A METHOD OF GENERATING STERILE AND MONOSEX PROGENY

Information

  • Patent Application
  • 20210298276
  • Publication Number
    20210298276
  • Date Filed
    August 12, 2019
    5 years ago
  • Date Published
    September 30, 2021
    3 years ago
Abstract
The disclosure provides a method of generating a sterile sex-determined fish, crustacean, or mollusk. The method comprises breeding (i) a fertile homozygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile homozygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation to produce the sterile sex-determined fish, crustacean, or mollusk. The first mutation disrupts one or more genes that specify sexual differentiation, the second mutation disrupts one or more genes that specify gamete function, and the fertility of the fertile homozygous female fish, crustacean, or mollusk and the fertile homozygous mutated male fish, crustacean, or mollusk has been rescued. The disclosure also provides methods of making broodstock for use in producing sterile sex-determined fish, crustacean, or mollusks, as well as the broodstock itself.
Description
FIELD

The present disclosure relates generally to methods of sterilizing and sex-determining freshwater and seawater organisms.


BACKGROUND

The following paragraphs are not an admission that anything discussed in them is prior art or part of the knowledge of persons skilled in the art.


Fish species have been genetically engineered (GE) to produce valuable pharmaceutical proteins or to incorporate advantageous traits for aquaculture. A variety of fish with improved growth rates, food conversion ratios, resistance to disease, and enhanced nutritional benefits, have been developed to address the future demand for seafood and the need to improve sustainability in the aquaculture industry. However, worldwide adoption of these GE fish is hampered by concerns over their accidental release into natural ecosystems. Cultured fish have been shown to reproduce and survive in natural environments, resulting in feral populations. Similarly, GE fish may have native relatives, raising the possibility that the genetic modifications will spread throughout the wild population and alter the native gene pool. Commercial GE fish therefore represent a potential threat to the environment and a challenge to policy makers and regulatory agencies tasked with risk-benefit evaluations.


One approach to address one or more of the aforementioned issues is to sterilize fish. The induction of triploidy is the most used and best studied approach for producing sterile fish. Generally, triploid fish are produced by applying temperature or pressure shock to fertilized eggs, forcing the incorporation of the second polar body and producing cells with three chromosome sets (3N). Triploid fish do not develop normal gonads as the extra chromosome set disrupts meiosis. At the industrial scale, the logistics of reliably applying pressure or temperature shocks to batches of eggs is complicated and carries significant costs. An alternative to triploid induced by physical treatments is triploid induced by genetics, which results from crossing a tetraploid with a diploid fish. Tetraploid fish, however, are difficulty to generate due to poor embryonic survival and slow growth. In some examples, triploid males produce some normal haploid sperm cells thus allowing males to fertilize eggs, though at a reduced efficiency. Also, in some species, negative performance characteristics have been associated with triploid phenotype, including reduced growth and sensitivity to disease.


Another approach for sterilizing fish is by hormone treatment extending over several weeks. However, in many cases, including these intensive long-term treatment processes do not have a desirable efficacy of sterility, and/or have been associated with decreased fish growth performance. Furthermore, treatments involving a synthetic steroid may result in higher mortality rates.


Another approach for sterilizing fish is by using transgenic-based technologies, which include a step of integrating a transgene that induce germ cell death or disrupts their migration patterns resulting in their ablation in developing embryos. However, transgenes are subject to position effect as well as silencing. Consequently, such approaches are subject to extended regulatory review processes before being considered acceptable for commercial use.


An alternative approach for sterilizing fish is by knockdown or knockout of genes governing primordial germ cell (PGC) development. Such approaches have been reported to cause PGC loss and sterility. However, the sterile trait in these fish is not heritable. Accordingly, utilizing an approach of knockdown or knockout of genes governing PGC development may be logistically challenging and costly and thus impractical to efficiently mass produce sterile fish at commercial scale.


Mechanisms governing sexual or gonadal differentiation in teleost fish are complex processes influenced by internal (genetic and endocrine factors) and external factors, including social interaction and environmental conditions (water temperature, pH and oxygen), whose relative contributions can vary significantly depending on the species.


Improvements in generating sterile, sex-determined fish, crustaceans, or mollusks is desirable.


INTRODUCTION

The following introduction is intended to introduce the reader to this specification but not to define any invention. One or more inventions may reside in a combination or sub-combination of the instrument elements or method steps described below or in other parts of this document. The inventors do not waive or disclaim their rights to any invention or inventions disclosed in this specification merely by not describing such other invention or inventions in the claims.


One or more of the previously proposed methods used for sterilizing freshwater and seawater organisms may result in: (1) an insufficient efficacy; (2) increased difficulty to propagate the sterility trait by, for example, having to perform genetic selection to identify a subpopulation of sterile individual, and/or repeating treatment at each generation; (3) an increase in operating costs by, for example, incorporating significant changes in husbandry practices, being untransferable across multiple species, increasing production times, increasing the percentage of sterile organisms with reduced growth and increased sensitivity to disease, increasing mortality rates of sterile organisms, or a combination thereof; (4) gene flow to wild populations and colonization of new habitats by cultured, non-native species; or (4) a combination thereof.


The present disclosure provides methods of producing sex-determined sterilized freshwater and seawater organisms by disrupting their sexual differentiation and gametogenesis pathways. One or more examples of the present disclosure may: (1) increase efficacy of sterilization, by for example, allowing mass production of sterile individuals and ensuring that all individuals are completely sterile; (2) decrease operating costs by, for example, decreasing the amount of costly equipment or treatments, being commercially scalable, being transferable across multiple species, decreasing feed, decreasing production times, decreasing the percentage of organisms that attain sexually maturity, increasing the physical size of sexually mature organisms, or a combination thereof; (3) decrease gene flow to wild populations and colonization of new habitats by cultured non-native species; (4) increase culture performance by decreasing loss of energy to gonad development; or (5) a combination thereof, compared to one or more previously proposed methods used for sterilizing freshwater and seawater organisms.


One or more examples of the present disclosure may yield at least a 10% improvement in food conversion rates (FCR=amount of weight gained per quantity of food fed) and about 20% faster growth rates, compared to other lines currently used in production systems (Methyltestosterone treatment). These performance benefits may only impact feed costs (direct reduction in feed costs) and labor (reduced labor due to shortened culture times). Based on averaged itemized costs of a U.S. tilapia farming operation producing 1000 lbs of product, savings of about $0.23 per market sized fish (1.5 pounds) using all male sterile-Tilapia may be realized, suggesting that an operation choosing to retain its savings in production costs may experience an increase in profit margin approaching about 130%.


The present disclosure also discusses methods of making broodstock freshwater and seawater organisms for use in producing sex-determined sterilized freshwater and seawater organisms, as well as the broodstock itself.


The present disclosure provides a method of generating a sterile sex-determined fish, crustacean, or mollusk, comprising the steps of: breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation; and selecting a progenitor that is homozygous by genotypic selection, the homozygous mutated progenitor being the sterile sex-determined fish, crustacean, or mollusk, wherein the first mutation disrupts one or more genes that specify sexual differentiation, and wherein the second mutation disrupts one or more genes that specify gamete function.


The present disclosure also provides a method of generating a sterile sex-determined fish, crustacean, or mollusk, comprising the step of: breeding (i) a fertile homozygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile homozygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation to produce the sterile sex-determined fish, crustacean, or mollusk, wherein the first mutation disrupts one or more genes that specify sexual differentiation, wherein the second mutation disrupts one or more genes that specify gamete function, and wherein the fertility of the fertile homozygous female fish, crustacean, or mollusk and the fertile homozygous mutated male fish, crustacean, or mollusk has been rescued.


The fertility rescue may comprise germline stem cell transplantation. The fertility rescue may further comprise sex steroid alteration. The alteration of sex steroid may be an alteration of estrogen, or an alteration of an aromatase inhibitor.


The germline stem cell transplantation may comprise the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; and transplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk may be homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The germline stem cell transplantation may comprise the steps of: obtaining a spermatogonial stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a oogonial stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; and transplanting the spermatogonial stem cell into a testis of a germ cell-less fertile male fish, crustacean, or mollusk or the oogonial stem cell into an ovary of a germ cell-less fertile female fish, crustacean, or mollusk. The germ cell-less fertile male fish, crustacean, or mollusk and the germ cell-less fertile female fish, crustacean, or mollusk may be homozygous for the mutation of the dnd, ElavI2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The sterile sex-determined sterile fish, crustacean, or mollusk may be a sterile male fish, crustacean, or mollusk. The first mutation may comprise a mutation in one or more genes that modulates the synthesis of androgen and/or estrogen. The first mutation may comprise a mutation in one or more genes that modulate the expression of aromatase Cyp19a1a, Cyp17, or a combination thereof. The one or more genes that modulate the expression of aromatase Cyp19a1a may be one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof. The one or more genes that modulate the expression of Cyp17 may be cyp17l or an ortholog thereof. The second mutation may comprise a mutation in one or more genes that modulate spermiogenesis. The second mutation may comprise a mutation in one or more genes that cause globozoospermia. The second mutation in one or more genes that cause globozoospermia may cause sperm with round-headed, round nucleus, disorganized midpiece, partially coiled tails, or a combination thereof. The second mutation may comprise a mutation in one or more genes selected from the group consisting of Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, and an ortholog thereof.


The sterile sex-determined sterile fish, crustacean, or mollusk may be a sterile female fish, crustacean, or mollusk. The first mutation may comprise a mutation in one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor. The one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor may be one or more genes selected from the group consisting of Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof. The second mutation may comprise a mutation in one or more genes that modulate oogenesis, folliculogenesis, or a combination. The one or more genes that modulate oogenesis may modulate the synthesis of estrogen. The one or more genes that modulate the synthesis of estrogen may be FSHR or an ortholog thereof. The one or more genes that modulate folliculogenesis may modulate the expression of vitellogenins. The one or more genes that modulate the expression of vitellogenins may be vtgs or an ortholog thereof. The one or more genes that modulate the expression of vitellogenins may be a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof.


The present disclosure also provides a method of generating a sterile sex-determined fish, crustacean, or mollusk, comprising the step of: breeding (i) a fertile female fish, crustacean, or mollusk having a homozygous mutation with (ii) a fertile male fish, crustacean, or mollusk having a homozygous mutation to produce the sterile sex-determined fish, crustacean, or mollusk, wherein the mutation directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis, and wherein the fertility of the fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk have been rescued.


The mutation that directly or indirectly disrupts spermiogenesis may be a mutation in Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, or an ortholog thereof. The mutation that directly disrupts vitellogenesis may be a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof. The fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk may have a plurality of homozygous mutations that, in combination: directly or indirectly disrupt spermiogenesis; directly disrupt vitellogenesis; or both.


The fertility rescue may comprise germline stem cell transplantation. The fertility rescue may further comprise sex steroid alteration. The alteration of sex steroid may be an alteration of estrogen, or an alteration of an aromatase inhibitor.


The germline stem cell transplantation may comprise the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the homozygous mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the homozygous mutation; and transplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk may be homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk may have an additional homozygous mutation that specifies sexual differentiation. The mutation that specifies sexual differentiation may modulate the expression of aromatase Cyp19a1a, Cyp17, an inhibitor to aromatase Cyp19a1a, or a combination thereof. The mutation that modulates the expression of Cyp17 may be a mutation in cyp17l or an ortholog thereof. The mutation that modulates the expression of aromatase Cyp19a1a inhibitor may be a mutation in Gsdf, dmrt1, Amh, Amhr, or an ortholog thereof.


The breeding step of the herein disclosed methods may comprise hybridization or hormonal manipulation and breeding strategies, to specify sexual differentiation.


The fish, crustacean, or mollusk of the herein disclosed methods may be a fish.


The present disclosure also provides a fertile homozygous mutated fish, crustacean, or mollusk for producing a sterile sex-determined fish, crustacean, or mollusk, the fertile homozygous mutated fish, crustacean, or mollusk having at least a first mutation and a second mutation, wherein the first mutation disrupts one or more genes that specify sexual differentiation, wherein the second mutation disrupts one or more genes that specify gamete function, and wherein the fertility of the fertile homozygous mutated fish, crustacean, or mollusk has been rescued. The fertility rescue may comprise germline stem cell transplantation. The fertility rescue may further comprise sex steroid alteration. The alteration of sex steroid may be an alteration of estrogen, or an alteration of an aromatase inhibitor.


The germline stem cell transplantation may comprise the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; and transplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk may be homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The germline stem cell transplantation may comprise the steps of: obtaining a spermatogonial stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a oogonial stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; and transplanting the spermatogonial stem cell into a testis of a germ cell-less fertile male fish, crustacean, or mollusk or the oogonial stem cell into an ovary of a germ cell-less fertile female fish, crustacean, or mollusk. The germ cell-less fertile male fish, crustacean, or mollusk and the germ cell-less fertile female fish, crustacean, or mollusk may be homozygous for the mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The sterile sex-determined sterile fish, crustacean, or mollusk may be a sterile male fish, crustacean, or mollusk. The first mutation may comprise a mutation in one or more genes that modulates the synthesis of androgen and/or estrogen. The first mutation may comprise a mutation in one or more genes that modulate the expression of aromatase Cyp19a1a, Cyp17, or a combination thereof. The one or more genes that modulate the expression of aromatase Cyp19a1a may be one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof. The one or more genes that modulate the expression of Cyp17 may be cyp17l or an ortholog thereof. The second mutation may comprise a mutation in one or more genes that modulate spermiogenesis. The second mutation may comprise a mutation in one or more genes that cause globozoospermia. The second mutation in one or more genes that cause globozoospermia may cause sperm with round-headed, round nucleus, disorganized midpiece, partially coiled tails, or a combination thereof. The second mutation may comprise a mutation in one or more genes selected from the group consisting of Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, and an ortholog thereof.


The sterile sex-determined sterile fish, crustacean, or mollusk may be a sterile female fish, crustacean, or mollusk. The first mutation may comprise a mutation in one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor. The one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor may be one or more genes selected from the group consisting of Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof. The second mutation may comprise a mutation in one or more genes that modulate oogenesis, folliculogenesis, or a combination. The one or more genes that modulate oogenesis may modulate the synthesis of estrogen. The one or more genes that modulate the synthesis of estrogen may be FSHR or an ortholog thereof. The one or more genes that modulate folliculogenesis may modulate the expression of vitellogenins. The one or more genes that modulate the expression of vitellogenins may be vtgs or an ortholog thereof. The one or more genes that modulate the expression of vitellogenins may be a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof.


The present disclosure also provides a fertile fish, crustacean, or mollusk having a homozygous mutation for producing a sterile sex-determined fish, crustacean, or mollusk, wherein the mutation directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis, and wherein the fertility of the fertile fish, crustacean, or mollusk has been rescued.


The mutation that directly or indirectly disrupts spermiogenesis may be a mutation in Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, or an ortholog thereof. The mutation that directly disrupts vitellogenesis may be a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof. The fertile fish, crustacean, or mollusk may have a plurality of homozygous mutations that, in combination: directly or indirectly disrupt spermiogenesis; directly disrupt vitellogenesis; or both. The fertility rescue may comprise germline stem cell transplantation. The fertility rescue may further comprise sex steroid alteration. The alteration of sex steroid may be an alteration of estrogen, or an alteration of an aromatase inhibitor.


The germline stem cell transplantation may comprise the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the homozygous mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the homozygous mutation; and transplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk may be homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using ploidy manipulation. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created by hybridization. The germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk may be created using exposure to high levels of sex hormones.


The fertile fish, crustacean, or mollusk may have an additional homozygous mutation that specifies sexual differentiation. The mutation that specifies sexual differentiation may modulate the expression of aromatase Cyp19a1a, Cyp17, an inhibitor to aromatase Cyp19a1a, or a combination thereof. The one or more genes that modulate the expression of aromatase Cyp19a1a may be one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof. The one or more genes that modulate the expression of aromatase Cyp19a1a inhibitor may be one or more genes selected from the group consisting of Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof.


Producing a sterile sex-determined fish, crustacean, or mollusk may comprise a breeding step comprising hybridization or hormonal manipulation and breeding strategies, to specify sexual differentiation.


The herein disclosed fertile fish, crustacean, or mollusk may be a fish.


The present disclosure also provides a method of making a fertile homozygous mutated fish, crustacean, or mollusk that generates a sterile sex-determined fish, crustacean, or mollusk, comprising the steps of: breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation; selecting a progenitor that is homozygous by genotypic selection; and rescuing the fertility of the homozygous progenitor, wherein the first mutation disrupts one or more genes that specify sexual differentiation, and wherein the second mutation disrupts one or more genes that specify gamete function.


Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific examples in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the presently disclosed methods and organisms will now be described, by way of example only, with reference to the attached Figures.



FIG. 1 is a flowchart showing an example of a method of generating a sterile sex-determined fish, crustacean, or mollusk and propagating a mutated line.



FIG. 2 is illustrations and graphs showing an example of F0 mosaic founder mutant identification and selection strategy. Mutant alleles were identified by fluorescence PCR with genes specific primers designed to amplify the regions around the targeted loci (120-300 bp). For fluorescent PCR, both combination of gene specific primers and two forward oligos with the fluorophore 6-FAM or NED attached were added to the reaction. A control reaction using wild type DNA is used to confirm the presence of single Peak amplification at each loci. The resulting amplicon were resolved via capillary electrophoresis (CE) with an added LIZ labeled size standard to determine the amplicon sizes accurate to base-pair resolution (Retrogen). The raw trace files were analyzed on Peak Scanner software (ThermoFisher). The size of the peak relative to the wild-type peak control determines the nature (insertion or deletion) and length of the mutation. The number of peaks indicate the level of mosaicism. We selected F0 mosaic founder carrying the fewest number of mutant alleles (2-4 peak preferentially).



