The present application claims priority from Australian Provisional Patent Application No 2013900662 filed on 27 Feb. 2013, the contents of which are incorporated herein by reference.
This disclosure relates, generally, to the operation of drills and, more particularly, to a method of generating a drill hole sequence plan, to a method of operating a drill rig, to drill hole sequence planning equipment and to a drill rig control system. The disclosure has particular, but not necessarily exclusive, application in the field of blast hole drilling in open cut mines but those skilled in the art will appreciate that it could be used in other applications such as exploration hole drilling and also in underground mining applications where arrays of holes are to be drilled.
In mining operations, particularly in open cut mines, a drill hole pattern containing details relating to blast holes to be drilled at a mine site, such as a bench, is provided to a drill rig operator. The details of the blast holes include data relating to the coordinates of each hole to be drilled as well the depth of each hole to be drilled. The details may also contain the type of drilling to be carried out, i.e. rotary or percussive.
The applicant has developed autonomous drill technology which enables a drill rig to tram to a hole location and to drill a blast hole at that location autonomously. However, the drill rig still needs to be controlled at some steps during the blasting of a sequence of holes. More particularly, the drill rig operator still needs to select the following hole to be drilled and to provide the data relating to the following hole to be drilled to a control unit of the drill rig. This reduces the efficiency of the drilling operation.
In a first aspect, there is provided a method of generating a drill hole sequence plan, the method including
determining an initial location of a mobile drill rig;
selecting a destination location of the drill rig;
establishing a corridor between the initial location of the drill rig and its destination location, the corridor having a selected width; and
selecting a hole location of each hole within the corridor to be drilled by the drill rig sequentially as it moves from its initial location to its destination location.
The method may include selecting the width to have a known safe bound of a path of the drill rig. The method may further include an operator manually selecting a width of the corridor.
The method may include, initially, accessing a hole pattern of holes to be drilled by the drill rig. The hole pattern may include coordinates of each hole location and a depth of each hole to be drilled by the drill rig.
The method may include establishing the corridor on the hole pattern.
The method may include performing a distance check to see if a hole location falls within, or within a configurable distance from, the corridor. The method may include configuring the corridor to cover hole locations along a tramming path of the drill rig from its initial location to its destination location.
The method may include selecting an end hole location as the destination location of the drill rig. While the destination location will generally be the location of an end hole to be drilled by the drill rig, it will be appreciated that the end location could be any other suitable destination location such as, for example, an egress point for enabling the drill rig to exit a bench after completion of drilling the blast hole pattern for that bench.
The method may include generating a start position of the corridor at a location which is spaced from the initial location of the drill rig.
The disclosure extends to a method of operating a drill rig, the method including
providing to a drill rig controller a drill hole sequence plan as generated using the method as described above; and
causing the drill rig, which is responsive to the drill rig controller, to drill a hole automatically at each hole location sequentially along its path as the drill rig traverses the corridor.
The term “automatically” is to be understood, unless the context indicates otherwise, as being a system decision and not an operator decision.
In a second aspect, there is provided drill hole sequence planning equipment which includes
a position determining module configured to determine an initial location of the drill rig;
a selection module configured to select a destination location for the drill rig;
a corridor establishment module configured to establish a corridor between the initial location of the drill rig and its destination location, the corridor having a selected width; and
a processing unit responsive to the modules and configured to select a hole location of each hole within the corridor to be drilled by the drill rig sequentially as it moves from its initial location to its destination location.
The width of the corridor may be selected to have a known safe bound of a path of the drill rig. Further, the equipment may be configured to enable an operator manually to select a width of the corridor.
The modules may be implemented as hardware modules or as software modules. In the latter case the modules may form part of the processing unit.
The equipment may include an inputting module to enable a drill hole pattern to be entered into the processing unit.
The corridor establishment module may be operable to configure the corridor to include/exclude hole locations. The corridor establishment module may be configured to conduct a distance check on a hole location to determine if it should be included in, or excluded from, the corridor.
The corridor establishment module may further be configured to generate a start position of the corridor at a location which is spaced upstream from the initial location of the drill rig.
The processing unit may be configured to communicate with a drill controller to control the drill automatically to traverse the corridor and to drill holes at the hole locations falling within the corridor.
In a third aspect, there is provided a drill rig control system which includes
drill hole sequence planning equipment as described above; and
a drill controller, to which the drill rig is responsive, in communication with the drill hole sequence planning equipment.
The controller may be mounted on board the drill rig, the controller communicating wirelessly with the drill hole sequence planning equipment.
The disclosure extends still further to a drill rig which is responsive to drill hole sequence planning equipment as described above.
The disclosure also extends to software that, when installed on a computer, causes the computer to perform a method of generating a drill hole sequence plan as described above.
An embodiment of the disclosure is now described by way of example with reference to the accompanying drawings in which:
In
The equipment 14 constitutes part of a drill rig operating system 16. In an embodiment, the drill rig operating system 16 is an automated drill rig operating system which permits the drill rig 12 to operate in an autonomous mode.
