps (105) can be centered relative to the microstrip line (108), or can be a certain distance away from the microstrip line (108), and their arrangement can be uniformly periodic, non-uniformly periodic, uniformly symmetrical, uniformly crossed, or non-uniformly symmetrical or crossed.
Preferably, the said isolation hole (106) can be rectangular, circular, triangular, or rhombic; there can be only one or many isolation holes (106) in series along the bias line.
Preferably, the said choke branches (110) can be fan-shaped, triangular, linear, or rectangular; there can be only one or many choke branches (110) on the same side or both sides of bias line.
Preferably, the said branches (202) can be arranged in the cross or non-cross type; the length of said branches (202) can be equal or not equal to that of the gaps (105); the said branches (202) can be uniformly or non-uniformly arranged; the said branches (202) can be corresponding or not corresponding to with the gaps (105), and there is no gap (105) in the position of the branch (202) directly facing the metal floor layer (104).
Preferably, the said bias line (109) can also be loaded on the branches (202) of the microstrip line (108).
Preferably, the said microstrip line (108) and gaps (105) can be arranged linearly or in the curve type of 180° or 90°; the said gaps (105) can be fan-shaped or rectangular; the said gaps (105) can be uniformly or non-uniformly arranged.
Compared with the existing technologies, the present invention has the following beneficial effects:
(1) The present invention fully utilizes the method of slitting the microstrip line floor and loading the branches on the microstrip line to obtain the slow wave effect of the microstrip line, realize the purpose of effectively reducing the phase shifter size and its loss and improve the FOM of phase shifter.
(2) The present invention utilizes the bias line with isolation holes and choke branches or made from high-resistance ITO (indium tin oxide), NiCr (nickel chromium), or some other material with a resistivity greater than 1×105Ω·m, effectively reducing the adverse effect of the bias circuit on the performance of phase shifter, further improving the FOM of phase shifter; and the bias line with isolation holes and choke branches can be integrated with the transmission line of phase shifter, which reduces the process flow and the production cost compared with existing ITO bias line.
Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the detailed description of the preferred embodiments below. The drawings are only for the purpose of illustrating the preferred embodiments and are not to be considered as limiting the invention. Moreover, the same reference numerals are used throughout the drawings to indicate the same parts. In the drawings:
Hereinafter, the illustrative embodiments of the present disclosure will be described in more detail with reference to the attached drawings. Although the illustrative embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure can be implemented in various forms and should not be limited to the embodiments set forth herein. On the contrary, these embodiments are provided to get a thorough understanding of the present disclosure, and to fully convey the scope of the present disclosure to the technicians in the art.
As shown in
The metamaterial-based variable capacitor structure is composed of the metal floor layer 104, the periodically arranged gaps 105, the metamaterial dielectric layer 107, and the microstrip line 108. Among them, the metamaterial dielectric layer 107 is composed of one or multiple layers of variable dielectric constant material, and the material can be the liquid crystal, ferroelectric thin film BST, etc. The dielectric constant of the metamaterial dielectric layer can be adjusted to change the capacitance value of the metamaterial-based variable capacitor, thereby changing the phase shift amount of the metamaterial-based phase shifter. The bias line 109 for changing the dielectric constant of the metamaterial dielectric layer 107 is loaded on the microstrip line 108. In order to reduce the impact of the bias line 109 on the radio frequency signal, the isolation hole 106 is punched on the corresponding bias line 109 at the floor layer 104 where the isolation hole is close to the microstrip line 108. The principle of radio frequency transmission line mismatch caused by the impedance mutation can effectively suppress the phenomenon of radio frequency signal loss caused by the transmission along the bias line. Meanwhile, combined with the choke branch 110 loaded on the bias line 109 having a certain distance from the microstrip line 108, the structure can greatly reduce the shunt attenuation of RF signals by the bias line compared with the conventional bias line.
According to the liquid crystal metamaterial-based variable capacitor described in Embodiment 1 and the test results of physical prototype working at 12.25 Ghz-12.75 Ghz showing that FOM is 90°/dB and the area required for phase shift 360° is only 1 mm*30 mm in the design with a liquid crystal layer thickness of only 5 μm, the index is better than the existing similar phase shifters.
As shown in
The metamaterial-based variable capacitor structure is composed of the metal floor layer 104, the periodically arranged gaps 105, the metamaterial dielectric layer 107, and the microstrip line 108. Among them, the metamaterial dielectric layer 107 is composed of one or multiple layers of variable dielectric constant material, and the material can be the liquid crystal, ferroelectric thin film BST, etc.
The 602 capacitance value can be changed by adjusting the dielectric constant of the metamaterial dielectric layer, thereby changing the phase shift amount of the metamaterial-based phase shifter. The bias line 109 for changing the dielectric constant of the metamaterial dielectric layer 107 is loaded on the microstrip line 108 or branch 202. In order to reduce the impact of the bias line 109 on the radio frequency signal, the isolation hole 106 is punched on the corresponding bias line 109 at the floor layer 104 where the isolation hole is close to the microstrip line 108. The principle of radio frequency transmission line mismatch caused by the impedance mutation can effectively suppress the phenomenon of radio frequency signal loss caused by the transmission along the bias line. Meanwhile, combined with the choke branch 110 loaded on the bias line 109 having a certain distance from the microstrip line 108, the structure can greatly reduce the shunt attenuation of RF signals by the bias line compared with the conventional bias line.
According to the liquid crystal metamaterial-based variable capacitor described in Embodiment 2 and the test results of physical prototype working at 12.25 Ghz-12.75 Ghz showing that FOM is 72°/dB and the area required for phase shift 360° is only 2.5 mm *3 mm in the design with a liquid crystal layer thickness of only 5 the index is better than the existing similar phase shifters.
As shown in
As shown in
As shown in
As shown in
The above are only the preferred embodiments of the present invention, but the scope of protection of the present invention is not so limited. The changes or replacement that any person skilled in the art can easily think of within the technical scope disclosed by the present invention shall be covered by the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201910476279.3 | Jun 2019 | CN | national |
This application is a US national phase application corresponding to International Patent Application No. PCT/CN2020/080886, filed on Apr. 10, 2020, which claims priority to Chinese Patent Application No. 201910476279.3, filed on Jun. 3, 2019; the contents of the above-referenced applications are hereby expressly incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/080886 | 3/24/2020 | WO | 00 |