FIG. 3 is a graph illustrating an example Melt Curve plot visualizing the genotypes of heterozygous, homozygous mutant and wild type samples. The negative change in fluorescence is plotted versus temperature (−dF/dT). Each trace represents a sample. The melting temperature of the wild-type allele in this example is ˜81° C. (wild type peak), the melting temperature of the homozygous mutant product (homozygous deletion peak) is ˜79° C. The remaining trace represents a heterozygote.



FIG. 4 panels A to D are photographs of different stages of growth of a Tilapia F0 generation comprising double-allelic knockout of pigmentation genes.



FIG. 5 panels A to B are photographs of Tilapia after multi-gene targeting comprising dead end1 (dnd) and tyrosinase (Tyr). FIG. 5 panel A is an F0 Tyr deficient albino. FIG. 5 panel B shows dissected testis from control (WT) and sterile (F0 dnd KO) tilapia.



FIG. 6 panels A to B are photographs of germ cell depleted testis and ovary (arrowheads point toward the gonads) from Elavl2-Knockout tilapia (ElavI2Δ8/Δ8). Small photo inserts show the urogenital papillae. Elavl2 mutants were produced by microinjecting engineered nucleases targeting Elavl2 coding sequence into one cell stage tilapia embryos. One of the resulting founder males was mated with a wild-type female and produced heterozygous mutants in the F1 generation. Mating of these F1 mutants ElavI2Δ8/+ produced an F2 generation with approximately 25% of the clutch being sterile homozygous mutant of both sexes.



FIG. 7 panels A to C are illustrations of selected mutant alleles at the tilapia cyp17loci. FIG. 7 panel A is a schematic of the cyp17gene. Exons (E1-8) are shown as shaded boxes; translational start and stop sites as ATG and TAA, respectively. Arrows point to targeted sites in the first exon. FIG. 7 panel B is the wild-type reference sequence (SEQ ID NO: 60) with the selected germ-line mutant allele (SEQ ID NO: 61) from an offspring of Cyp17 F0 mutated tilapia. This 11nt+5 nt deletion is predicted to create a truncated protein that terminates at amino acid 44 rather than position 521. FIG. 7 panel C is the predicted protein sequences of WT (SEQ ID NO: 62) and mutant cyp17allele (SEQ ID NO: 63) in which the first 16 amino acids are identical to those of the wild-type Cyp17 protein and the 44 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 8 panels A to C are graphs, illustrations, and photographs showing cyp17 loss of function produces all-male offspring with no secondary sex characteristics. FIG. 8 panel A is a graph showing Cyp17 mutant fish exhibiting complete male biased. A founder male with germline mutations at the cyp17loci was bred with a wild type female, and the male and female F1 progeny carrying the null Δ16-cyp17allele were selected and crossed to produce F2 generation of wild type (WT) homozygous (−/−) and hemizygous mutants (+/−). The graph shows the count of males and females for a given genotype. FIG. 8 panel B shows an undetectable level of testosterone in cyp17 loss of function mutants. Blood was collected from the caudal vein and centrifuged at 3000 rpm for 10 min. Plasma was separated and frozen at −80° C. and free plasmatic testosterone level was measured by enzyme linked immunosorbent assay (ELISA) (Cayman Chemical, Michigan, USA). Plasma samples were analyzed in triplicate. FIG. 8 panel C shows photographs of two cyp17 F0 KO (−/−) males with underdeveloped UGP compared to an age matched non-treated male (right image).



FIG. 9 panels A to E are illustrations showing Cyp17 loss of function mutants are sexually delayed with smaller testes and oligospermia. F2 progeny from hemizygous cyp17 mutants were raised to 5 months of age, weighted (FIG. 9 panel C), and genotyped. FIG. 9 panel A shows males were sacrificed, and their testes exposed (FIG. 9 panel A) and dissected (FIG. 9 panel B) revealing a gradient of color and size (FIG. 9 panel D) with WT being the most mature gonad and homozygous appearing as sexually delayed. FIG. 9 panel E shows volume of strippable milt from 8 homozygous and WT males and FIG. 9 panel F shows spectrophotometric comparison of sperm concentration (absorbance at 600 nm).



FIG. 10 panels A to C are illustrations of selected mutant alleles at the tilapia Tight junction protein 1 (Tjp1a) loci. FIG. 10 panel A is a schematic of the Tjp1a gene. Exons (E1-32) are shown as shaded boxes; translational start and stop sites as ATG and TAA, respectively. Arrows point to targeted exons 15 and 17. FIG. 10 panel B is the wild-type reference sequence (SEQ ID NO: 71) with the selected germ-line mutant allele (SEQ ID NO: 72) from an offspring of Tjp1a F0 mutated tilapia. This 7 nt deletion is predicted to create a truncated protein that terminates at amino acid 439 rather than position 1652. FIG. 10 panel C is the predicted protein sequences of WT (SEQ ID NO: 73) and mutant Tjp1a allele (SEQ ID NO: 74) in which the first 439 amino acids are identical to those of the wild-type Tjp1a protein.



FIG. 11 panels A to C are illustrations of selected mutations at the tilapia Hippocampus abundant transcript 1 a (Hiat1) loci. FIG. 11 panel A is a schematic of the tilapia Hiat1 gene. Exons (E1-12) are shown as shaded boxes; 5′ and 3′ untranslated regions are shown as open boxes. Arrows point to targeted exons 4 and 6. FIG. 11 panel B is the wild-type reference sequence (SEQ ID NO: 75) with the sequence of the selected germ-line mutant allele (SEQ ID NO: 76) from an offspring of Hiat1 F0 mutated tilapia. Location of the 17 nucleotides deletion is shown by dashes. This frameshift mutation is predicted to create a truncated protein that terminates at amino acid 234 rather than position 491. FIG. 11 panel C shows the predicted protein sequences of WT (SEQ ID NO: 77) and truncated mutant Hiat1 protein (SEQ ID NO: 78) in which the first 218 amino acids are identical to those of the wild-type and the following 16 amino acids are miscoded.



FIG. 12 panels A to C are illustrations of selected mutations at the tilapia Small ArfGAP2 (Smap2) loci. FIG. 12 panel A is a schematic of the tilapia Smap2 gene. Exons (E1-12) are shown as shaded boxes, and 3′ untranslated region is shown as open box. Arrows point to targeted exons 2 and 9. FIG. 12 panel B is the wild-type reference sequence (SEQ ID NO: 79) with the sequence of the selected germ-line mutant allele (SEQ ID NO: 80) from an offspring of Smap2 F0 mutated tilapia. Location of the 17 nucleotides deletion is shown by dashes. This frameshift mutation is predicted to create a truncated protein that terminates at amino acid 118 rather than position 429. FIG. 12 panel C shows the predicted protein sequences of WT (SEQ ID NO: 81) and truncated mutant Smap2 protein (SEQ ID NO: 82) in which the first 53 amino acids are identical to those of the wild-type and the following 63 amino acids are miscoded.



FIG. 13 panels A to C are illustrations of selected mutant alleles at the tilapia Casein kinase 2, alpha prime polypeptide a (Csnk2a2) loci. FIG. 13 panel A is a schematic of the Csnk2a2 gene. Exons (E1-11) are shown as shaded boxes; translational start and stop sites as ATG and TGA, respectively. Arrows point to targeted exons 1 and 2. FIG. 13 panel B is the wild-type reference sequence (SEQ ID NO: 83) with the selected germ-line mutant allele (SEQ ID NO: 84) from an offspring of Csnk2a2 F0 mutated tilapia. This 22 nt deletion is predicted to create a truncated protein that terminates at amino acid 31 rather than position 350. FIG. 13 panel C is the predicted protein sequences of WT (SEQ ID NO: 85) and mutant Csnk2a2 allele (SEQ ID NO: 86) in which the first 31 amino acids are miscoded.



FIG. 14 panels A to C are illustrations of selected mutant alleles at the tilapia Golgi-associated PDZ and coiled-coil motif (Gopc) loci. FIG. 14 panel A is a schematic of the Gopc gene. Exons (E1-9) are shown as shaded boxes; translational start and stop sites as ATG and TAA, respectively. Arrows point to targeted exons 1 and 2. FIG. 14 panel B is the wild-type reference sequence (SEQ ID NO: 87) with the selected germ-line mutant allele (SEQ ID NO: 88) from an offspring of Gopc F0 mutated tilapia. This 8 nt deletion is predicted to create a truncated protein that terminates at amino acid 30 rather than position 444. FIG. 14 panel C is the predicted protein sequences of WT (SEQ ID NO: 89) and mutant Gopc allele (SEQ ID NO: 90) in which the first 9 amino acids are identical to those of the wild-type Gopc protein and the following 21 amino acids are miscoded.



FIG. 15 panels A and B are photographs and graphs showing tilapia spermiogenesis specific gene knockouts phenocopy human and mice deficiencies. FIG. 15 panel A shows malformation of spermatozoa in F0 deficient tilapia for the five candidate genes. Microscopic images of spermatozoa collected from wild-type (WT) and from Tjp1a, Gopc, Smap2, Hiat1 and Csnk2a2 F0 mutant fish respectively. Black arrowheads point to WT size sperm head and yellow arrowheads indicate enlarged round spermatozoa head. Scale bars: 100 μm. FIG. 15 panel B shows the fertilization success rate from hand-stripped gametes, followed by in vitro fertilization in which dry gametes (200 eggs and stripped milt) were mixed together and immediately activated with 2 mL of hatching water. Data are means+/−SD, n=3 replicates.



FIG. 16 panels A to C are images and graphs showing expression levels of SMS genes in fertile and germ cell free testes. FIG. 16 panel A shows testes dissected from 4 months old dnd1 Knockout and wild type aged match control. FIG. 16 panel B illustrates that the relative expression level of vasa, a germ cell specific gene is reduced to undetectable level in testis from dnd1 KO fish but strongly expressed in wild type testis, while the Sertoli specific gene Dmrt1 is expressed at the same level in testes from wild-type and sterile tilapia. β-actin was used as the reference gene to normalize expression level of vasa and Dmrt1. FIG. 16 panel C illustrates the relative expression level of SMS genes Tjp1a, Hiat1, Gopc and Csnk2a2 in testes from wild type and sterile tilapia. Dmrt1 was used as the reference gene to normalize expression level of SMS genes. In all cases, value represent average of 3 biological replicates, +/−SD.



FIG. 17 panels A to C are illustrations of the selected mutation at the Cyp9a1a loci. FIG. 17 panel A is a schematic of the tilapia Cyp9a1a gene. Exons (E1-9) are shown as shaded boxes. Arrows point to targeted exons 1 and 9. FIG. 17 panel B is the wild-type reference sequence (SEQ ID NO: 65) with the sequences of the selected germ-line mutant alleles from Cyp19a1a F0 mutated tilapia (SEQ ID NOs: 66 and 67). The 7 nt (del 8 and ins1) and 10 nt deletions are indicated by dashes. These frameshift mutations are predicted to create truncated proteins that terminate at amino acid 12 and 11 rather than position 511. FIG. 17 panel C is the predicted protein sequences of WT (SEQ ID NO: 68) and truncated mutant proteins (SEQ ID NOs: 69 and 70), in which the first 7 and 5 amino acids are identical to those of the wild-type Cyp19a1a protein and the following 5 and 6 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 18 is an illustration and table showing an example of the breeding scheme and anticipated genotypes of mutant progeny from double heterozygote parents. m1, 2, 3 symbols indicate different mutations at the Tjp1a locus in F0 mosaic female. Each column in the table shows the frequency of an expected F2 progeny for each combination of cyp17 and Tjp1a alleles, as well as the projected sex ratio and fertility status. The progeny anticipated to be all-male and sterile is circled.



FIG. 19 panels A to C are illustrations of the selected mutation at the Dmrt1 loci. FIG. 19 panel A is a schematic of the tilapia Dmrt1 gene. Exons (E1-9) are shown as shaded boxes. Arrows point to targeted exons 1 and 3. FIG. 19 panel B is the wild-type reference sequence (SEQ ID NO: 91) with the sequences of the selected germ-line mutant alleles from Dmrt1 F0 mutated tilapia (SEQ ID NOs: 92 and 93). The 7 nt and 13 nt deletions are indicated by dashes. These frameshift mutations are predicted to create truncated proteins that terminate at amino acid 40 and 38 rather than position 293. FIG. 19 panel C is the predicted protein sequences of WT (SEQ ID NO: 94) and truncated mutant proteins (SEQ ID NOs: 95 and 96), in which the first 16 amino acids are identical to those of the wild-type Dmrt1 protein and the following 24 and 22 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 20 panels A to C are illustrations of the selected mutation at the growth/differentiation factor 6-B-like loci (Gsdf). FIG. 20 panel A is a schematic of the tilapia Gsdf gene. Exons (E1-5) are shown as shaded boxes. Arrows point to targeted exons 2 and 4. FIG. 20 panel B is the wild-type reference sequence (SEQ ID NO: 97) with the sequences of the selected germ-line mutant alleles from Gsdf F0 mutated tilapia (SEQ ID NOs: 98 and 99). The 5 nt and 22 nt deletions are indicated by dashes. These frameshift mutations are predicted to create truncated proteins that terminate at amino acid 56 and 46 rather than position 213. FIG. 20 panel C is the predicted protein sequences of WT (SEQ ID NO: 100) and truncated mutant proteins (SEQ ID NOs: 101 and 102), in which the first 52 and 46 amino acids are identical to those of the wild-type Gsdf protein and the following 4 and 0 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 21 panels A to C are illustrations of selected mutations at the tilapia Folliculogenesis stimulating hormone receptor (FSHR) loci. FIG. 21 panel A is a schematic of the tilapia FSHR gene. Exons (E1-15) are shown as shaded boxes; 5′ and 3′ untranslated regions are shown as open boxes. Arrows point to targeted exons 11 and 15. FIG. 21 panel B is the wild-type reference sequence (SEQ ID NO: 103) with the sequence of the selected germ-line mutant allele (SEQ ID NO: 104) from an offspring of FSHR F0 mutated tilapia. Location of the 5 nucleotides deletion is shown by dashes. This frameshift mutation is predicted to create a truncated protein that terminates at amino acid 264 rather than position 689. FIG. 21 panel C shows the predicted protein sequences of WT (SEQ ID NO: 105) and truncated mutant FSHR protein (SEQ ID NO: 106) in which the first 258 amino acids are identical to those of the wild-type and the following 6 amino acids are miscoded.



FIG. 22 panels A to C are illustrations of the selected mutations at the Vitellogenin Aa (VtgAa) loci. FIG. 22 panel A is a schematic of the tilapia VtgAa gene. Exons (E1-35) are shown as shaded boxes. Arrows point to targeted exons 7 and 22. FIG. 22 panel B is the wild-type reference sequence (SEQ ID NO: 107) with the sequences of the selected germ-line mutant alleles from Gsdf F0 mutated tilapia (SEQ ID NOs: 108 and 109). The 5 nt and 25 nt deletions are indicated by dashes. These frameshift mutations are predicted to create truncated proteins that terminate at amino acid 279 and 301 rather than position 1657. FIG. 22 panel C is the predicted protein sequences of WT (SEQ ID NO: 110) and truncated mutant proteins (SEQ ID NOs: 111 and 112), in which the first 278 and 269 amino acids are identical to those of the wild-type VtgAa protein and the following 1 and 32 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 23 panels A to C are illustrations of selected mutations at the tilapia Vitellogenin Ab (VtgAb) loci. FIG. 23 panel A is a schematic of the tilapia VtgAb gene. Exons (E1-35) are shown as shaded boxes; 5′ untranslated region is shown as open boxes. Arrows point to targeted exons 5 and 22. FIG. 23 panel B is the wild-type reference sequence (SEQ ID NO: 113) with the sequence of the selected germ-line mutant allele (SEQ ID NO: 114) from an offspring of VtgAb F0 mutated tilapia. Location of the 8 nucleotides deletion is shown by dashes. This frameshift mutation is predicted to create a truncated protein that terminates at amino acid 202 rather than position 1747. FIG. 23 panel C shows the predicted protein sequences of WT (SEQ ID NO: 115) and truncated mutant VtgAb protein (SEQ ID NO: 116) in which the first 270 amino acids are identical to those of the wild-type VtgAb protein and the following 32 amino acids are miscoded. Altered amino acids are highlighted.



FIG. 24 panels A and B is a photograph and graph showing that females deficient for VtgAa fail to produce viable progeny. FIG. 24 panel A is a photograph of 8 hours post fertilization embryos incubation in hatching water containing methylene blue (Roth, 0.01% of stock solution in hatching water). Blue staining indicates unfertilized eggs and dead embryos. Embryos were inspected daily under a light stereomicroscope and dead embryos counted and removed. FIG. 24 panel B shows survival percentage in the progeny from F0 VtgAa males and females outcrossed with wild type fish. Data are means+/−SD, n=2×3 replicates.



FIG. 25 is an illustration that shows breeding scheme and genotype of mutant progeny from double heterozygous parents. m1−n and m1 symbols indicate mosaic mutations in F0 and one specific mutation selected for each targeted loci. F1 genotypes shown correspond to one of the four combinations of alleles we plan to establish. Each column in the table indicates the relative frequency of expected F2 progeny for each combination of alleles, as well as the projected sex ratio and fertility status. The progeny anticipated to be all-female and sterile is circled in red.



FIG. 26 are photographs showing the impact of FSHR deficiency on ovarian development. Siblings 12 months old fertile control (WT body color-bottom panel) and albino F0 FSHR mutant female (FSHR−/−, tyr−/−; top panel) of similar body size were dissected for morphological analysis of their gonads. Left images show dissected ovaries in the peritoneal cavity of control and mutant females. The white arrows point to the gonads and the black arrows point to the urogenital papillae. Mutation of FSHR resulted in complete folliculogenesis arrest and atrophic string like gonad. Wild type female displays a large and prominent urogenital papilla while albino F0 FSHR−/−female show a significantly smaller papilla.