Further, the equipment 14 is, in an embodiment, implemented in software and comprises various software modules. More particularly, the equipment 14 has a position determining module 18 for determining an initial location of the drill rig 12 at an operational location, such as a bench 20 of an open-cut mine into which the drill rig 12 is to drill blast holes 22, as will be described in greater detail below.
The equipment 14 further includes a selection module 24 for selecting a destination location for the drill rig 12 on the bench 20. Still further, the equipment 14 includes a corridor establishment module 26 for establishing a corridor between the initial location of the drill rig 12 on the bench 20 and the destination location on the bench 20, the corridor having a selected width, as will be described in greater detail below.
The equipment 14 includes a processing unit, forming part of a central processing unit or processor 28, of the drill operating system 16. The processor 28 is responsive to the modules 18, 24 and 26 for selecting a hole location of each hole in the corridor to be drilled by the drill rig 12 sequentially as it traverses the corridor from its initial location to its destination location.
While the equipment 14 of this embodiment of the disclosure has been developed particularly for use in open-cut mining for drilling of blast holes 22 in mine benches 20, those skilled in the art will appreciate that the equipment 14 can readily be used in other applications. These applications include, for example, drilling of exploration holes in an exploration zone, drilling an array of blast holes in a mine face of an underground mine or drilling rock bolting holes in a hanging wall of an underground mine. However, for ease of explanation, the equipment 14 will be described below with reference to its application in the drilling of blast holes 22.
The drill rig operating system 16 includes a navigation unit 30. The navigation unit 30 receives data from various input devices and/or sensors for determining the location of the drill rig 12 on the drill bench 20 with accuracy. The drill rig 12 includes a GPS unit 32, which, for example, is a high precision (HPGPS) unit, one or more video cameras 34 and other position determining systems such as wheel encoders, laser scanners, or the like. Data from the drill rig 12 mounted equipment are transmitted via a communications link 36 to the navigation unit 30 of the drill rig operating system 16. The navigation unit 30 determines the location of the drill rig 12 from the received information and provides the location information to the processor 28. The processor 28, in turn, provides the information to the position determining module 18 of the equipment 14 for enabling the initial location of the drill rig 12 on the bench 20 to be determined.
The drill rig operating system 16 further includes a tramming control module 38. The tramming control module 38 is used for the automated tramming of the drill rig 12 using information from the navigation unit 30.
Still further, the drill rig operating system 16 includes a safety module 40. The safety module 40 is responsible for monitoring the status of the drill rig 12, detecting possible collisions and implementing obstacle avoidance manoeuvres and/or taking other remedial action to prevent emergency situations arising.
The drill rig operating system 16 also includes a manual control module 42 for enabling an operator to override autonomous control of the drill rig 12 and to assume manual control of the drill rig 12. Manual control can either be effected from a cabin of the drill rig 12 or via remote control.
The drill rig operating system 16 includes a user interface 44. The user interface 44 includes a display 46. The user interface 44 further has various inputting devices such as a keyboard 48, pointing devices (not shown), or touch screen facilities on the display 46. The user interface 44 receives inputs from the processor 38 of the system 16 and from the operator of the drill rig operating system 16.
Instructions and data from the drill rig operating system 16 are fed via a communications link 50 wirelessly to a controller 52 mounted on the drill rig 12.
The drill rig 12 includes a drill mast including a drill string (depicted schematically at 13 in
Referring now to
To generate the drill hole sequence plan, a blast hole pattern 54 (
The blast hole pattern 54 is input into the system 16 in any one of a number of forms, for example, by being exported from blast hole pattern generating software to the drill rig operating system 16, via portable memory devices, suitable communications links (whether wireless or wired), or the like.
Hence, as shown at step 56 in
The equipment 14, using the position determining module 18, automatically determines the initial location of the drill rig 12 on the bench 20 and, specifically, the location of the drill string 13 relative to the blast hole pattern 54 as shown at step 58 using data from the navigation unit 30. The initial location of the drill rig 12 is shown at 100 in
The operator selects a multihole target button 60 (
Once the destination location 66 has been selected, the corridor establishment module 26 of the equipment 14 determines a corridor 102 (
In one embodiment, a width of the corridor 102 is configurable by the operator as a configurable input to the corridor establishment module. As will be appreciated, the wider the selected corridor, the more blast hole locations are likely to fall within the corridor 102 and, conversely, when a narrower corridor is selected the fewer the number of blast holes that will fall within the corridor 102. Also, by establishing a corridor 102 of a selected width it provides a known safe bound for a path of the drill rig 12.
