The present disclosure relates to a method, an electric tool, and a computer program for setting an operating mode and/or associate result values of an electric tool.
Assembling of today are often complex. An assembling process may include assembling more or less complex objects where the components are assembled together. It is often high requirements on the manufacturing steps performed so that the manufacturing steps are performed correctly.
In assembling processes, electric tools are often used. It is important that the electric tool is set in the correct operating mode for the object on which the assembling steps should be performed. It is also important that the results of the assembly steps are associated with the object on which they were performed. This so that the results of the assembling steps on the object later can be reviewed.
There is therefore a need for an improved solution for setting the correct operating mode of the electric tool and associate result values of the assembling steps with the object on which the assembling steps were performed.
It is an object of the invention to address at least some of the problems outlined above, e.g. to ensure that the electric tool is set in the correct operating mode and/or to associate result values of the processing steps performed by the electric tool with the object on which they were performed.
In accordance with a first aspect the disclosure relates a method for setting an operating mode and/or associate result values of an electric tool. The method comprising the steps of. Detecting at least one radio signal from at least one radio tag positioned on or in relation to an object to be processed. Wherein the radio tag comprising an identifier associated with the object. Measuring distances between the electric tool and the at least one radio tag based on radio signal time of flight between the electric tool and the at least one radio tag. Selecting a first radio tag based on the distances. The first radio tag comprising a first identifier. And setting an operating mode of the electric tool based on the first identifier and/or associate result values of the processing steps performed by the electric tool with the first identifier.
In accordance with a second aspect the disclosure relates to an electric tool for setting an operating mode and/or associate result values of the electric tool. Whereby the electric tool is operative to detect at least one radio signal from at least one radio tag positioned on or in relation to an object to be processed, wherein the radio tag comprising an identifier associated with the object. The electric tool is further operative to measure distances between the electric tool and the at least one radio tag based on radio signal time of flight between the electric tool and the at least one radio tag. Next the electric tool selects a first radio tag based on the distances, the first radio tag comprising a first identifier. And then the electric tool set an operating mode of the electric tool based on the first identifier and/or associate result values of the processing steps performed by the electric tool with the first identifier.
The solution will now be described in more detail by means of exemplary embodiments and with reference to the accompanying drawings, in which:
Briefly described, a solution is provided for setting an operating mode of the electric tool based on an identifier associated with an object to be manufactured and/or associate result values of the processing steps performed by the electric tool with the identifier.
One example is where individual workpieces are processed together with among others screw joints. When assembling workpieces together with screw joints it is important that the screw joints are tightened to the correct result value. The result value can for instance be torque and/or angle. The result value often vary depending on which object that is being processed. It is therefore important that the electric tool is set in the correct operating mode depending on which object that is being processed. It is also important to associate result values of the processing steps performed by the electric tool with the object on which the processing steps were performed.
One type of a prior art solution is positioning system having several anchors in relation to the object that is being processed. The electric tool in this system is then positioned using the several anchors. The position is then used to set parameters of the electric tool. A disadvantage with this system is that it require several anchors in relation to.
With the solution according to exemplary embodiments of the present disclosure it is possible to easy set an operating mode of an electric tool based only on an identifier of an object to be processed and/or associate result values of the processing steps performed with the electric tool with the identifier.
In one exemplary embodiment only one radio signal is detected. This can for instance be the case in a factory where large objects are processed. In this embodiment the distance between the object are large. Therefore only one radio signal can be detected.
According to one exemplary embodiment the radio tag 30 is position on the object 20. In another exemplary embodiment the radio tag 30 is positioned on for instance a carrier of the object 20. This embodiment can for instance be implemented in a vehicle factory where carriers move around the vehicles from station to station in the assembly line.
In step S110 the distances between the electric tool 100 and the at least one radio tag 30 are measured based on radio signal time of flight between the electric tool 100 and the at least one radio tag 30. Thus no extra anchors are required in order to measure the distances between the electric tool 100 and the radio tags 30. Only the radio signal time of flight between the electric tool 100 and the at least one radio tag 30 are required in order to measure the distances.