FIG. 27 is an illustration showing a germ cell transplantation strategy to allow mass production of donor derived gametes carrying mutations in FEM (cyp17, Cyp19a1a), SMS (TjP1a, Csnk2a2, Gopc, Smap2, Hiat1), MA (Dmrt1, Gsdt and FLS genes (Vtgs, FSHR). In the mutant donor, the defective gene causes the development of monosex male (FEM genes) or female (MA genes) populations or render spermatozoa (SMS genes) or oocytes (FLS genes) non-functional. As such, mass production of these homozygous mutant is not possible. To circumvent this limitation, we only targeted genes whose mutant phenotypes is caused by defective function in the soma and not in germ cells and produced chimeric embryos using the “germ cell transplantation” techniques. To produce chimera, ovarian or testicular cell suspension obtained from juvenile homozygous mutant fish were transplanted into the peritoneal cavity of germ cell-free recipient embryos that are wild type for the targeted gene(s). With this strategy, the wild type host chimeric embryo has normal somatic cells but a mutant germline. These chimeric recipients restore the normal sex ratio and/or sterility as they possess functional somatic gene(s). These recipient fish can be used as commercial broodstock for mass production of monosex and/or sterile fish.



FIG. 28 is an illustration showing a germ cell transplantation method to mass produce functional sperm carrying a spermiogenesis deficient gene (SMS (−)). No defects are found during the generation of primordial germ cells (PGCs) and spermatogonia in SMS-null fish progenies obtained from heterozygous SMS mutant parents. At maturity however, SMS mutant males only produce round headed, immotile sperm and are infertile. Female SMS-mutants are fertile. The SMS gene is expressed in somatic cells surrounding the germ cells (Sertoli and Leydig cells) where it exerts its activity. The lack of SMS protein causes a defective microenvironment where sperm maturation is impaired. To restore spermiogenesis, a germline stem cell can be isolated from juvenile SMS mutant and transplanted into recipient embryos depleted of their own PGCs but carrying a functional SMS gene. Transplanted SMS−/−spermatogonial stem cell will colonize the recipient gonad and since SMS is dispensable for their continued development, the recipient somatic cells will nurse transplanted germ cell, restore spermiogenesis and allow production of functional spermatozoa, all of which carrying the mutant SMS gene.



FIG. 29 is an illustration showing a germ cell transplantation method for production of functional eggs carrying a Vitellogenin deficient gene (Vtg (−)). No defects are found during the generation of primordial germ cells (PGCs) and oogonia in Vtg-null fish progenies obtained from heterozygous Vtg mutant parents. At maturity however, Vtg mutant female only produce oocyte lacking Vtg protein resulting in female sterility. Vtg deficient male develop normally and are fertile. The Vtg gene(s) are normally expressed in liver cells and Vtg protein(s) transported to the oocyte through the blood stream. The lack of Vtg protein cause the eggs to lack critical nutrient necessary to sustain early embryo or larvae development, resulting in developmental arrest. As such, Vtg−/− female are child-less. To restore vitellogenesis, a germline stem cell can be isolated from juvenile Vtg null-mutant and transplanted into recipient embryos depleted of their own PGCs but carrying a functional Vtg gene. Transplanted Vtg−/− germline stem cell will colonize the recipient gonad and the liver cells of the surrogate mother will ensure that nutrients supporting early development are properly loaded into the eggs. These recipient females crossed with Vtg−/− male will produce viable Vtg−/− offspring.



FIG. 30 is an illustration showing a germ cell transplantation method for production of viable FSHR-mutant eggs (FSHR (−)). No defects are found during the generation of primordial germ cells (PGCs) and oogonia in FSHR-null fish progenies obtained from heterozygous FSHR mutant parents. At maturity however, FSHR mutant female fail to respond to FSH-mediated signaling, resulting in folliculogenesis arrest and female. FSHR knock-out males develop normally and are fertile. Since FSHR is solely expressed in somatic follicular cells, transplantation of germline stem cells from juvenile FSHR null-mutant into recipient embryos depleted of their own PGCs but carrying a functional FSHR gene will restore normal oocyte development and allow production of viable eggs. These recipient females crossed with FSHR (−/−) males will only produce FSHR (−/−) offspring.



FIG. 31 is an illustration showing a germ cell transplantation method for production of functional FEM-mutant eggs (FEM: Cyp19a1a, and cyp17). We found no defects during the generation of primordial germ cells (PGCs) and oogonia in FEM-null fish progenies obtained from heterozygous FEM mutant parents. At maturity however, FEM mutant female do not convert androgen into estrogen resulting in reprograming of ovarian somatic supporting cells (Thecal and granulosa cells) into testicular somatic supporting cells (Leydig and Sertoli cells) and reversion of genetic female into phenotypic male. FEM deficient male develop normally and are fertile. The FEM gene(s) are normally expressed in ovarian somatic cells. To allow mass production of oocytes carrying FEM deficient gene, a germline stem cell can be isolated from juvenile FEM null-mutant and transplanted into recipient embryos depleted of their own PGCs but carrying a functional FEM gene. Transplanted FEM germline cells will colonize the recipient gonad. The somatic cells surrounding the donor oocyte will produce normal amount of estrogen allowing progression of folliculogenesis and maintenance of female fate. These recipient females crossed with FEM (−/−) males will produce only FEM−/− offspring.



FIG. 32 is a schematic representation of a strategy to mass-produce all male sterile fish population. Double KO parents (e.g. SMS and cyp17) can be propagated by germ cell transplantation technique as described in FIGS. 27-32. These broodstock parents only produce donor derived gametes carrying the mutated genes. Natural or artificial mating of this broodstock only produce an all-male sterile population.



FIG. 33 panels A and B show a germ cell transplantation experiment demonstrating successful colonization and production of donor derived tilapia gametes. FIG. 33 panel A show a graphical illustration of germ cell transplantation into newly hatched germ cell free tilapia larvae. Donor spermatogonial stem cells (SSCs) carrying mutations were transplanted into the peritoneal cavity of the hatchling depleted of endogenous germ cells. Two groups of SSCs were transplanted simultaneously, one carrying an in frame Δ3nt deletion in the reference gene and a 6 nt insertion in the pigment gene (tyri6/i6) and the other carrying an out of frame 4 nt deletion in the reference gene and a 22 deletion in the pigment gene (tyrΔ22/Δ22). The 3 nt deletion is not expected to alter the gene function and thus, served as positive control. The transplanted cells migrate and colonize the genital ridges of the recipient. After attaining sexual maturation, the recipient fish gametes were collected, and their DNA analyzed by PCR fragment sizing assay utilizing PCR primers that flank the mutation region of donor derived gamete. The amplification products were sized and detected using capillary electrophoresis. The percentage of female and male recipients producing functional eggs and sperm derived from donor cells after the transplantation of spermatogonial stem cells were provided. FIG. 33 panel B shows capillary fragment length analysis of sperm DNA from a wild type control and from a transplanted fertile tilapia. The bottom trace show only donor derived Δ3nt and Δ4nt deletion fragments from the reference gene, together with a 6nt insertion and Δ22nt deletion fragment in the pigment gene. A negative control with wild-type sized gene specific fragments (268 bp) for the test gene and 467nt for the tyr gene is shown for reference.



FIG. 34 panels A to D are illustrations showing different methods for propagating monosex sterile populations. FEM−/− and MA−/− represent femaleness and maleness null genes. SMS−/− and FLS−/− represent spermiogenesis and folliculogenesis null genes. Males and females Seedstock are produced thru steroid hormone manipulation and by germ cell transplantations (FIG. 34 panels A and B) of thru gem cell transplantation only (FIG. 34 panels C and D). A limited number of seedstock can be crossed to mass-produce millions of all-male sterile embryos (FIG. 34 panels A and C) or all-female sterile embryos (FIG. 34 panels B and D) for use in aquaculture systems.





DETAILED DESCRIPTION

Generally, the present disclosure provides a method of generating a sterile sex-determined fish, crustacean, or mollusk. The method comprises the steps of: breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation; and selecting a progenitor that is homozygous by genotypic selection, the homozygous mutated progenitor being the sterile sex-determined fish, crustacean, or mollusk. The first mutation disrupts one or more genes that specify sexual differentiation. The second mutation disrupts one or more genes that specify gamete function.


The present disclosure also provides a method of generating a sterile sex-determined fish, crustacean, or mollusk. The method comprises the step of: breeding (i) a fertile homozygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile homozygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation to produce the sterile sex-determined fish, crustacean, or mollusk. The first mutation disrupts one or more genes that specify sexual differentiation. The second mutation disrupts one or more genes that specify gamete function. The fertility of the fertile homozygous female fish, crustacean, or mollusk and the fertile homozygous mutated male fish, crustacean, or mollusk having been rescued.


The present disclosure also provides a method of generating a sterile sex-determined fish, crustacean, or mollusk. The method comprises the step of: breeding (i) a fertile female fish, crustacean, or mollusk having a homozygous mutation with (ii) a fertile male fish, crustacean, or mollusk having a homozygous mutation to produce the sterile sex-determined fish, crustacean, or mollusk. The mutation directly or indirectly disrupts spermiogenesis, and/or that directly disrupts vitellogenesis. The fertility of the fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk have been rescued.


The present disclosure also provides method of making a fertile homozygous mutated fish, crustacean, or mollusk that generates a sterile sex-determined fish, crustacean, or mollusk. The method comprises the steps of: breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation; selecting a progenitor that is homozygous by genotypic selection; and rescuing the fertility of the homozygous progenitor. The first mutation disrupts one or more genes that specify sexual differentiation. The second mutation disrupts one or more genes that specify gamete function.


The present disclosure further provides a fertile homozygous mutated fish, crustacean, or mollusk for producing a sterile sex-determined fish, crustacean, or mollusk. The fertile homozygous mutated fish, crustacean, or mollusk having at least a first mutation and a second mutation, where the first mutation disrupts one or more genes that specify sexual differentiation, and the second mutation disrupts one or more genes that specify gamete function. The fertility of the fertile homozygous mutated fish, crustacean, or mollusk having been rescued.


The present disclosure further provides a fertile fish, crustacean, or mollusk having a homozygous mutation for producing a sterile sex-determined fish, crustacean, or mollusk, wherein the mutation directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis, and wherein the fertility of the fertile fish, crustacean, or mollusk has been rescued.


In the context of the present disclosure, a fish refers to any gill-bearing craniate animal that lacks limbs with digits. Examples of fish are carp, tilapia, salmon, trout, and catfish. In the context of the present disclosure, a crustacean refers to any arthropod taxon. Examples of crustaceans are crabs, lobsters, crayfish, and shrimp. In the context of the present disclosure, a mollusk refers to any invertebrate animal with a soft unsegmented body usually enclosed in a calcareous shell. Examples of mollusks are clams, scallops, oysters, octopus, squid and chitons.


A sterile fish, crustacean, or mollusk refers to any fish, crustacean, or mollusk with a diminished ability to generate progeny through breeding or crossing as compared to its wild-type counterpart; for example, a sterile fish, crustacean, or mollusk may have an about 50%, about 75%, about 90%, about 95%, or 100% reduced likelihood of producing viable progeny. In contrast, a fertile fish, crustacean, or mollusk refers to any fish, crustacean, or mollusk that possesses the ability to produce progeny through breeding or crossing. Breeding and crossing refer to any process in which a male species and a female species mate to produce progeny or offspring.


A sex-determined fish, crustacean, or mollusk refers to any fish, crustacean, or mollusk progenitor in which the sex of the progenitor has been pre-determined by disrupting the progenitor's sexual differentiation pathway. In some examples, sex-determined progenitor of the same generation are monosex.


Gamete function refers to the process in which a gamete fuses with another gamete during fertilization in organisms that sexually reproduce.


A mutation that disrupts one or more genes that specify sexual differentiation refers to any genetic mutation that directly or indirectly modulates gonadal function. Directly or indirectly affecting gonadal function refers to: (1) mutating the coding sequence of one or more gonadal genes; (2) mutating a non-coding sequence that has at least some control over the transcription of one or more gonadal genes; (3) mutating the coding sequence of another gene that is involved in post-transcriptional regulation of one or more gonadal genes; or (4) a combination thereof, to modulate gonadal function. Modulating gonadal function refers to specifying that the gonad produces female gametes or produces male gametes. Examples for when masculinization is preferred include modulating one or more genes that modulate the synthesis of androgen and/or estrogen, for example, modulating the expression of aromatase Cyp19a1a, Cyp17, or a combination thereof. Genes involved in modulating the expression of aromatase Cyp19a1a include cyp19ala, FoxL2, sf1 (steroidogenic factor 1), and an ortholog thereof. Genes involved in modulating the expression of Cyp17 include cyp17l or an ortholog thereof. Examples for when feminization is preferred include modulating one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor. Genes involved in modulating the expression of an aromatase Cyp19a1a inhibitor include Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof.


Alternatively, sexual differentiation may be specified without one or more genetic mutations. Examples of non-genetic mutational methods of specifying sexual differentiation include utilizing sex reversal (hormonal manipulation) and breeding, progeny testing, androgenesis, and gynogenesis, which can produce monosex male or female populations that are homozygous XX, YY or ZZ (see for example [21]; Dunham 2004, which is incorporated by reference). In some examples according to the present disclosure, the step of breeding (i) a fertile female fish, crustacean, or mollusk having a homozygous mutation with (ii) a fertile male fish, crustacean, or mollusk having a homozygous mutation to produce the sterile sex-determined fish, crustacean, or mollusk comprises a non-genetic mutational method of specifying sexual differentiation. In some examples according to the present disclosure using Atlantic salmon, creating and crossing a neomale (XX) with a female produces a monosex progeny of females. In another example according to the present disclosure, specifying sexual differentiation can be achieved by interspecific hybridization (see for example Pruginin, Rothbard et al. 1975, Wolters and DeMay 1996, which is incorporated by reference).


A mutation that disrupts one or more genes that specify gamete function refers to any genetic mutation that directly or indirectly modulates spermiogenesis, oogenesis, and/or folliculogenesis to produce a sterile fish, crustacean, or mollusk. Directly or indirectly modulating spermiogenesis, oogenesis, and/or folliculogenesis refers to: (1) mutating the coding sequence of one or more gamete genes; (2) mutating a non-coding sequence that has at least some control over the transcription of one or more gamete genes; (3) mutating the coding sequence of another gene that is involved in post-transcriptional regulation of one or more gamete genes; or (4) a combination thereof, to produce a sterile fish, crustacean, or mollusk.


A mutation that directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis refers to any genetic mutation that directly or indirectly modulates spermiogenesis, and/or directly disrupts vitellogenesis to produce a sterile fish, crustacean, or mollusk. Directly or indirectly modulating spermiogenesis refers to: (1) mutating the coding sequence of one or more gamete genes involved in spermiogenesis; (2) mutating a non-coding sequence that has at least some control over the transcription of one or more gamete genes involved in spermiogenesis; (3) mutating the coding sequence of another gene that is involved in post-transcriptional regulation of one or more gamete genes involved in spermiogenesis; or (4) a combination thereof, to produce a sterile fish, crustacean, or mollusk. Directly modulating vitellogenesis refers to: (1) mutating the coding sequence of one or more gamete genes involved in vitellogenesis; (2) mutating a non-coding sequence that has at least some control over the transcription of one or more gamete genes involved in vitellogenesis; or (3) a combination thereof, to produce a sterile fish, crustacean, or mollusk.


Examples for when producing a sterile male fish, crustacean, or mollusk is preferred include modulating one or more genes that modulate spermiogenesis. Examples of one or more genes that modulate spermiogenesis may cause globozoospermia, sperm with round-headed, round nucleus, disorganized midpiece, partially coiled tails, or a combination thereof. Examples of genes that cause globozoospermia include Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, and an ortholog thereof. Examples for when producing a sterile female fish, crustacean, or mollusk is preferred include modulating one or more genes that modulate oogenesis, folliculogenesis, or a combination. Examples of one or more genes that modulate oogenesis include one or more genes that modulate the synthesis of estrogen. Examples of one or more genes that modulate the synthesis of estrogen include FSHR or an ortholog thereof. Examples of one or more genes that modulate folliculogenesis include one or more genes that modulate the expression of vitellogenins. Examples of one or more genes that modulate the expression of vitellogenins include vtgs or an ortholog thereof. Examples of mutations that directly or indirectly disrupt spermiogenesis are mutations in Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, or an ortholog thereof. Examples of mutations that directly disrupts vitellogenesis are mutations in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; cytochrome p450, family 1, subfamily a; Zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof.


A mutation may be any type of alteration of a nucleotide sequence of interest, for example, nucleotide insertions, nucleotide deletions, and nucleotide substitutions.


Rescuing sterility or fertility refers to any process in which a sterile fish, crustacean, or mollusk is converted into a fertile fish, crustacean, or mollusk. In some examples, an aromatase inhibitor is provided to the sterile fish, crustacean, or mollusk to restore fertility. In other examples, germline stem cell transplantation of the sterile fish, crustacean, or mollusk restores fertility. Germline stem cell transplantation refers to any process in which reproductive stem cells from a sterile fish, crustacean, or mollusk is transplanted into a fertile fish, crustacean, or mollusk and restores fertility. In some examples according to the present disclosure, the germline stem cell transplantation is a process comprising: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; and transplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk. A recipient male or female fish, crustacean, or mollusk is any embryo depleted of their own germ cells but carrying functional copies of genes targeted that specify sexual differentiation and gamete function. Alternatively, the germ cell depleted recipient can be a juvenile or adult fish carrying functional copies of genes targeted. Preferably, the recipient species is the same as the donor species (allogenic recipient) but other species may be used (Xenogeneic recipient). The recipient after transplantation is a chimeric fish, crustacean or mollusk with normal somatic cells but a mutant germline. These chimeric recipients restore the normal sex ratio and/or sterility as they possess functional somatic gene(s). A germ cell-less recipient may be created using ploidy manipulation, hybridization strategies, or exposure to high levels of sex hormones. Exposure of juvenile aquatic species to high levels of sex hormones may result in sterility in the exposed animals. This technique has been demonstrated (Hunter et al, 1982; Solar et al, 1984; Piferrer et al, 1994), but has not been used at a commercial scale. While the technique may be effective in creating sterile fish, it has never been demonstrated effective at inducing sterility in 100% of the treated fish. Treated fish may be suitable for research, or as recipients for germ cell transfer, but the technique may not be adequate for creating sterile fish for commercial farming (see also Hunter, G. A., E. M. Donaldson, F. W. Goetz, and P. R. Edgell. 1982. Production of all-female and sterile Coho salmon, and experimental evidence for male heterogamety. Transactions of the American Fisheries Society 111: 367-372; Piferrer, F, M Carillo, S. Zanuy, I. I. Solar, and E. M. Donaldson. 1994. Induction of sterility in Coho salmon (Oncorhynchus kisutch) by androgen immersion before first feeding. Aquaculture 119: 409-423; and Solar, I., E. M. Donaldson, and G. A. Hunter. 1984. Optimization of treatment regimes for controlled sex differentiation and sterilization in wild rainbow trout (Salmo gairdeneri Richardson) by oral administration of 17α-methyltestosterone. Aquaculture 42: 129-139.