Once the corridor 102 has been generated by the equipment 14, the path within the corridor 102 for the drill rig 12 to follow is highlighted on the display as shown at 76 in
The operator is prompted to press a start button 78 of the array 62 of buttons which commences automated operation of the drill rig 12. Hence, as shown in
The drill rig 12 trams (the state shown in
Upon completion of drilling the blast hole “152” at the location 84, the drill rig 12 automatically raises its drill string 13 and trams to a second location 90 in the corridor 102 where the drill string 13 is positioned directly over the location on the bench where a second hole, labelled “239” is to be drilled as shown in
The process of drilling and tramming is repeated until the drill rig 12 has drilled holes at all the locations sequentially in the corridor 102 up to and including the last hole labelled “246” at the destination location 66. Once the last hole “246” has been drilled, the drill rig 12 switches to an idling state and awaits further input from the drill operating system 16. The tramming and drilling step is shown at step 75 in
While the drill hole sequence plan has been described with reference to the destination location 66 being a drill hole location for the hole labelled “246”, it will be appreciated that the destination location need not necessarily be a drill hole location. The destination location could be any other suitable end position for the drill rig 12. For example, the corridor may be planned along the last sequence of holes to be drilled in the blast pattern after which the drill rig 12 is to leave the bench 20. To minimise the possibility of the drill rig 12 traversing already drilled holes in the bench 20 or to require the drill rig 12 to carry out undesirable manoeuvres, such as executing sharp turns, the destination location may be an egress point (not shown) from the bench 20.
Further, while the illustrated path 76 is shown as a substantially rectilinear path, it will be appreciated that this need not be the case and the drill rig 12 may follow a zigzag path to have the drill string 13 intersect drill hole locations within the corridor 102. In addition, the path 76 may include curved portions where applicable.
Referring to
For this purpose too, a start location 110 of the corridor 102 is spaced, or offset, a predetermined distance downstream of the initial location 100 of the drill rig 12. This is to exclude any hole locations which could be laterally located up to 90° relative to the position of the drill rig 12 and which would require undesirable manoeuvring of the drill rig 12 to reach such a lateral hole location.
A downstream end 112 of the corridor 102 is selected by the corridor establishment module 26 to be positioned downstream of the destination location 66 to take into account lack of precision of floating points. If the downstream end 112 of the corridor 102 were generated to overlie the destination location 66 exactly, it is possible that the destination location 66 could be excluded due to this lack of precision.
Once the desired area 104 of the corridor 102 has been determined, the corridor establishment module 26 determines which hole locations lie in the area 104. This is effected using data from the blast hole pattern 54 previously input into the system 16. In the example illustrated in
The module 26 orders the sequence in which holes are to be drilled at the locations 114 and 66 based on the positions of the locations 114 and 66 relative to the initial location 100 of the drill rig 12. The module 26 plans a single path from the initial location 100 of the drill rig 12 to the first hole location 114 in the corridor 102 and, then, from the first hole location 114 to the destination location 66. In other words, the module 26 determines the sequence in which the holes are to be drilled at the locations 114 and 66. It is to be noted that the path 76 described above with reference to
It is also to be noted that the above description of the establishment of the corridor 102 is to explain how the corridor 102 is generated and, for this purpose, has been limited to only a single hole location 114 between the initial location 100 of the drill rig 12 and its destination location 66. In practice, there will generally be a greater number of hole locations between the initial location 100 and the destination location 66 as described above with reference to
Referring now to
In this embodiment, the corridor 102 is configured manually by an operator using the user interface 44, for example, a touchscreen facility of the display 46 of the user interface. 44. The operator, noting the initial location 100 of the drill rig 12 sets the start location 110 of the corridor 102 by drawing a line 116 on the display downstream of the leading end of the drill rig 12. The length of the line 116 governs a width of the corridor 102 to be formed.
The operator then drags the line 116 over the display 46 in such a manner so as to establish the desired corridor 102. It is to be noted that, in this embodiment the corridor 102, instead of being rectilinear, is arcuate with a radius of curvature selected to facilitate appropriate tramming by the drill rig 12 along the corridor 102.
The remainder of the drilling procedure is as described above with reference to
It is an advantage of the described embodiments of the disclosure that a method, equipment and a system are provided which facilitate autonomous operations of drill rigs, in particular, tramming and drilling operations. Due to the fact that multiple drill hole locations are covered by the corridor and are selected in a single operation by the operator, continuous inputting of destinations by the operator for the autonomous drill is obviated. Thus, a number of drill holes can be drilled without operator input. Hence, the efficiency of the autonomous drilling operation is improved resulting in improved overall mine productivity.
It is a further advantage of the described embodiments that a corridor 102 is generated for the drill rig 12 which factors into account desirable operating parameters of the drill rig 12, provides a known safe bound for the path of the drill rig 12 and seeks to exclude manoeuvres which are undesirable, such as causing the drill rig 12 to execute sharp turns, which is detrimental to the operating performance of the drill rig 12 and which can also have an adverse impact on the bench 12.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the above-described embodiments, without departing from the broad general scope of the present disclosure. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
2013900662 | Feb 2013 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2014/000176 | 2/25/2014 | WO | 00 |