In the step S120, the method comprising selecting S120 a first radio tag 30 based on the distances. In one exemplary embodiment the closest radio tag 30 is selected in step 120. In this exemplary embodiment the first radio tag 30 is selected since the first radio tag 30 is closest to the electric tool 100.
In another exemplary embodiment the step of measuring further comprising measuring distances between at least two radio tags 30 positioned on or in relation to an object (20) to. In this exemplary embodiment the step of selecting further comprising selecting the first radio tag 30 also based on the distances between the at least two radio tags 30. This embodiment can for instance be useful in a situation where the electric tool 100 is positioned in between two objects. In such a situation the distance to object A is closer. But by also measuring the distances between the at least two radio tags 30. And the distances between the radio tags 30 and the electric tool 100, the position of the electric tool 100 can be determined.
In step S130, the method comprising setting S130 the operating mode of the electric tool 100 based on the first identifier 40 and/or associate result values of the processing steps performed by the electric tool 100 with the first identifier 40.
According to one exemplary embodiment the operating mode can be, enable or disable the tool. This type of operation mode can be advantageous in a case where the electric tool 100 is only allowed to be used at an object associated with a specific identifier. According to another exemplary embodiment the operating mode can be the processing steps that the electric tool is allowed to perform. In yet another exemplary embodiment the operating mode can be a specific type of parameter set for the process steps that the electric tool should perform. For instance a torque and/or an angle that the electric tool should reach before the process step is considered completed.
In an exemplary embodiment of the present disclosure result values of the processing steps performed by the electric tool 100 are associated with the first identifier 40. According to one exemplary embodiment the result values can be that the process step was performed successfully or not successfully. This type of result value can be advantageous in a case where it is important to keep track of which process steps that once or several times have been unsuccessfully performed. In yet another exemplary embodiment the result values can be a specific type of result value for the process steps that the electric tool have been perform. For instance a torque and/or an angle that the electric tool have reached when the process step is completed.
In one exemplary embodiment of the present disclosure the object is a vehicle. In this exemplary embodiment the identifier 40 can be a VIN, Vehicle Identification Number. In one exemplary embodiment of the method the electric tool 100 is an electric tightening tool 100. In this embodiment the processing steps may be tightening of a screw of a nut, or a group of screws or nuts. In this embodiment the result values are at least one tightening parameter. The result values may be number of rotations, final torque, angle, an indication of OK, or Not OK and similar result values related to tightening. In another exemplary embodiment of the method the operating mode that is set based on the identifier 40 is a target value of the processing steps that is performed with the electric tool 100.
According to one exemplary embodiment the radio tags 30 are UWB-tags, Ultra-Wideband Radio. In this exemplary embodiment the distances between the electric tool 100 and the respective UWB-tags 30 are determined using UWB. According to one exemplary embodiment a request is sent to each respective UWB-tag 30 for the distance between the electric tool 100 and each respective UWB-tag 30. Then the electric tool 1000 selects the UWB-tag 30 based on the distances between the UWB-tags 30 and the electric tool 100.
According to one exemplary embodiment the UWB-tag 30 that is closest to the electric tool 100 is chosen.
In one exemplary embodiment the operating mode that is set based on the first identifier 40 is to lock the electric tool 100 tool or to unlock the electric tool 100. One situation where the electric tool 100 can be locked is for instance if all processing steps have already been performed on the first object. Then electric tool 100 is locked so that the electric tool 100 cannot perform any more processing steps on the first object.
In another exemplary embodiment the operating mode that is set based on the first identifier 40 is a target parameter of the processing steps that is performed with the electric tool 100. The target parameters for different object can be different. It is therefore advantageous to be able to set the target parameter of the electric tool 100 based on the identifier 40.
As mentioned above, in one exemplary embodiment the electric tool 100 is also operative to associate result values of the processing steps performed on the first object with the first identifier 40.