In some examples, the germline stem cell transplantation is a process comprising: obtaining a spermatogonial stem cell from a sterile homozygous male fish, crustacean, or mollusk or a oogonial stem cell from a sterile homozygous female fish, crustacean, or mollusk, and transplanting the spermatogonial stem cell into the peritoneal cavity of a germ cell-less embryo or into a germ cell-less differentiated testis or ovary of a fish, crustacean, or mollusk. Optionally, in addition to germline stem cell transplantation, an exogenous sex steroid is provided to the sterile fish, crustacean, or mollusk, for example, estrogen to restore fertility. In other examples, an aromatase inhibitor is provided to the sterile fish, crustacean, or mollusk to restore fertility.



FIG. 1 illustrates a flowchart according to the present disclosure of how to make a male and female broodstock, i.e. a fertile homozygous mutated male and female fish, crustacean, or mollusk for use in producing a sterile sex-determined fish, crustacean, or mollusk.



FIG. 1 illustrates genetic pathways governing sex differentiation and gametogenesis and gene KO strategies to produce monosex sterile populations.


One or more mutations in the gene cyp19a1a, Foxl2, or a combination thereof, results in low or decreased estrogen expression causing testis formation and the production of a male fish, crustacean, or mollusk. Similarly, one or more mutations in the gene cyp17 results in low or decreased estrogen and androgen expression producing a male fish, crustacean, or mollusk. One or more additional mutations in a gene that disrupts spermiogenesis (SMS) causes the male fish, crustacean, or mollusk to be sterile. Accordingly, a sterile homozygous mutated male fish, crustacean, or mollusk is produced.


In an additional step used to propagate the line, the fertility of the sterile homozygous mutated male fish, crustacean, or mollusk may be rescued with treatment of estrogen. Following treatment, a fertile homozygous mutated female fish, crustacean, or mollusk is generated. In this sex reversal process, the phenotypic female is carrying the one or more mutations disrupting spermiogenesis and should be fertile, and oocytes carrying the one more mutations disrupting spermiogenesis should be produced and allow for propagation of the line. Alternatively, and as described in Example 10, the fertility of the sterile homozygous mutated male fish, crustacean, or mollusk may be rescued by implanting a germ cell from the sterile homozygous mutated male fish, crustacean, or mollusk into a fertile wild-type male testis cell to generate a fertile homozygous mutated male fish, crustacean, or mollusk, which allows for propagation of the line.


On the flip side of FIG. 1, one or more mutations in the gene Gsdf, Dmrt1, or a combination thereof, results in inactivation of Cyp19a1a inhibitors and causes high or increased estrogen expression resulting in ovarian formation and the production of a female fish, crustacean, or mollusk. One or more additional mutations in a gene that modulates oogenesis, folliculogenesis (FLS), or a combination thereof causes the female fish, crustacean, or mollusk to be sterile. Accordingly, a sterile homozygous mutated female fish, crustacean, or mollusk is produced.


In an additional step used to propagate the line, the fertility of the sterile homozygous mutated female fish, crustacean, or mollusk may be rescued with treatment of an aromatase inhibitor. Following treatment, a fertile homozygous mutated male fish, crustacean, or mollusk is generated. In this sex reversal process, the phenotypic male is carrying the one or more mutations disrupting oogenesis, folliculogenesis, or a combination and should be fertile, and sperm carrying the one more mutations disrupting oogenesis, folliculogenesis, or a combination should be produced and allow for propagation of the line. Alternatively, and as described in Example 10, the fertility of the sterile homozygous mutated female fish, crustacean, or mollusk may be rescued by implanting a germ cell from the sterile homozygous mutated female fish, crustacean, or mollusk into a fertile wild-type female ovary cell to generate a fertile homozygous mutated female fish, crustacean, or mollusk, which allows for propagation of the line.


EXAMPLES
Example 1—Materials and Methods

Animal used and ethical statement: All experiments complied with US regulations ensuring animal welfare and animal husbandry procedures were performed according to IACUC-approved animal protocol CAT-004. Tilapia (Oreochromis niloticus) lines used in this study are derived from a Brazilian strain obtained from a US commercial producer.


Generation of nucleases and strategies: Generation of F0 mutants: Tilapia orthologs of the cyp17, Cyp19a1a, Tjp1a, Csnk2a2, Hiat1, Smap2, Gopc, Gsdf, Dmrt1, FSHR and vitellogenin genes (VtgAa and VtgAb) were identified in silico from genomic databases.


To create DNA double strand breaks (DSBs) at specific genomic site, we used engineered nucleases. In most applications, a single DSB was produced in the absence of a repair template, leading to the activation of the non-homologous end joining (NHEJ) repair pathway. The NHEJ can be an imperfect repair process, generating insertions or deletions (indels) at the target site. Introduction of an indel can create a frameshift within the coding region of the gene resulting in abnormal protein products with an incorrect amino acid sequence. To enhance the frequency of generating null mutations in the gene of interest, we targeted 2 separate exons simultaneously apart from those targeting cyp17. Alongside the gene of interest, we co-targeted a pigmentation gene to serve as a mutagenesis selection marker. Typically, mutagenic frequency between the pigment gene and the gene of interest are correlated. Thus, embryos showing complete lack of pigmentation (albino phenotype) were preferentially selected compare to mosaic pigment phenotype (partial gene inactivation). To confirm functionality of the newly designed nuclease, five albino embryos from each treated batch were quantitatively assayed for genome modifications at the loci of interest by PCR fragment analysis. Treated embryos of the same batch were eliminated if all five embryos tested showed no indels at the targeted loci. Furthermore, we preferentially raised batches of embryos in which mutations are produced at the one or two cell stage, (i.e. detection of 2 or 4 mutant alleles per targeted loci by fragment analysis assay).


The template DNA coding for the engineered nuclease were linearized and purified using a DNA Clean & concentrator-5 column (Zymo Resarch). One microgram of linearized template was used to synthesize capped RNA using the mMESSAGE mMACHINE T3 kit (Invitrogen), purified using Qiaquick (Qiagen) columns and stored at −80° in RNase-free water at a final concentration of 800 ng/μl.


Embryo injections: Embryos were produced from in vitro fertilization. Approximately 10 nL total volume of solution containing the programmed nucleases were co-injected into the cytoplasm of one-cell stage embryos. Injection of 200 embryos typically produce 10-60 embryos with complete pigmentation defect (albino phenotype). Embryo/larvae survival was monitored for the first 10-12 days post injection.


Selection of founders: A minimum of 10 albino embryos were raised to 3 months of age and quantitatively assayed for genome modifications by fluorescence PCR fragment analysis (see Table 1 for gene specific genotyping primers columns 8 and 11). We preferentially selected founders in which mutations were produced at the one or two cell stage (detection of 2 or 4 mutant alleles per target loci by fragment analysis (FIG. 2).


F1 genotyping: The selected founders were outcrossed with wild-type lines. Their F1 progeny were raised to 2 months of age, anesthetized by immersion in 200 mg/L MS-222 (tricaine) and transferred onto a clean surface using a plastic spoon. Their fin was clipped with a razor blade, and place onto a well (96 well plate with caps). Fin clipped fish were then placed in individual jars while their fin DNA was analyzed by fluorescence PCR. In brief, 60 μl of a solution containing 9.4% Chelex and 0.625 mg/ml proteinase K was added to each well for overnight tissue digestion and gDNA extraction in a 55° C. incubator. The plate was then vortexed and centrifuged. gDNA extraction solution was then diluted 10× with ultra-clean water to remove any PCR inhibitors in the mixture. Typically, we analyzed 80 juveniles/founder to select and raised batches of approximately 20 juveniles carrying identical size mutations.


Fluorescence PCR (see FIG. 2): PCR reactions used 3.8 μL of water, 0.2 μL of fin-DNA and 5 μL of PCR master mix (Quiagen Multiplex PCR) with 1 ul of primer mix consisting of the following three primers: the Labeled tail primer with fluorescent tag (6-FAM, NED), amplicon-specific forward primer with forward tail (SEQ ID NO: 117: 5′-TGTAAAACGACGGCCAGT-3′ and SEQ ID NO: 118: 5′-TAGGAGTGCAGCAAGCAT-3′) amplicon-specific reverse primer (Fluorescent PCR gene-specific primers are listed in Table 1). PCR conditions were as follows: denaturation at 95° C. for 15 min, followed by 30 cycles of amplification (94° C. for 30 sec, 57° C. for 45 sec, and 72° C. for 45 sec), followed by 8 cycles of amplification (94° C. for 30 sec, 53° C. for 45 sec, and 72° C. for 45 sec) and final extension at 72° C. for 10 min, and an indefinite hold at 4° C.


One-two microliters of 1:10 dilution of the resulting amplicons were resolved via capillary electrophoresis (CE) with an added LIZ labeled size standard to determine the amplicon sizes accurate to base-pair resolution (Retrogen Inc., San Diego). The raw trace files were analyzed on Peak Scanner software (ThermoFisher). The size of the peak relative to the wild-type peak control determines the nature (insertion or deletion) and length of the mutation. The number of peak(s) indicate the level of mosaicism. We selected F0 mosaic founder carrying the fewest number of mutant alleles (2-4 peak preferentially).


The allele sizes were used to calculate the observed indel mutations. Mutations that are not in multiples of 3 bp and thus predicted to be frameshift mutations were selected for further confirmation by sequencing. Mutations of size greater than 8 bp but smaller than 30 bp were preferentially selected to ease genotyping by QPCR melt analysis for subsequent generations. For sequence confirmation, the PCR product of the selected indel was further submitted to sequencing. Sequencing chromatography of PCR showing two simultaneous reads are indicative of the presence of indels. The start of the deletion or insertion typically begins when the sequence read become divergent. The dual sequences were carefully analyzed to detect unique nucleotide reads. The pattern of unique nucleotide read is then analyzed against series of artificial single read patterns generated from shifting the wild type sequence over itself incrementally.


QPCR genotyping of F1 and F2 generations: Real-time qPCR was performed on a ROTOR-GENE RG-3000 REAL TIME PCR SYSTEM (Corbett Research). 1-μL genomic DNA (gDNA) template (diluted at 5-20 ng/μl) was used in a total volume of 10 μL containing 0.15 μM concentrations each of the forward and reverse primers and 5 μL of QPCR 2× Master Mix (Apex Bio-research products). qPCR primers used are presented in Table 2 (Genotyping RT-PCR primers columns 11-14). The qPCR was performed using 40 cycles of 15 seconds at 95° C., 60 seconds at 60° C., followed by melting curve analysis to confirm the specificity of the assay (67° C. to 97° C.). In this approach, short PCR amplicons (approx 120-200 bp) that include the region of interest are generated from a gDNA sample, subjected to temperature-dependent dissociation (melting curve). When induced indels are present in hemizygous gDNA, heteroduplex as well as different homoduplex molecules are formed. The presence of multiple forms of duplex molecules is detected by Melt profile, showing whether duplex melting acts as a single species or more than one species. Generally, the symmetry of the melting curve and melting temperature infers on the homogeneity of the dsDNA sequence and its length. Thus, homozygous and wild type (WT) show symmetric melt curved that are distinguishable by varied melting temperature. The Melt analysis was performed by comparison with reference DNA sample (from control wild type DNA) amplified in parallel with the same master mix reaction. In short, variation in melt profile distinguishes amplicons generated from homozygous, hemizygous and WT gDNA (see FIG. 3).


Assessment of sterility in males: The volume of strippable sperm and sperm density was measured from 10 males (5 months of age) for each genotype. Sperm were counted using a Neubauer hemocytometer slide, as well as by spectrophotometry (optical density (O.D) at 600 nm) of serially diluted samples. Sperm motility was measured in terms of percent motile spermatozoa in field of view [4]. Morphology of the sperm cells stained with eosin-nigrosin was analyzed under light microscopy at 400×. Fertilization capacity of sperm was assayed by in vitro fertilization of wild type eggs from 3 different females at the optimal sperm to egg ratio (100 eggs for 5·106 spermatozoa). Wild type egg quality was tested in parallel using sperm from WT males. Fertilization rates was expressed as a percentage of surviving embryos to total eggs collected at 24 hrs post fertilization. The mean values obtained from these studies was compared across mutant genotypes using an unpaired t-test.


Assessment of sterility in females: We recorded the body weight of all fish sampled. A minimum of six females for each genotype was dissected at 4 and 6 months of age and their gonads photographed in situ before dissection. The mean total gonadosomatic index was statistically compared across all genotypes (unpaired T-test). Survival of eggs, embryos and larvae produced from a minimum of six mutant females outcrossed with wild-type males were statistically analyzed (unpaired T-test) and compared to controls (wild-type females crossed with mutant males).


Donor cell isolation and germ cell transplantation: Germ cell stem cells were harvested from the gonads of 3-4 months old fish (˜50-70 g) through enzymatic digestion as described by Lacerda [5]. In brief, the freshly isolated gonads were minced and incubated in 1 ml of 0.5% trypsin (Worthington Biochemical Corp., Lakewood, N.J.) in PBS (pH 8.2) containing 5% fetal bovine serum (Gibco Invitrogen Co., Grand Island, N.Y.) and 0.05% DNase I (Roche Diagnostics, Mannheim, Germany) for 3-4 h at 25° C. During incubation, gentle pipetting was applied to physically disrupt any remaining intact portions of the gonads. The resulting cell suspension was filtered through a nylon screen with a pore size of 42 μm (N-No. 330T; Tokyo Screen Co. Ltd., Tokyo, Japan) to remove any undissociated cell clumps and then resuspended in L-15 medium (Gibco Invitrogen Co.) before storage on ice until transplantation.


Germ cell-free recipient larvae (5-7dpf) were anesthetized with 0.0075% ethyl 3-aminobenzoate methanesulfonate salt (Sigma-Aldrich Inc.) and transferred to a Petri dish coated with 2% agar. Cell transplantation was performed by injecting approximately 15,000 testicular cells into the peritoneal cavity of approximately 80 larvae progeny from Elavl2 hemizygous mutant parents. Alternatively, PGC-free embryos were obtained from a cross between MSC homozygous female and wild type male [6]. After transplantation, recipient larvae were transferred back to aerated embryo hatching water and raised to adulthood.









TABLE 1







Primers



















Tilapia













homolog



Forward
SEQ

Reverse
SEQ

Amplicon



gene
NCBI & Ensembl
Targeted

primer
ID

primer
ID

size


full gene name
(alias)
Accession #
exon
Label
exon
NO
forward primer
exon
NO
Reverse primer
(bp)





















cytochrome
Cyp17
Acc: ZDB-GENE-
1
FAM
5′UTR
SEQ
ttgaagttgctacataaaag
1
SEQ
TGGTTGATGACAATCAC
357


P450, family 17,

040213-2



1


2
ACTGT



subfamily A,

ENSONIG00000
1
FAM
5′UTR
SEQ
ttgaagttgctacataaaag
1
SEQ
TGGTTGATGACAATCAC
357


polypeptide 1

009168



1


2
ACTGT






cytochrome
Cyp19
Acc: NM_001279
1
NED
5′UTR
SEQ
tgttctacatcatcacccttctc
1
SEQ
AGCAGACAGACGAGCA
169


P450, family 19,
a1a
586



3


4
GTATCAG



subfamily A,

ENSONIG00000
9
FAM
9
SEQ
TGATGGAGAGCTTCATC
9
SEQ
GTTCCAGGTTAAATTGA
186


polypeptide 1a

000155



5
TACGAA

6
TTG



gene
















Tight junction
Tjp1a
Acc: ZDB-GENE-
15
NED
Intron
SEQ
gcgtgatttgctgacctttttac
15
SEQ
acacttacCCTGAGAATCT
216


protein 1a

031001-2


14-15
7


8
GG





ENSONIG00000
17
FAM
16
SEQ
GAAAAAGGATGgtgaggg
17
SEQ
GAGTGTGTCTACCACAC
239




006221



9
atgac

10
GGAAAA






Casein Kinase II
Csnk2a
Acc: 100690588
1
FAM
5′UTR
SEQ
gtatttagaaggcggtgaaggt
1
SEQ
CAGTTTGGCACATGAGC
153


subunit alpha
2




11
c

12
ATCGTA





ENSONIG00000
2
NED
1
SEQ
ATGCTCATGTGCCAAAC
2
SEQ
cCTTCAGGATTTTCACCA
222




015598



13
TG

14
CCACT






Hippocampus
Hiat1
Acc: 100705862
4
FAM
Intron
SEQ
tactgacacatccagcagcgtc
Intron
SEQ
cagcactgagccgtcagtattc
211


abundant




3-4
15
t
4-5
16
t



transcript 1a

ENSONIG00000
6
NED
6
SEQ
TGGAGCCTACCTGTCTG
6
SEQ
tactcacAGCGAAGGGGT
182




018605



17
AG

18
CT






small ArfGAP2
Smap2
Acc: ZDB-GENE-
2
NED
Intron
SEQ
gctcctctgcgaagactctc
2
SEQ
aagacctccgacCTGGACT
211




060503-374


1-2
19


20
TGCT





ENSONIG00000
9
FAM
9
SEQ
AGAGGAGGGCACAGTC
10
SEQ
TTGGATATCCCATTTGG
226




004622



21
AAGAAAC

22
TTCAT






Golgi-
Gopc
Acc: 100692751
1
NED
5′UTR
SEQ
tttaacggtgttggcagagatt
1
SEQ
AGATCCACATCCACGAA
207


associated PDZ





23


24
AGCCT



and coiled-coil

ENSONIG00000
2
FAM
Intron
SEQ
tgcccctttaaaccaccta
2
SEQ
CTCAGCTTGGCCTTGCT
207


motif

001688


1-2
25


26
TGACAT



containing gene
















doublesex and
Dmrt1
Acc: ZDB-GENE-
1
NED
5′UTR-
SEQ
ttgccaggacccATGAGCC
1
SEQ
AGACACGTATCCGTGAT
135


mab-3 related

050511-1


1
27
AG

28
TTCTAC



transcription

ENSONIG00000
3
FAM
Intron
SEQ
ctcttcatcctctgtgtctcatc
3
SEQ
GGGTTTCCAGCAGGAG
140


factor 1

014201


2-3
29


30
GTCAGA






growth/differen-
Gsdf
Acc: 100710262
2
NED
2
SEQ
ttatgttcagGTGCCAAGG
2
SEQ
TGGCTGTGTGAGAAAC
156


tiation factor 6-





31
TG

32
GATGCTG



B-like

ENSONIG00000
4
FAM
4
SEQ
agATCTGGGCTGGGACA
4
SEQ
tgttaactatacCTGTGTGT
145




007633



33


34
TGG






Follicle
FSHR
Acc: ZDB-GENE-
11
NED
Intron
SEQ
ttttctccgcttgcttctgc
11
SEQ
AAAGAGCTGAATAGGA
137


stimulating

020423-5


10-11
35


36
GGAAGTT



hormone

ENSONIG00000
15
FAM
15
SEQ
CATCTTGGCGTTCTTCTG
15
SEQ
CTTGAGGGCAGCTGAG
181


receptor

015917



37
TGT

38
ATGGC






Vitellogenin Aa
VtgAa
Acc: ZDB-GENE-
7
NED
7
SEQ
GCAATCCTTGATGCTCC
7
SEQ
CTGAGACTCTATGTCGT
163




001201-1



39
TTGAC

40
TGATA





ENSONIG00000
22
FAM
22
SEQ
AGAAGATCATCAAACAC
22
SEQ
GACTTGTTGAGCAGTTG
227




007355



41
ATCACG

42
CATCAA






Vitellogenin Ab
VtgAb
Acc: ZDB-GENE-
5
NED
5
SEQ
ttttgtgatctagTCTGGAG
5
SEQ
gctcttacAGCTTCACAAT
183




001201-1



43


44
CAT





ENSONIG00000
22
FAM
22
SEQ
CTTCTGGACCAGTCATT
22
SEQ
AGACTTGTTGGAGCTA
227




007369



45
GAG

46
GAG
















TABLE 2







Primers











Genotyping RT-PCR primers
















Tilapia






Ampli-



homolog
Forward
SEQ

Reverse
SEQ

con



gene
primer
ID

primer
ID

size


full gene name
(alias)
exon
NO
Forward primer sequence
exon
NO
Reverse Primer sequence
(bp)


















cytochrome P450,
Cyp17
1
SEQ
GAACCAAACCCCTCTGTCAC
1
SEQ
GTAATTCACTCCGCAGGCTCA
184


family 17,


47
TG

48
G



subfamily A,

1
SEQ
GAACCAAACCCCTCTGTCAC
1
SEQ
GTAATTCACTCCGCAGGCTCA
184


polypeptide 1


47
TG

48
G






cytochrome P450,
Cyp19a1
1
SEQ
ggcgATGAATCCTGTAG
1
SEQ
ATGGCATTTGAGGTCACAGAG
63


family 19,
a

49


50
A



subfamily A,

9
SEQ
TGATGGAGAGCTTCATCTAC
9
SEQ
GTTCCAGGTTAAATTGATTG
186


polypeptide 1a


5
GAA

6




gene













Tight junction
Tjp1a
15
SEQ
GTTCAAGAAGGGAGAGAGT
15
SEQ
AAAAATTCCCACATCGTT
61


protein 1a


51


52






17
SEQ
tgctttggcttcagTGTATC
17
SEQ
AATGCGTTCGAATGTAGAA
71





53


54







Casein Kinase II
Csnk2a2
5′UTR
SEQ
gtatttagaaggcggtgaaggtc
1
SEQ
CAGTTTGGCACATGAGCATCG
153


subunit alpha


11


12
TA





1
SEQ
ATGCTCATGTGCCAAACTG
2
SEQ
cCTTCAGGATTTTCACCACCAC
222





13


14
T






Hippocampus
Hiat1
Intron
SEQ
tactgacacatccagcagcgtct
Intron
SEQ
cagcactgagccgtcagtattct
211


abunda nt 

3-4
15

4-5
16




transcript 1a

6
SEQ
CATCTGCTTCATCCTGGTGG
6
SEQ
tactcacAGCGAAGGGGTCT
110





55
CTG

18







small ArfGAP2
Smap2
2
SEQ
AATTTGGGCATCTTCATCTG
2
SEQ
GACAGACTTGACCTTGGAGAT
81





56
TAT

57
G





9
SEQ
AGAGGAGGGCACAGTCAAG
10
SEQ
TTGGATATCCCATTTGGTTCAT
226





21
AAAC

22







Golgi-associated
Gopc
1
SEQ
ATGTCTGCTTCGACTGGATG
1
SEQ
GCCATCGAAACATGGACATAC
76


PDZ and coiled-coil


58
C

59
TG



motif containing

Intron
SEQ
tgcccctttaaaccaccta
2
SEQ
CTCAGCTTGGCCTTGCTTGACA
207


gene

1-2
25


26
T






doublesex and
Dmrt1
5′UTR-1
SEQ
ttgccaggacccATGAGCCAG
1
SEQ
AGACACGTATCCGTGATTTCTA
135


mab-3 related


27


28
C



transcription 

Intron
SEQ
ctcttcatcctctgtgtctcatc
3
SEQ
GGGTTTCCAGCAGGAGGTCAG
140


factor

2-3
29


30
A






growth/differentia-
Gsdf
2
SEQ
ttatgttcagGTGCCAAGGTG
2
SEQ
TGGCTGTGTGAGAAACGATGC
156


tion


31


32
TG



factor 6-8-like

4
SEQ
agATCTGGGCTGGGACA
4
SEQ
tgttaactatacCTGTGTGTTGG
145





33


34







Follicle
FSHR
Intron
SEQ
ttttctccgcttgcttctgc
11
SEQ
AAAGAGCTGAATAGGAGGAA
137


stimulating

10-11
35


36
GTT



hormone receptor

15
SEQ
CATCTTGGCGTTCTTCTGTG
15
SEQ
CTTGAGGGCAGCTGAGATGGC
181





37
T

38







Vitellogenin Aa

7
SEQ
GCAATCCTTGATGCTCCTTG
7
SEQ
CTGAGACTCTATGTCGTTGATA
163


VtgAa


39
AC

40






22
SEQ
AGAAGATCATCAAACACATC
22
SEQ
GACTTGTTGAGCAGTTGCATC
227





41
ACG

42
AA






Vitellogenin Ab
VtgAb
5
SEQ
ttttgtgatctagTCTGGAG
5
SEQ
gctcttacAGCTTCACAATCAT
183





43


44






22
SEQ
CTTCTGGACCAGTCATTGAG
22
SEQ
AGACTTGTTGGAGCTAGAG
227





45


46









Example 2—Use of a Gene Editing Tool to Induce Double-Allelic Knockout in Tilapia F0 Generation

We have independently targeted two genes involved in pigmentation, namely the genes encoding tyrosinase (tyr) [2] and the mitochondrial inner membrane protein MpV17 (mpv17) (Krauss, Astrinides et al. 2013) [8]. We found that 50% and 46% of all injected embryos showed a high degree of mutation at the tyr and mpv17loci respectively (FIG. 4). Loss-of-function alleles cell-autonomously lead to unpigmented melanophores in the embryo body (FIG. 4 panel B) and in the retinal pigment epithelium (FIG. 4 panel C), producing embryonic phenotypes ranging from complete to partial loss of melanine and iridophore pigmentation that are readily identifiable against wild type phenotype (FIG. 4 panels A and C). Embryos showing a complete lack of pigmentation (10-30% of treated fish) were raised to 3 months of age and all lacked wild type tyr and mpv17 sequences. These fish display transparent and albino phenotypes (FIG. 4 panel D), indicating that functional studies can be performed in F0 tilapia.


Example 3—Multi-Gene Targeting in Tilapia

We tested whether multiple genomic loci can be targeted simultaneously and whether mutagenic efficiency measured at one loci is predictable of mutation at other loci in the tilapia genome. To test our hypothesis, we co-targeted tyr and Dead-end1 (dnd). Dnd is a PGC-specific RNA binding protein (RBP) that maintains germ cell fate and migration ability [3]. Following injection of programmed nucleases, we found that mutations in both gene targets tyr and dnd were highly correlated. Approximately 95% of abino (tyr) mutants also carried mutations at the dnd loci, demonstrating the suitability of the pigmentation defect as a selection marker (FIG. 5 panel A). Upon further analysis of the gonads from 10 albino fish, 6 were translucid germ cell-free testes (FIG. 5 panel B). Expression of vasa, a germ cell specific marker strongly expressed in wild type testes, was strikingly not detected in dnd mutant testes. This result indicates that zygotic dnd expression is necessary for the maintenance of germ cells and that maternally contributed dnd mRNA and/or protein cannot rescue the zygotic loss of this gene.


Example 4—Producing Germ Cell Free Gonads

We produced sterile tilapia by implementing transient silencing of the dnd gene in embryos via microinjection of antisense modified oligonucleotides (dnd-Morpholino as well as dnd-AUM oligos). We produced sterile tilapia following bath-immersion of embryos exposed to a small molecule initially discovered in a screen to ablate PGCs in zebrafish [10]. We further generated sterile tilapia using gene knockout strategies as describe for dnd in the section above (Example 3). We also found that breeding Elavl2 heterozygous mutant lines and selecting the homozygous-mutant progeny allow production of germ cell-free adult of both sexes (FIG. 6). These gene KO approaches, along with others mentioned above, produce infertile tilapia, displaying either female urogenital papillae (UGP) and a string-like gonad or male UGP and a translucid tube-like gonad (FIG. 6). These methodologies, however, are not viable solutions for commercial production of sterile fish because only a 25% of progeny from heterozygous mutant parent are sterile and other knock down approaches are insufficiently robust and reliable to ensure complete sterilization of each fish in every batch treatment. In the present invention mass-production of sterile fish rely on broodstock surrogate parents that start as germ cell free fish, then receive germline stem cell transplant and ultimately produce donor derived sperm or eggs. Sterilization of these recipient broodstock in our approach preferentially use knockout strategies (e.g. elavl2-null progeny from heterozygous parents; see Example 11). Knockout strategies other than Elavl2 may be used to produce sterile recipient, including a null mutant for dead-end1, vasa, nanos3 or piwi-like genes. Such a knockout recipient ensures that only donor derived gametes are produced after transplantation. Depending on the species of fish, crustacean or mollusk, alternative strategies to produce sterile recipient can be used, including hybridization and triploidization (Benfey et al., 1984; Felip et al., 2001).


Example 5—Cyp17l is Necessary for Female Development in Nile Tilapia

The balance of steroidogenic hormones may govern sex differentiation and maturation of the gonads in teleost fish, with estrogen playing an essential role for female differentiation. However, gonadal differentiation and gametogenesis in the absence of both androgen and estrogen has not been investigated. To this end, we produced an in vivo tilapia model lacking the cyp17l gene (hereafter referred to as cyp17).


In Nile tilapia, this enzyme is exclusively expressed in Theca cells and produces androgens in response to luteinizing hormone (LH) [13]. Androgens are then converted into estrogen by follicle stimulating hormone (FSH)-induced aromatase (cyp19a1a) in the neighboring granulosa cells of growing follicles. Accordingly, cyp17 loss of function (via gene editing knockout) should simultaneously block androgen and estrogen synthesis. Consistent with this model, we found that 20 of the 22 selected F0 albino/cyp17 mutants developed as phenotypic males, which all displayed minuscule UGP (FIG. 8 panel C). The atrophy of the genitalia is not unexpected given the relationship between androgens and genital papilla [14]. These F0 males remained fertile however, possibly due to a partial loss of function phenotype in the mosaic F0 context. For a complete phenotypic analysis, we generated individuals carrying the same null Δ16-cyp17 mutation in all cells of their body by selective breeding of F1 progeny (FIG. 7). Intercrossing between F1 heterozygotes (cyp17+/−) produced ˜360 F2 progeny and a typical Mendelian segregation of wildtype (n=110; cyp17+/+), hemizygous (n=159; cyp17+/−) and homozygous animals (n=91; cyp17−/−). A total of 155 F2 progeny were sexed at 6 months of age, based on the morphological characteristics of their urogenital papillae (UGP). We found that all 33 homozygotes fish developed as phenotypic males, with atrophic UGP (FIG. 8 panel A). Our results indicate that Cyp17 is indispensable for female development.


We then quantified the amount of free plasma testosterone by ELISA in wild-type and cyp17-mutant tilapia. A mean of 86 pg/mL of testosterone was measured in wild-type (cyp17+/+) and heterozygous mutant tilapia (cyp17+/−) whereas no detectable level of testosterone was found in homozygous mutant (cyp17−/−) (FIG. 8 panel B). This confirm the essential role of this enzyme in androgens production.


We further examined the morphology and functionality of the gonads in Cyp17 deficient fish. Sibling 5-month-old males cyp17+/+, cyp17+/− and cyp17−/−, of identical size were dissected and all organs except the gonads were removed from their body cavity (FIG. 9 panel A). WT and hemizygous mutants showed pink colored testes typically found in sexually mature fish, while homozygous mutants exhibited translucid testes (FIG. 9 panels A and B). Furthermore, mutant testes were 50% smaller than controls (FIG. 9 panel D) and strippable milt volume was less than 20% of WT (FIG. 9 panel E). In addition, sperm concentration in homozygous cyp17 mutants was reduced 20 and 6-fold at 5 and 6 months of age respectively (FIG. 9 panel F). We found no defect in sperm morphology, motility or functionality, as evidenced by the successful fertilization of WT eggs with milt collected from 10 null mutants.


The fact that cyp17 null mutants can undergo spermatogenesis suggests that androgens are not strictly necessary for this process in Nile tilapia. Thus, a loss of function mutation in this gene may not be sufficient to produce all-sterile male populations. To identify the regulatory mechanism responsible for the formation of functional spermatozoa, we investigated additional genes associated with male infertility in mammals.


Example 6—Gene Candidates for Targeting Spermiogenesis

There are significant differences in the morphology and function of mammalian and fish sperm. In particular, fish sperm lack an acrosome and are immotile in seminal fluid, while mammalian spermatozoa possess an acrosome (a key organelle necessary to penetrate the egg chorion) and is mobile in seminal fluid. Globozoospermia is a rare and severe form of human infertility characterized by sperm defective in both morphology and function. Fish models of this disease, however, have not been developed, likely because fish sperm lack an acrosome. Using genomic databases, we identified in silico the tilapia orthologs of the following mammalian genes: Csnk2a2 [15] Gopc [16, 17], Hiat1 [18], Tjp1a, Smap2 [21]. To explore their function in tilapia, we targeted 2 separate exons for each gene (see FIGS. 10 to 14). A pigmentation gene (tyrosinase) was co-targeted and used as a mutagenesis selection marker.


In conjunction with non-treated controls, approximately 20 embryos per candidate gene displaying pigmentation defects were raised to adulthood. At 5 months of age, milt from F0 males and WT controls were stripped to assay sperm density, motility and morphology. Compared to controls, all F0 mutant males produced diluted sperm. Under microscopy, mutant spermatozoa largely produced only a trembling movement and we found wide-ranging frequencies (25%-95%) of abnormally shaped sperm heads, characteristic of the defects seen in human and mice with globozoospermia (FIG. 15 panel A). These mutations caused significant decreases in fertilization rates (FIG. 15 panel B). Furthermore, we found a positive correlation between the severity of the sterility phenotype and the observed frequency of the sperm deformities, with the lowest fertilization rate found in Tjp1a mutants where 95% of sperm were deformed (FIG. 15 panels A and B). We found that all females in these F0 mutant lines are fertile.


Our results point to the existence of an evolutionarily conserved pathway controlling spermiogenesis in fish and mammals. These results support the idea that the targeted disruption of these corresponding genes will cause a sterility phenotype in many other teleost species, and possibly more broadly in other taxa as well.


Example 7—Sterile all-Male Fish in Cyp17 KO Background

To engineer male sterility, we first evaluated the effect of null mutations in the cyp17gene, which controls an important branch point in steroid hormone synthesis, regulating both androgen and estrogen production. We found that all cyp17−/− fish develop as male. Surprisingly, milt produced by cyp17−/− contained a small number of mature spermatozoa that could fertilize oocytes by in vitro fertilization. We than investigated the possibility of blocking spermiogenesis. Our preliminary screens focused on five genes associated with globozoospermia (collectively termed spermiogenesis specific genes or SMS-genes: Smap2, Cnsk2a2, Gopc, Hiat1 and Tjp1a), whose mutations caused subfertility in F0 males with severe oligo-astheno-teratozoospermia, while F0 mutant females were fully fertile. Previous genetic characterizations of F0 KO fish indicate that they typically carry mosaic mutations at the corresponding targeted loci, some of which are often in-frame causing partial rescue of the phenotype. Thus, to measure the full loss-of function phenotype, we performed additional phenotypic characterization on homozygous SMS-null-mutants. We further established lines of tilapia carrying double homozygous mutations to interrogate the effect of simultaneously impairing spermiogenesis and steroid hormone synthesis.