In one exemplary embodiment the electric tool 100 is an electric tightening tool 100. In this embodiment the processing steps may be tightening of a screw of a nut, or a group of screws or nuts. In this embodiment the result values are at least one tightening parameter. The result values may be number of rotations, final torque, angle, an indication of OK, or Not OK and similar result values related to tightening. As mentioned above the processing steps may be tightening of a screw of a nut, or a group of screws or nuts.
In one exemplary embodiment the object to be manufactured is a vehicle. In this exemplary embodiment the identifier 40 can be a VIN, Vehicle Identification Number. A vehicle identification number is a unique code, including a serial number, used by the automotive industry to identify individual motor vehicles, towed vehicles, motorcycles, scooters and mopeds.
An advantage by to associate result values of the processing steps, is that it may be possible to later analyze the result values. It is for example possible for a car manufacturer to provide information about a specific vehicle that has been involved in an accident. It may for example be advantageous for the car manufacturer to be able to provide result values about the processing steps when the car left the assembly process.
Referring again to
According to one exemplary embodiment the electric tool 100 is operative to select the closest radio tag 30. In this exemplary embodiment the first radio tag 30 is selected since the first radio tag 30 is closest to the electric tool 100.
In another exemplary embodiment the electric tool 100 is further operative to measure distances between at least two radio tags 30 positioned on or in relation to the object 20. In this exemplary the electric tool 100 is further operative to select the first radio tag 30 also based on the distances between the at least two radio tags 30. This embodiment can for instance be useful in a situation where the electric tool 100 is positioned in between two objects. In such a situation the distance to object A can be closer. But by also measuring the distances between the at least two radio tags 30. And the distances between the radio tags 30 and the electric tool 100, the position of the electric tool 100 can be determined.
According to one exemplary embodiment of the electric tool 100 the identifier 40 is a VIN, Vehicle Identification Number.
In one exemplary embodiment of the electric tool 100 the electric tool 100 is an electric tightening tool 10. In this exemplary embodiment of the electric tool 100 the operating mode may be a tightening parameter value, such as torque and/or angle. In one exemplary embodiment of the electric tool 100 the electric tool 100 the radio tag, is an UWB-tag, Ultra-Wideband Radio.
According to one aspect, the disclosure further relates to the above mentioned computer program, comprising computer readable code which, when run on the electric tool 100 causes the electric tool 100 to perform any of the aspects of the disclosure described herein.
When the above-mentioned computer program code is run in the processor 160 of the electric tool 100 it causes the electric tool 100 to be operative to detect at least one radio signal from at least one radio tag 30 positioned on or in relation to an object 20 to be processed, wherein the radio tag 30 comprising an identifier 40 associated with the object 20.
And further measure distances between the electric tool and the at least one radio tag 30 based on radio signal time of flight between the electric tool and the at least one radio tag 30.
Then select a first radio tag 30 based on the distances, the first radio tag 30 comprising a first identifier 40. Next set an operating mode of the electric tool 100 based on the first identifier 40 and/or associate result values of the processing steps performed by the electric tool 100 with the first identifier 40.
According to one aspect of the disclosure the processor 160 comprises one or several of:
The detecting module 161, the measuring module 162, the selecting module 163, and the operating module 164 are implemented in hardware or in software or in a combination thereof. The modules 161, 162, 163, and 164 are according to one aspect implemented as a computer program stored in the memory 260 which run on the processor 160. The electric tool 100 is further configured to implement all the aspects of the disclosure as described herein.
According to one exemplary embodiment the electric tool is an electric power tool. According to another exemplary embodiment the electric tool is an electric tightening tool. According to yet another exemplary embodiment the electric tool is an electric torque wrench.
Aspects of the disclosure are described with reference to the drawings, e.g., block diagrams and/or flowcharts. It is understood that several entities in the drawings, e.g., blocks of the block diagrams, and also combinations of entities in the drawings, can be implemented by computer program instructions, which instructions can be stored in a computer-readable memory.
Number | Date | Country | Kind |
---|---|---|---|
1830367-7 | Dec 2018 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/081112 | 11/13/2019 | WO | 00 |