Experiment: To assess in vivo function of double gene knockouts in cyp17 and one of the 5 SMS gene, we outcrossed F0 SMS mutant females with cyp17Δ16/+ males. Offspring (120 to 180 fish) were genotyped at each target locus by PCR fragment analysis (as described in FIG. 2) [22]. We only raised individuals carrying an identical mutant allele, hereafter referred to as m1 (FIG. 18), at the selected SMS locus (typically 12-50% of the F1 progeny population share the same genotype). A minimum of 10 double heterozygotes (e.g. cyp17Δ16/+; SMSm1/+) were raised to adulthood. These double heterozygotes were inter-crossed, and their progeny genotyped at 1 month of age by QPCR melt analysis. For each of the 9 ensuing possible F2 genotypes (see FIG. 9), a minimum of 30 fish are currently being raised to adulthood and will be assayed for fertility. Females cyp17+/+; SMS+/m1 (e.g. cyp17+/+; Tjp1a+/m1) were set aside for further studies described in section 2 below. FIG. 9 summarizes this experimental scheme, using Tjp1a as an example of an SMS gene target.


Without being bound by theory, we believe that in finfish, as in mammals, null mutations in all 5 conserved spermiogenesis specific genes will result in oligo-astheno-teratozoospermia and cause infertility. We expect that all double homozygous mutants (cyp17−/−; SMS−/−) will develop as sterile males with even lower sperm counts than any single KO male defective in spermiogenesis (SMS−/−). Indeed, cyp17−/− fish should be deficient in 11-ketotestosterone, a positive regulator of spermatogenesis. Consistent with the idea that androgen plays an intra-testicular paracrine role in spermatogenesis, cyp17−/− tilapia have previously been shown to display low sperm counts. FIG. 9 shows the nine genotypes along with four different corresponding phenotypes with the expected percentages: 1) ˜56% fertile for both sexes, 2) ˜19% fertile female and sterile male, 3) ˜19% all fertile male; and 4)˜6% all-sterile male. Looking at each trait individually, we expect a progeny population of 62% male with 25% of these males being sterile.


Example 8—Sterile all-Male Fish in Cypnala KO Background

An alternative strategy to generate all-male population is to inactivate the Cyp19a1a aromatase (hereafter referred to as Cyp19). We created out of frame mutations in the coding sequence of the tilapia cyp19 gene (FIG. 17). This enzyme is produced by the somatic gonad and convert testosterone into estrogen. Consistent with this model, we found a strong male bias amongst the 25 F0 Cyp19 mutants selected, with 20 mutants developing as phenotypic males (Table 3). Notably these mutant males displayed normally appearing male urogenital papillae, indicating that androgen production is not impaired and secondary male sexual characteristics develop normally. This stand in contrast to cyp17 KO males, which lack androgen and accordingly develop atrophic urogenital papillae. The generation of all-male sterile tilapia populations, which either express or do not express androgens (as in cyp19 KO and cyp17 KO backgrounds respectively), will allow us to interrogate the influence of male sex steroid hormone on tilapia growth performance. The stimulatory action of testosterone on GH secretion and responsiveness is well documented in mammals. For a complete phenotypic analysis, we generated individuals carrying the same null mutations in all cells of their body. Heterozygous cyp19 F1 offspring with a Δ10-cyp19 deletions in the first exon were selected to breed the F2 generation. This frame-shift mutation is expected to create a truncated protein lacking >98% of its wild type amino acid sequence (FIG. 17). This F2 generation was genotyped and sexed. As expected, we found that homozygous A10-cyp19 tilapia all develop as males (n=38) while hemizygous (n=97) and wild-type (n=40) had a normal sex ratio. We further established lines of tilapia carrying double homozygous mutations to interrogate the effect of simultaneously impairing spermiogenesis and steroid hormone synthesis.


Experiment: We first outcrossed heterozygous F1 males Δ10-cyp19a1a with the heterozgygous mutant females from Example 7 (GopcΔ8/+; Smap2Δ17/+; TjP1aΔ7/+; Csnk2a2Δ22/+; Hiat1Δ17/+. Only SMS genes that cause male sterility when disrupted in a Cyp17 null background (results from Example 7) will be selected. The progeny will be genotyped and at least 10 double heterozygous will be raised to adulthood, sexed, and inter-crossed. The resulting progeny will be assayed for fertility as described in Example 7. A maximum of 5 different double KO males will be generated. Without being bound by theory, we expect double KO cyp19−/−; SMS−/− fish to develop as sterile males and anticipate a progeny population of 62% male, with 25% of them being sterile.









TABLE 3







Description of single gene mutant alleles, double hemizygous mutant alleles and homozygous mutant alleles generated


in this study. Genes names are listed based on their specific role in feminization (FEM), spermiogenesis (SMS),


masculinization (MA) and folliculogenesis (FLS). Phenotypes observed in selected F0 mutant are described.












Gene
Gene
phenotype in F0
Selected F1 genotypes
Selected double



categories
names
albino
(hemizygous)
hemizygous mutant
F2 homozygous





FEM
Cyp17
80% male (n = 20)
Cyp17Δ16/+

Cyp17Δ16/Δ16



Cyp19a1a
75% male (n = 23)
Cyp19Δ7/+, Cyp19Δ10/+

Cyp19Δ10/Δ10


SMS
Tjp1a
Reduced fertility
Tjp1aΔ7/+
Tjp1aΔ7/+ and Cyp19Δ10/+
Tjp1aΔ7/Δ7



Csnk2a2
in males (70-90%)
Csnk2a2Δ22/+
Csnk2a2Δ22/+ and Cyp17Δ16/+
Csnk2a2Δ22/Δ22



Hiat1

Hiat1Δ17/+
Hiat1Δ17/+ and Cyp17Δ16/+
Hiat1Δ17/Δ17



Smap2

Smap2Δ17/+
Smap2Δ17/+ and Cyp19Δ10/+
Smap2Δ17/Δ17



Gopc

GopcΔ8/+

GopcΔ8/Δ8


MA
Dmrt1
50% female (n = 24)
Dmrt1Δ7/+, Dmrt1Δ13/+



Gsdf
95% female (n = 20)
GsdfΔ5/+, GsdfΔ22/+


FLS
FSHR
Sterile females
FSHRΔ5/+
FSHRΔ5/+ and Dmrt1Δ7/+



VtgAa
(2 in 6 tested)
VtgAaΔ5/+, VtgAaΔ25/+
VtgAaΔ25/+ and GsdfΔ22/+
VtgAaΔ25/Δ25



VtgAb
Sterile females
VtgAbΔ8/+
VtgAbΔ8/+ and VtgAaΔ25/+
VtgAbΔ8/Δ8




(3 in 5 tested)




Reduced fertility




in females (70-90%)









Example 9—Evaluate Two Genes Targeting Male Differentiation in Conjunction with Two Other Genes Controlling Oogenesis to Produce a Sterile all-Female Population

The transcriptional inhibitor Gonadal soma-derived factor (Gsdf) is a TGF-b superfamily member expressed only in the gonads of fish, predominantly in the Sertoli cells. Similarly, the transcription factor Dmrt1 is preferentially expressed in pre Sertoli and Sertoli cells as well as in epithelial cells of the testis. Both genes are necessary for normal testis development ([23, 24]).


To produce all-female tilapia populations, we generated null mutations in either Dmrt1 or Gsdf genes (maleness genes or MA) (FIG. 19 and FIG. 20). We found that 19 out of 20 Gsdf mutated albino tilapia developed as females (Table 3). In contrast, F0 mutant showing mosaic pigment defect had normal sex ratio. Postulating a positive correlation of mutagenic frequency between co-targeted tyrosinase and Gsdf genes, our result suggests that high-mutation-rate in Gsdf cause XY male to sex reverse into female. Surprisingly we did not observe a female sex bias amongst selected F0 Dmrt1 mutant (Table 3).


To engineer sterility in females, we targeted genes involved in the maturation of ovarian follicle. We have identified two genes in the molecular pathway controlling folliculogenesis: 1) FSHR which acts upstream of ovarian estrogen synthesis and. 2) vitellogenins (Vtgs) which act downstream of ovarian estrogen synthesis. Vitellogenins are preferentially produced by the liver while FSHR, the follicle-stimulating hormone (FSH) receptor is expressed in Theca cells surrounding the developing oocytes. To test the necessity of FSHR and Vtgs in normal ovarian development (folliculogenesis specific genes or FLS) we produced loss-of-function mutations in those genes in independent F0 lines (FIGS. 22-24).


We found that FSHR is indispensable to folliculogenesis and the disruption of the FSHR gene resulted in a complete failure of follicle activation and female sterility (FIG. 26 and Table 3). In tilapia, FSHR mutation was not followed by masculinization of genetic females into males, as previously described in zebrafish [29]. However, we found that F0 FSHR mutant females had significantly smaller urogenital papillae when compared to control female. This observation likely reflects a reduced level of estrogen in FSHR mutant, consistent with a role of FSHR in locally up-regulating aromatase expression and estrogen production. We found no significant reproductive phenotype in F0 FSHR mutant male.


Nile tilapia only possess 3 Vtg genes [25], two forms of complete Vtgs (VtgAa and VtgAb) and one form of incomplete C-type teleost vitellogenin, lacking three protein domains (VtgC). Since VtgAa and VtgAb are expressed at higher level than VtgC and assumed to be critical to early embryo development, we targeted those two genes individually as well as jointly (FIGS. 22, 23, and Table 3). Consistent with functions in oocyte maturation and nutritional support for embryogenesis, we found that 3 F0 females mutated in VtgAa out of 4 tested failed repeatedly to produce viable progeny (FIG. 24). We also found that one F0 female carrying mutations in VtgAb out of 5 produced embryos progeny that died before hatch (data not shown).


For a complete phenotypic characterization, it is essential to generate identical mutations in every cell of the animal. Thus, we will establish and characterize 4 lines of tilapia deficient in both masculinization and vitellogenesis.


At 6 months of age, mosaic F0 XX MA m1-n female (e.g. Dmrt1 m1-n or Gsdf m1-n) were outcrossed to mosaic F0 FLS m1-n males (FSHRm1-n or Vtgs m1-n) and their F1 progeny genotyped to identify double heterozygous mutants (e.g. Dmrt1Δ7/+-FSHRΔ5/+) carrying the same gene specific indel at each locus (Table 3).


Experiment: A minimum of 10 double heterozygotes (for each of the four gene combinations) are currently being raised to adulthood. The WT alleles should ensure that these F1 fish develop as both fertile males and females. These double heterozygous mutants will then be incrossed, and their progeny genotyped at 1 month of age by QPCR melt analysis. For each of the 9 ensuing possible genotypes (see FIG. 25), a minimum of 30 fish will be raised to adulthood, then sexed, and assayed for fertility.



FIG. 25 shows nine genotypes and the corresponding four different phenotypes we expect with the following fractional ratios: 1) ˜56% fertile for both sexes, 2) ˜19% fertile female and sterile male, 3) ˜19% all fertile male; and 4) ˜6% all-sterile female. Looking at each trait individually, we expect a progeny population of 62% female with 25% of these females being sterile.


Our phenotypic investigations in F0 mutant lines (Table 3) mostly agree with our initial hypothesis and we fully expect corroborating genotype-phenotype relationships in subsequent generations. We found that Gsdf deficiency caused feminization while FSHR and Vtgs inactivation resulted in female sterility. These results strongly suggest that double FSHR-Gsdf KOs will develop into monosex sterile female populations characterized by atrophic ovaries containing follicles arrested at the previtellogenic stage. The lack of a sex differentiation phenotype in F0 Dmrt1 mutant likely reflects incomplete editing, regional mosaicism and compensation by non-mutated cells. Without being bound by theory however, we believe that double FSHR-Dmrt1 KOs in which the mutations have been inherited through the germline, will develop into all female sterile populations. In our F0 mutagenesis screen we observed that blocking the precursor of major yolk proteins (as in Vtg KOs), compromises egg quality and impairs the development and survival of embryos. As such, we expect that double KOs Gsdf-Vtgs and Dmrt1-Vtgs will develop into monosex sterile female populations.


Example 10—Propagation of all-Male and all-Female Sterile Lines by Germline Transplantation into Sterile Surrogate Adults

Examples 8 and 9 above illustrate how to generate monosex sterile fish by breeding double hemizygous mutant and by individually selecting the subpopulation of double KO progeny. This approach however may not be sufficiently efficient and may be too expensive to be used in industrial settings. Intracytoplasmic sperm injection in assisted reproduction offers a solution to propagate male broodstock that are defective in spermiogenesis. However, this approach is also not scalable for mass production of commercial stocks (as it requires conducting methods on ‘one fish at a time). The key to larger scale production is to generate male and female broodstock that only produce mutant gametes so that no selection is needed to identify the double KO progeny. Importantly, those mutant gametes should also be functional so that natural mating of these broodstock can be used to produce a viable population of monosex sterile progeny. This is only possible if sex ratio and gamete functionality are rescued in the broodstock. We speculated that this can be achieved by germline stem cell transplantation from a double KO mutant fish to a germ cell free recipient not mutated for the same genes. Such transplanted broodstock have normal somatic cells but a mutant germline (see FIGS. 27-32). These chimeric recipients possess functional MA or FEM somatic gene(s) that ensure normal sex ratio (FIG. 34 panels C and D) and functional SMS or FLS somatic genes to rescue spermiogenesis (FIG. 28) or oogenesis (FIGS. 29 and 30) assuming the mutated genes do not function in germ cells.


Since spermatogenic failure can result from defects in germ cells or in their somatic environment we analyzed the SMS genes expressions to identify those preferentially not expressed in germ cells (FIG. 16). Our SMS gene expression study in sterile testes point to a role of gonad somatic cells in supporting germ cell development. For example, we found that Tjp1a is a highly expressed in sterile testes at level above wild type testes, while Hiat1 and Gopc expression levels are only slightly reduced compare to fertile testes (FIG. 16).


These results suggest that mutant of those genes develop a testicular microenvironment, where spermiogenesis is impaired due to Sertoli and/or Leydig-specific defects (FIG. 28). Consequently, we expect that transplantation of spermatogonial stem cells from the male knockout infertile donors to a permissive wild type testicular environment will restore sperm functionality and fertility (FIG. 28).


Likewise, FSHR and Vtgs, are strictly expressed in somatic cells (Theca and liver cells respectively). Thus, oocytes carrying null alleles of these genes should retain their intrinsic capacity to proliferate and differentiate, ensuring that oogonial stem cells from a sterile female mutant donor can re-populate the ovaries and differentiate into functional eggs upon transplantation into a WT/permissive recipient (FIGS. 29 and 30). Thus, we believe that recipient males or females can produce gametes that carry the donor genotype.


Example 11—Elavl2 KO Recipients can Produce Functional Gametes

To confirm that sterile Elavl2 KO recipients can produce functional gametes from donor-derived germ cells, we harvested spermatogonial stem from the testes of albino (tyr−/−) male tilapia carrying mutations (in-frame and out-of-frame) in a reference gene (FIG. 33 panel A). We transplanted the testicular cell suspension from both mutant lines, into germ cell depleted recipient embryos progeny from Elavl2−/+, tyr+/+ parents. We genotyped transplanted fish to select homozygous Elavl2−/− mutant and raised them to adulthood. At 5 months of age, between 31-50% of transplanted Elavl2−/− male and 40% of six months old transplanted Elavl2−/− female produced exclusively albino progeny when outcrossed with albino male and female. Non-transplanted Elavl2−/− controls were sterile. Thus, Elavl2−/− recipients can produce donor-derived gametes after germline stem cell transplantation illustrating the feasibility to create a tilapia that produced only donor derived gametes. Using albinism to assay for gametes carrying tyr alleles provided an easy quantifiable high-throughput assay for germline transmission efficacy of mutant alleles, but these experiments do not demonstrate that the null mutations was successfully propagated. To this end, we extracted and analyzed the sperm DNA from one fertile recipient by PCR fragment sizing assay. The amplification products were sized using capillary electrophoresis (FIG. 33 panel B). Results reveal that the recipient fish only produces sperm containing donor derived in-frame and out-of-frame (3 nt and 4 nt) deletions fragments suggesting that the null allele (4 nt deletion) can colonize the gonad and proliferate as efficiently as the positive control mutation (3 nt deletion) (FIG. 33 panel B).


Experiment: Spermatogonial and oogonial stem cells (SSCs, OSCs) will be isolated from all-male and all-female juvenile tilapia lines (developed as per Examples 7, 8, and 9). After harvest, these germline stem cells will be transplanted into Elavl2 KO recipient hatchlings as described above. Without being bound by theory, we expect production of functional spermatozoa and oocytes carrying the donor genotypes. To evaluate the functionality of donor-derived gametes produced after transplantation, in vitro fertilization assays will be performed. Moreover, we expect only albino progeny to arise from a cross between the naturally pigmented recipient carrying albino donor gametes and albino lines. We will genotype 10 progenies for mutations in donor-derived spermatogenesis and vitellogenesis specific genes.


As illustrated in FIG. 34 panel B, crossing surrogate mothers with double KO sex reversed males, obtained from treatment with aromatase inhibitors, will produce all-female sterile progeny. Alternatively, crossing surrogate fathers with double KO sex reversed female mutants rescued after estrogen treatment, will produce all-male sterile populations (FIG. 34 panel A). Sex reversal of double KO with estrogen (as in FIG. 34 panel A) or androgen inhibitor (as in FIG. 34 panel B) can otherwise be substituted by germ line transplantation method to produce the female broodstock (FIG. 34 panel C) or male broodstock (FIG. 34 panel D).


Example 12—Tank Grow-Out Trials

There is a direct trade-off between growth and reproduction, as energy channeled into the gonads detracts from somatic growth. Nile tilapia mature precociously and can reproduce throughout the year, with short vitellogenic periods [26], and a physiological process that demands a high metabolic rate. Furthermore, Tilapia species can suppress growth to maintain their reproductive capacity [27], and in other fish species the onset of puberty can have a major impact on important production parameters in fish farming such as appetite, growth rate, feed conversion efficiency, flesh quality traits, external appearance, health, welfare and survival rates. Thus, delaying or blocking sexual maturation is likely to confer significant benefits to commercial aquaculture producers. In our efforts to develop sterile monosex populations, we have targeted genes whose mutations block or delay the onset of puberty. However, genes targeted for these effects might also have pleiotropic effects, detrimental to the line, acting via unknown hormonal, physiological or behavioral changes.


Experiment: To generate groups used for growth performance trials, embryos from single paired crossings (at least three separate crosses) will be produced for each line of interest. Treatment and control embryos will be reared separately using established hatchery procedures. At the feeding stage, half of the control animals will be sex reversed using appropriate exogenous hormone treatment protocols (i.e. feeding methyl testosterone or DES). When fish within a group (treatment and control) reach a mean weight of 60 g, they will be PIT tagged and divided into six 1000 L tanks (3 control and 3 treatment tanks, with 50 fish/tank). All fish will be fed three times daily, to satiation.


Each fish will be individually weighed, and the length of each fish measured at 4-week intervals over a period necessary to reach market size (680 g Sdv: 77 g, 8 months). At the end of the experiment, fish will be sacrificed and sexed based on the structure of the urogenital orifice. We will record the individual weights of dissected gonads and carcass for calculation of gonadosomatic index (GSI) and carcass index (n=60 per group). Specific growth rate (G) will be calculated according to the formula of Houde & Scheckter [28]


Without being bound by theory, we believe that most, if not all, double KO fish created in Examples 7, 8, and 9 will develop as monosex and be sterile with no other biological processes impaired. Thus, selected mutations should not negatively impact the overall fish performance. On the contrary, we expect to find an improved growth rate and feed conversion ratios inversely correlated to gonad weight. Mutant lines should be sexually delayed (male sterile) or immature (female arrested at the previtellogenic stage). In the unlikely event that we achieve only partial sterilization of monosex populations, we expect improvement in productivity in tilapia to be proportional to the fraction of sterile fish in the population, as a result of reduced energy expenditure. In all cases, we anticipate sterile fish and fish with atrophic gonads to out-perform their fully fertile counterparts (e.g. monosex populations derived from exogenous hormone treatments) in regard to growth characteristics.


REFERENCES



  • 1. Dunham, R., Aquaculture and Fisheries Biotechnology, CABI Publishing. 2004.

  • 2. Pruginin, Y., et al., All-male broods of Tilapia niloticax T. aurea hybrids. Aquaculture, 1975. 6(1): p. 11-21.

  • 3. Wolters, W. R. and R. DeMay, Production characteristics of striped bassx white bass and striped bassx yellow bass hybrids. Journal of the World Aquaculture Society, 1996. 27(2): p. 202-207.

  • 4. McMaster, M., et al., Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent. Ecotoxicology and environmental safety, 1992. 23(1): p. 103-117.

  • 5. Lacerda, S. M., et al., A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One, 2010. 5(5): p. e10740.

  • 6. Lauth, X. and J. T. Buchanan, Maternally induced sterility in animals. 2015, Google Patents.

  • 7. Koga, A., et al., Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Molecular and General Genetics MGG, 1995. 249(4): p. 400-405.

  • 8. Krauss, J., et al., transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biology open, 2013. 2(7): p. 703-710.

  • 9. Weidinger, G., et al., dead end, a Novel Vertebrate Germ Plasm Component, Is Required for Zebrafish Primordial Germ Cell Migration and Survival. Current Biology, 2003. 13(16): p. 1429-1434.

  • 10. Peterson, R. T. and P. J. Schlueter, Germ cell ablation compounds and uses thereof. 2017, Google Patents.

  • 11. Benfey, T. J. and A. M. Sutterlin, Growth and gonadal development in triploid landlocked Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 1984. 41(9): p. 1387-1392.

  • 12. Felip, A., et al., Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica, 2001. 111(1-3): p. 175-195.

  • 13. Zhou, L.-Y., et al., A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology, 2007. 148(9): p. 4282-4291.

  • 14. Carlisle, S., et al., Carneiro, L. & Grober, M S (2000). Effects of 11-ketotestosterone on genital papilla morphology in the sex changing fish Lythrypnus dalli. Journal of Fish Biology 57, 445-456. The resolution of FIG. 2 when originally printed was unsatisfactory. The correct. Journal of Fish Biology, 2001. 58: p. 299.

  • 15. Xu, X., et al., Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nature genetics, 1999. 23(1): p. 118.

  • 16. Yao, R., et al., Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proceedings of the National Academy of Sciences, 2002. 99(17): p. 11211-11216.

  • 17. Suzuki-Toyota, F., et al., Factors maintaining normal sperm tail structure during epididymal maturation studied in Gopc−/− mice. Biology of reproduction, 2007. 77(1): p. 71-82.

  • 18. Doran, J., et al., Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice. Reproduction, 2016. 152(1): p. 91-99.

  • 19. Rocha, D. and N. Affara, The genetic basis of impaired spermatogenesis and male infertility. Current Obstetrics & Gynaecology, 2000. 10(3): p. 139-145.

  • 20. Truong, B., et al., Searching for candidate genes for male infertility.



Asian journal of andrology, 2003. 5(2): p. 137-147.

  • 21. Funaki, T., et al., The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Molecular biology of the cell, 2013. 24(17): p. 2633-2644.
  • 22. Oka, K., et al., Genotyping of 38 insertion/deletion polymorphisms for human identification using universal fluorescent PCR. Molecular and cellular probes, 2014. 28(1): p. 13-18.
  • 23. Jiang, D. N., et al., gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Molecular reproduction and development, 2016. 83(6): p. 497-508.
  • 24. Li, M., et al., Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics, 2014. 197(2): p. 591-599.
  • 25. Davis, L. K., et al., Gender-specific expression of multiple estrogen receptors, growth hormone receptors, insulin-like growth factors and vitellogenins, and effects of 17β-estradiol in the male tilapia (Oreochromis mossambicus). General and comparative endocrinology, 2008. 156(3): p. 544-551.
  • 26. Naylor, R. L., et al., Effect of aquaculture on world fish supplies. Nature, 2000. 405(6790): p. 1017.
  • 27. Coward, K. and N. R. Bromage, Spawning frequency, fecundity, egg size and ovarian histology in groups of Tilapia zillii maintained upon two distinct food ration sizes from first-feeding to sexual maturity. Aquatic Living Resources, 1999. 12(1): p. 11-22.
  • 28. Houde, E. D., Growth rates, rations and cohort consumption of marine fish larvae in relation to prey concentrations. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 1981. 178: p. 441-453.
  • 29. Zhang, Z., et al., Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (Ihcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology, 2015. 156(10): p. 3747-3762.












SEQUENCE LISTING















SEQ ID NO 1


LENGTH: 38


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 1



TGTAAAACGACGGCCAGTttgaagttgctacataaaag






SEQ ID NO 2


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 2


TGGTTGATGACAATCACACTGT





SEQ ID NO 3


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 3



TAGGAGTGCAGCAAGCATtgttctacatcatcacccttctc






SEQ ID NO 4


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 4


AGCAGACAGACGAGCAGTATCAG





SEQ ID NO 5


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 5



TGTAAAACGACGGCCAGTTGATGGAGAGCTTCATCTACGAA






SEQ ID NO 6


LENGTH: 20


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 6


GTTCCAGGTTAAATTGATTG





SEQ ID NO 7


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 7



TAGGAGTGCAGCAAGCATgcgtgatttgctgacctttttac






SEQ ID NO 8


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 8


acacttacCCTGAGAATCTGG





SEQ ID NO 9


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 9



TGTAAAACGACGGCCAGTGAAAAAGGATGgtgagggatgac






SEQ ID NO 10


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 10


GAGTGTGTCTACCACACGGAAAA





SEQ ID NO 11


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 11



TGTAAAACGACGGCCAGTgtatttagaaggcggtgaaggtc






SEQ ID NO 12


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 12


CAGTTTGGCACATGAGCATCGTA





SEQ ID NO 13


LENGTH: 37


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 13



TAGGAGTGCAGCAAGCATATGCTCATGTGCCAAACTG






SEQ ID NO 14


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 14


cCTTCAGGATTTTCACCACCACT





SEQ ID NO 15


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 15



TGTAAAACGACGGCCAGTtactgacacatccagcagcgtct






SEQ ID NO 16


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 16


cagcactgagccgtcagtattct





SEQ ID NO 17


LENGTH: 37


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 17



TAGGAGTGCAGCAAGCATTGGAGCCTACCTGTCTGAG






SEQ ID NO 18


LENGTH: 20


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 18


tactcacAGCGAAGGGGTCT





SEQ ID NO 19


LENGTH: 38


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 19



TAGGAGTGCAGCAAGCATgctcctctgcgaagactctc






SEQ ID NO 20


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 20


aagacctccgacCTGGACTTGCT





SEQ ID NO 21


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 21



TGTAAAACGACGGCCAGTAGAGGAGGGCACAGTCAAGAAAC






SEQ ID NO 22


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 22


TTGGATATCCCATTTGGTTCAT





SEQ ID NO 23


LENGTH: 40


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 23



TAGGAGTGCAGCAAGCATtttaacggtgttggcagagatt






SEQ ID NO 24


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 24


AGATCCACATCCACGAAAGCCT





SEQ ID NO 25


LENGTH: 37


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 25



TGTAAAACGACGGCCAGTtgcccctttaaaccaccta






SEQ ID NO 26


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 26


CTCAGCTTGGCCTTGCTTGACAT





SEQ ID NO 27


LENGTH: 39


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 27



TAGGAGTGCAGCAAGCATttgccaggacccATGAGCCAG






SEQ ID NO 28


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 28


AGACACGTATCCGTGATTTCTAC





SEQ ID NO 29


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 29



TGTAAAACGACGGCCAGTctcttcatcctctgtgtctcatc






SEQ ID NO 30


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 30


GGGTTTCCAGCAGGAGGTCAGA





SEQ ID NO 31


LENGTH: 39


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 31



TAGGAGTGCAGCAAGCATttatgttcagGTGCCAAGGTG






SEQ ID NO 32


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 32


TGGCTGTGTGAGAAACGATGCTG





SEQ ID NO 33


LENGTH: 35


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 33



TGTAAAACGACGGCCAGTagATCTGGGCTGGGACA






SEQ ID NO 34


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 34


tgttaactatacCTGTGTGTTGG





SEQ ID NO 35


LENGTH: 38


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 35



TAGGAGTGCAGCAAGCATttttctccgcttgcttctgc






SEQ ID NO 36


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 36


AAAGAGCTGAATAGGAGGAAGTT





SEQ ID NO 37


LENGTH: 39


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 37



TGTAAAACGACGGCCAGTCATCTTGGCGTTCTTCTGTGT






SEQ ID NO 38


LENGTH: 21


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 38


CTTGAGGGCAGCTGAGATGGC





SEQ ID NO 39


LENGTH: 40


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 39



TAGGAGTGCAGCAAGCATGCAATCCTTGATGCTCCTTGAC






SEQ ID NO 40


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 40


CTGAGACTCTATGTCGTTGATA





SEQ ID NO 41


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 41



TGTAAAACGACGGCCAGTAGAAGATCATCAAACACATCACG






SEQ ID NO 42


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 42


GACTTGTTGAGCAGTTGCATCAA





SEQ ID NO 43


LENGTH: 38


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (NED)


SEQUENCE: 43



TAGGAGTGCAGCAAGCATttttgtgatctagTCTGGAG






SEQ ID NO 44


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 44


gctcttacAGCTTCACAATCAT





SEQ ID NO 45


LENGTH: 41


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Forward tailed Primer (FAM)


SEQUENCE: 45



TGTAAAACGACGGCCAGTAGAAGATCATCAAACACATCACG






SEQ ID NO 46


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 46


GACTTGTTGAGCAGTTGCATCAA





SEQ ID NO 47


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 47


GAACCAAACCCCTCTGTCACTG





SEQ ID NO 48


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 48


GTAATTCACTCCGCAGGCTCAG





SEQ ID NO 49


LENGTH: 17


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 49


ggcgATGAATCCTGTAG





SEQ ID NO 50


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 50


ATGGCATTTGAGGTCACAGAGA





SEQ ID NO 51


LENGTH: 19


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 51


GTTCAAGAAGGGAGAGAGT





SEQ ID NO 52


LENGTH: 18


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 52


AAAAATTCCCACATCGTT





SEQ ID NO 53


LENGTH: 20


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 53


tgctttggcttcagTGTATC





SEQ ID NO 54


LENGTH: 19


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 54


AATGCGTTCGAATGTAGAA





SEQ ID NO 55


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 55


CATCTGCTTCATCCTGGTGGCTG





SEQ ID NO 56


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 56


AATTTGGGCATCTTCATCTGTAT





SEQ ID NO 57


LENGTH: 22


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 57


GACAGACTTGACCTTGGAGATG





SEQ ID NO 58


LENGTH: 21


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 58


ATGTCTGCTTCGACTGGATGC





SEQ ID NO 59


LENGTH: 23


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: Primer


SEQUENCE: 59


GCCATCGAAACATGGACATACTG





SEQ ID NOs 60 and 62 (wild-type Cypl7a1)


LENGTH: 1563 bp and 521 aa


TYPE: cDNA (SEQ ID NO: 60) and Protein (SEQ ID NO: 62)


ORGANISM: Nile tilapia









1
GAACCAAACCCCTCTGTCACTGATATGGCTTGGTTTTTGTGTCTGTGCGTGTTCATGGCG
60


1
-E--P--N--P--S--V--T--D--M--A--W--F--L--C--L--C--V--F--M--A-
20


61
GTGGGCCTCACTTTGTTAGCACTGCAGTTCAAGTTCAGGATGTCTGCACATGGTTCTGGG
120


21
-V--G--L--T--L--L--A--L--Q--F--K--F--R--M--S--A--H--G--S--G-
40


121
GAGCCGCCACACCTCCCTGCACTACCACTGATTGGCAGCCTGCTGAGCCTGCGGAGTGAA
180


41
-E--P--P--H--L--P--A--L--P--L--I--G--S--L--L--S--L--R--S--E-
60


181
TTACCACCGCATGTGCTTTTCAAAGAACTGCAGGTAAAATACGGACATACATACTCGCTG
240


61
-L--P--P--H--V--L--F--K--E--L--Q--V--K--Y--G--H--T--Y--S--L-
80


241
ATGATGGGCTCCCACAGTGTGATTGTCATCAACCAGCATGTGCACGCCAAAGAAGTCTTG
300


81
-M--M--G--S--H--S--V--I--V--I--N--Q--H--V--H--A--K--E--V--L-
100


301
CTCAAGAAGGGAAAGACGTTTGCAGGAAGACCTAGAACTGTAACCACAGATATTCTGACT
360


101
-L--K--K--G--K--T--F--A--G--R--P--R--T--V--T--T--D--I--L--T-
120


361
AGAGATGGGAAGGACATTGCATTTGGAGACTACAGTGCTACGTGGAAGTTCCACAGGAAG
420


121
-R--D--G--K--D--I--A--F--G--D--Y--S--A--T--W--K--F--H--R--K-
140


421
ATAGTCCATGGAGCCCTGTGCATGTTTGGAGAAGGTTCTGCCTCTATTGAGAAGACCATT
480


141
-I--V--H--G--A--L--C--M--F--G--E--G--S--A--S--I--E--K--T--I-
160


481
TGTGCAGAGGCCCAGTCTCTGTGCTCCGTGCTGTCTGAGGCAGCAGATGTGGGACTGGCC
540


161
-C--A--E--A--Q--S--L--C--S--V--L--S--E--A--A--D--V--G--L--A-
180


541
CTGGATCTTGCTCCTGAGCTGACTCGCGCTGTCACCAACGTTATCTGTTCTCTCTGCTTC
600


181
-L--D--L--A--P--E--L--T--R--A--V--T--N--V--I--C--S--L--C--F-
200


601
AACTCGTCCTACTGCCGAGGCGACTCAGAGTTTGAGACAATGCTGCAGTACAGCCAGGGC
660


201
-N--S--S--Y--C--R--G--D--S--E--F--E--T--M--L--Q--Y--S--Q--G-
220


661
ATTGTGGACACTGTGGCTAAAGACAGCCTGGTAGACATTTTCCCCTGGCTTCAGATCTTT
720


221
-I--V--D--T--V--A--K--D--S--L--V--D--I--F--P--W--L--Q--I--F-
240


721
CCTAATGCGGACCTACGTCTCCTAAAACATTGTGTTTCCATCAGAGACAAACTTCTACAG
780


241
-P--N--A--D--L--R--L--L--K--H--C--V--S--I--R--D--K--L--L--Q-
260


781
AGGAAATTTGATGAACACAAGGTGAATTACAATGATCACGTGCAGAGAGACTTGATAGAC
840


261
-R--K--F--D--E--H--K--V--N--Y--N--D--H--V--Q--R--D--L--I--D-
280


841
GCTCTGCTAAGAGCCAAGCGCAGTGCGGAGAACAACAACACATCAGAGATAAGTGCAGAG
900


281
-A--L--L--R--A--K--R--S--A--E--N--N--N--T--S--E--I--S--A--E-
300


901
TCTGTGGGCCTGAGTGATGACCACATTCTCATGACAGTGGGAGACATCTTTGGCGCTGGC
960


301
-S--V--G--L--S--D--D--H--I--L--M--T--V--G--D--I--F--G--A--G-
320


961
GTGGAAACCACTACCACTGTGCTCAAATGGGCCATAACGTACCTCATTCATCACCCAGAG
1020


321
-V--E--T--T--T--T--V--L--K--W--A--I--T--Y--L--I--H--H--P--E-
340


1021
GTGCAAAGACGTATCCAGGATGAGCTGGACAGGACGGTGGGTGACAGCCGCTCTCCTAAA
1080


341
-V--Q--R--R--I--Q--D--E--L--D--R--T--V--G--D--S--R--S--P--K-
360


1081
CTCACCGACAGAGGCAGTCTGCCTTATCTGGAGGCCACCATTAGGGAAGTATTGCGGATT
1140


361
-L--T--D--R--G--S--L--P--Y--L--E--A--T--I--R--E--V--L--R--I-
380


1141
CGCCCCGTGGCACCACTACTCATCCCCCATGTGGCTCTCTGTGACACCAGCATTGGAGAT
1200


381
-R--P--V--A--P--L--L--I--P--H--V--A--L--C--D--T--S--I--G--D-
400


1201
TTCACAGTGAGAAAAGGAACTCGAGTCATTATCAACCTGTGGGCTCTGCACCATGATGAG
1260


401
-F--T--V--R--K--G--T--R--V--I--I--N--L--W--A--L--H--H--D--E-
420


1261
AAGGAGTGGAAGAACCCAGAGCGGTTTGACCCTGGCCGGTTCTTGAAAAGTGAAGGCACA
1320


421
-K--E--W--K--N--P--E--R--F--D--P--G--R--F--L--K--S--E--G--T-
440


1321
GGACTGACAATCCCATCACCCAGCTACCTGCCCTTTGGTGCTGGGCTGAGAGTATGTTTA
1380


441
-G--L--T--I--P--S--P--S--Y--L--P--F--G--A--G--L--R--V--C--L-
460


1381
GGTGAGGCCTTGGCCAAGATGGAGCTCTTTCTCTTCCTGTCCTGGATCCTGCAGCGCTTC
1440


461
-G--E--A--L--A--K--M--E--L--F--L--F--L--S--W--I--L--Q--R--F-
480


1441
ACTCTGTCTGTCCCACCAGGCCACAGTCTGCCCAGTCTGGAGGGAAAGTTTGGAGTGGTC
1500


481
-T--L--S--V--P--P--G--H--S--L--P--S--L--E--G--K--F--G--V--V-
500


1501
CTGCAGACAGCCAAGTACAAGGTGAATGCCACAATCAGACCAGACTGGGCAAGACATAAG
1560


501
-L--Q--T--A--K--Y--K--V--N--A--T--I--R--P--D--W--A--R--H--K-
520


1561
TGC
1563


521
-C-
521










SEQ ID NOs 61 and 63 (Cyp17a1 mutant allele- 16 nt deletion)


LENGTH: 1563 bp and 44 aa


TYPE: cDNA (SEQ ID NO: 61) and Protein (SEQ ID NO: 63)


ORGANISM: Nile tilapia









1
GAACCAAACCCCTCTGTCACTGATATGGCTTGGTTTTTGTGTCTGTGCGGTGGGCCTCAC
60


1
-E--P--N--P--S--V--T--D--M--A--W--F--L--C--L--C--G--G--P--H-
20


61
TTTGTTAGCACTGCAGTTCAAGTTCAGGATGTCTGCACATGGTTCTGGGGAGCCACCTCC
120


21
-F--V--S--T--A--V--Q--V--Q--D--V--C--T--W--F--W--G--A--T--S-
40


121
CTGCACTACCACTGATTGGCAGCCTGCTGAGCCTGCGGAGTGAATTACCACCGCATGTGC
180


41
-L--H--Y--H--*-
44










SEQ ID NOs 65 and 68 (wild-type Cyp19a1a)


LENGTH: 1707 bp and 511 aa


TYPE: cDNA (SEQ ID NO: 65) and Protein (SEQ ID NO: 68)


ORGANISM: Nile tilapia









1
GCGATGAATCCTGTAGGCTTAGACGCCGTGGTGGCAGATCTCTCTGTGACCTCAAATGCC
60



...-M--N--P--V--G--L--D--A--V--V--A--D--L--S--V--T--S--N--A-
19


61
ATCCAATCGCATGGGATATCAATGGCAACCAGAACGCTGATACTGCTCGTCTGTCTGCTG
120


20
-I--Q--S--H--G--I--S--M--A--T--R--T--L--I--L--L--V--C--L--L-
39


121
TTGGTTGCCTGGAGTCACACGGACAAGAAAATTGTGCCAGGTCCTTCTTTCTGTTTGGGT
180


40
-L--V--A--W--S--H--T--D--K--K--I--V--P--G--P--S--F--C--L--G-
59


181
TTGGGCCCACTTCTGTCATATCTGAGATTTATCTGGACTGGCATAGGCACAGCCAGCAAC
240


60
-L--G--P--L--L--S--Y--L--R--F--I--W--T--G--I--G--T--A--S--N-
79


241
TACTACAATAACAAGTATGGAGACATTGTTAGAGTCTGGATCAACGGAGAAGAGACGCTC
300


80
-Y--Y--N--N--K--Y--G--D--I--V--R--V--W--I--N--G--E--E--T--L-
99


301
ATACTAAGCAGATCTTCAGCAGTGCACCATGTGCTGAAGAACGGAAACTATACTTCACGT
360


100
-I--L--S--R--S--S--A--V--H--H--V--L--K--N--G--N--Y--T--S--R-
119


361
TTTGGGAGCATCCAGGGACTCAGCTGCCTCGGCATGAACGAGAGAGGCATCATATTCAAC
420


120
-F--G--S--I--Q--G--L--S--C--L--G--M--N--E--R--G--I--I--F--N-
139


421
AACAACGTAACTCTGTGGAAAAAGATACGCACCTATTTTGCTAAAGCTCTGACAGGCCCA
480


140
-N--N--V--T--L--W--K--K--I--R--T--Y--F--A--K--A--L--T--G--P-
159


481
AATTTGCAGCAGACGGCGGATGTTTGCGTCTCCTCCATACAGGCTCACCTGGACCACCTG
540


160
-N--L--Q--Q--T--A--D--V--C--V--S--S--I--Q--A--H--L--D--H--L-
179


541
GACAGCCTGGGACACGTTGATGTCCTCAATTTGCTGCGCTGCACCGTGCTGGACATCTCT
600


180
-D--S--L--G--H--V--D--V--L--N--L--L--R--C--T--V--L--D--I--S-
199


601
AACCGACTCTTCCTGGACGTACCTCTCAATGAGAAAGAGCTGATGCTGAAGATTCAAAAG
660


200
-N--R--L--F--L--D--V--P--L--N--E--K--E--L--M--L--K--I--Q--K-
219


661
TATTTTCACACATGGCAGGATGTGCTTATCAAACCTGACATCTACTTCAAGTTCGGCTGG
720


220
-Y--F--H--T--W--Q--D--V--L--I--K--P--D--I--Y--F--K--F--G--W-
239


721
ATTCACCACAGGCACAAGACAGCAACCCAGGAGTTACAAGATGCCATTAAACGTCTTGTA
780


240
-I--H--H--R--H--K--T--A--T--Q--E--L--Q--D--A--I--K--R--L--V-
259


781
GATCAAAAGAGGAAAAATATGGAGCAGGCAGATACGCTGGACAACATCAACTTCACGGCA
840


260
-D--Q--K--R--K--N--M--E--Q--A--D--T--L--D--N--I--N--F--T--A-
279


841
GAGCTCATATTTGCACAAAACCACGGTGAGCTGTCTGCTGAGAATGTGACGCAGTGCGTG
900


280
-E--L--I--F--A--Q--N--H--G--E--L--S--A--E--N--V--T--Q--C--V-
299


901
CTGGAGATGGTGATTGCAGCTCCGGACACTCTGTCCCTCAGTCTCTTCTTCATGCTTCTG
960


300
-L--E--M--V--I--A--A--P--D--T--L--S--L--S--L--F--F--M--L--L-
319


961
CTCCTCAAACAAAACCCGCACGTGGAGCCGCAGCTGCTACAGGAGATAGACGCTGTTGTG
1020


320
-L--L--K--Q--N--P--H--V--E--P--Q--L--L--Q--E--I--D--A--V--V-
339


1021
GGTGAGAGACAGCTTCAGAACCAGGATCTTCACAAGCTGCAGGTGATGGAGAGCTTCATC
1080


340
-G--E--R--Q--L--Q--N--Q--D--L--H--K--L--Q--V--M--E--S--F--I-
359


1081
TACGAATGCTTGCGCTTCCACCCAGTGGTGGACTTCACCATGCGTCGAGCCCTGTCTGAT
1140


360
-Y--E--C--L--R--F--H--P--V--V--D--F--T--M--R--R--A--L--S--D-
379


1141
GACATCATAGAAGGCTACAGGATCTCGAAGGGCACAAACATCATTCTGAACACAGGCCGA
1200


380
-D--I--I--E--G--Y--R--I--S--K--G--T--N--I--I--L--N--T--G--R-
399


1201
ATGCACCGCACCGAGTTTTTCCTCAAAGCCAATCAATTTAACCTGGAACACTTTGAAAAC
1260


400
-M--H--R--T--E--F--F--L--K--A--N--Q--F--N--L--E--H--F--E--N-
419


1261
AATGTTCCTCGGCGCTACTTTCAGCCGTTCGGTTCAGGCCCTCGCGCATGCATTGGCAAG
1320


420
-N--V--P--R--R--Y--F--Q--P--F--G--S--G--P--R--A--C--I--G--K-
439


1321
CACATCGCCATGGTGATGATGAAATCCATTTTGGTGACACTGCTGTCTCAGTACTCTGTT
1380


440
-H--I--A--M--V--M--M--K--S--I--L--V--T--L--L--S--Q--Y--S--V-
459


1381
TGTACTCACGAGGGCCCGATCCTGGACTGCCTCCCACAAACCAACAACCTTTCCCAGCAG
1440


460
-C--T--H--E--G--P--I--L--D--C--L--P--Q--T--N--N--L--S--Q--Q-
479


1441
CCTGTAGAGCACCAGCAGGCGGAGACTGAACATCTCCACATGAGGTTCTTACCCAGGCAG
1500


480
-P--V--E--H--Q--Q--A--E--T--E--H--L--H--M--R--F--L--P--R--Q-
499


1501
AGAAGCAGCTGTCAAACCCTCCGAGACCCGAACCTTTAGCTGTACCTGCACTTTTGTATA
1560


500
-R--S--S--C--Q--T--L--R--D--P--N--L--*-.....................
511


1561
CTTAATTTGTATAATCTTATAACGACACACAGCTAGCCTTTATATTTTGATAGACGCAAA
1620



............................................................



1621
GATTGTATTTGTACTCAAACTGTATGCATGATGTGAAATGTACATTTAAACCTGCTAACA
1680



............................................................



1681
CTGAAATAAATGTAAGTTATTGTGTCA
1707



............................................................











SEQ ID NOs 66 and 69 (Cvp19ala mutant allele- 7 nt deletion)


LENGTH: 1707 bp and 12 aa


TYPE: cDNA (SEQ ID NO: 66) and Protein (SEQ ID NO: 69)


ORGANISM: Nile tilapia









1
GCGATGAATCCTGTAGGCTTAGACTGGCAGATCTCTCTGTGACCTCAAATGCCATCCAAT
60



...-M--N--P--V--G--L--D--W--Q--I--S--L--*-
12










SEQ ID NOs 67 and 70 (Cvp19ala mutant allele- 10 nt deletion)


LENGTH: 1707 bp and 11 aa


TYPE: cDNA (SEQ ID NO: 67) and Protein (SEQ ID NO: 70)


ORGANISM: Nile tilapia









1
GCGATGAATCCTGTAGGCTGGTGGCAGATCTCTCTGTGACCTCAAATGCCATCCAATCGC
60


11
...-M--N--P--V--G--W--W--Q--I--S--L--*-











SEQ ID NOs 71 and 73 (wild-type TiPla)


LENGTH: 6674 bp and 1652 aa


TYPE: cDNA (SEQ ID NO: 71) and Protein (SEQ ID NO: 73)


ORGANISM: Nile tilapia









1
AAAGAGGAAAACAATGCATCATATAACTTTATAAGTAAGAGTGCGGCGATGGAGGAAACC
60


1
-K--E--E--N--N--A--S--Y--N--F--I--S--K--S--A--A--M--E--E--T-
20


61
GTCATATGGGAACAGCACACAGTTACCCTTCACAGGGCCCCAGGATTTGGGTTTGGCATT
120


21
-V--I--W--E--Q--H--T--V--T--L--H--R--A--P--G--F--G--F--G--I-
40


121
GCCATCTCGGGTGGGCGAGACAACCCTCATTTCCAGAGTGGTGAAACATCTATTGTAATA
180


41
-A--I--S--G--G--R--D--N--P--H--F--Q--S--G--E--T--S--I--V--I-
60


181
TCGGATGTGCTGAAAGGAGGTCCTGCAGAGGGTCTGCTACAAGAAAATGATCGAGTAGTA
240


61
-S--D--V--L--K--G--G--P--A--E--G--L--L--Q--E--N--D--R--V--V-
80


241
ATGGTCAATGCAGTCTCTATGGACAATGTAGAGCATGCCTATGCTGTTCAACAACTTCGA
300


81
-M--V--N--A--V--S--M--D--N--V--E--H--A--Y--A--V--Q--Q--L--R-
100


301
AAGAGTGGCAAAAATGCAAAGATAACTATTCGCAGAAAAAGGAAAGTACAAATCCCAGCG
360


101
-K--S--G--K--N--A--K--I--T--I--R--R--K--R--K--V--Q--I--P--A-
120


361
TCACGGCACGGGGACAGGGAGACGATGTCTGAGCACGAGGAGGAGGACAGCGATGAGGCT
420


121
-S--R--H--G--D--R--E--T--M--S--E--H--E--E--E--D--S--D--E--A-
140


421
GATGCTTACGATCACCGCAGTGGACGTGGTGGACAAAACGATCGGGAGCGTAGCAGCAGT
480


141
-D--A--Y--D--H--R--S--G--R--G--G--Q--N--D--R--E--R--S--S--S-
160


481
GGGAGGCGGGATCACAGTGCCTCACAGGAGAGGAGCATCTCACCACGCTCCGATCGCCGA
540


161
-G--R--R--D--H--S--A--S--Q--E--R--S--I--S--P--R--S--D--R--R-
180


541
TCACAAGCCTCTTCTGCTCCACCCAGGCCCTCCAAGGTCACTCTTGTCAAGTCCCGCAAA
600


181
-S--Q--A--S--S--A--P--P--R--P--S--K--V--T--L--V--K--S--R--K-
200


601
AACGAAGAATATGGACTGCGGCTGGCCAGCCATATCTTTGTGAAGGACATCTCTCCAGAG
660


201
-N--E--E--Y--G--L--R--L--A--S--H--I--F--V--K--D--I--S--P--E-
220


661
AGCCTTGCAGCCAGAGATGGAAACATTCAGGAGGGAGATGTTGTACTTAAGATTAACGGC
720


221
-S--L--A--A--R--D--G--N--I--Q--E--G--D--V--V--L--K--I--N--G-
240


721
ACAGTTACAGAGAACCTATCACTGACAGATGCCAAGAAGCTGATTGAGAGGTCAAAGGGC
780


241
-T--V--T--E--N--L--S--L--T--D--A--K--K--L--I--E--R--S--K--G-
260


781
AAGCTGAAGATGGTAGTGCAGAGAGACGAGCGGGCCACGCTGCTCAATATTCCTGACCTT
840


261
-K--L--K--M--V--V--Q--R--D--E--R--A--T--L--L--N--I--P--D--L-
280


841
GACGACAGCATCCCATCAGCCAATAACTCAGACAGAGATGACATTTCAGAGATACATTCA
900


281
-D--D--S--I--P--S--A--N--N--S--D--R--D--D--I--S--E--I--H--S-
300


901
CTGACATCCGATCATTCCAATCGATCCCATGGGAGAGGAAGTCAATCCCATTCGCCTGAC
960


301
-L--T--S--D--H--S--N--R--S--H--G--R--G--S--Q--S--H--S--P--D-
320


961
AGGGTTGAAACATCCGAGCATCTCCGCCACTCACCGCGGCAGATCAGCAATGGCAGTAAT
1020


321
-R--V--E--T--S--E--H--L--R--H--S--P--R--Q--I--S--N--G--S--N-
340


1021
GGATTTCTCTGGGAAAGAGCTGAGGAATTAATCAAACAGGAATGGGTGGTGAAACAGGAA
1080


341
-G--F--L--W--E--R--A--E--E--L--I--K--Q--E--W--V--V--K--Q--E-
360


1081
TGTTATTTTGCCTGTGCCCATACTATAAAATGTGTAATAACCGTGACAGTTTGGGCAAAA
1140


361
-C--Y--F--A--C--A--H--T--I--K--C--V--I--T--V--T--V--W--A--K-
380


1141
AAACCCCAAAACAGTAACATGCCAGAACCAAAGCCAGTTTATGCACAGCCTGGTCAGCCT
1200


381
-K--P--Q--N--S--N--M--P--E--P--K--P--V--Y--A--Q--P--G--Q--P-
400


1201
GACGTGGACCTGCCTGTCAGCCCATCTGATGCCCCTGTACCCAGTGCTGCACATGATGAC
1260


401
-D--V--D--L--P--V--S--P--S--D--A--P--V--P--S--A--A--H--D--D-
420


1261
AGCATTCTCAGACCAAGTATGAAGCTGGTCAAGTTCAAGAAGGGAGAGAGTGTCGGTCTG
1320


421
-S--I--L--R--P--S--M--K--L--V--K--F--K--K--G--E--S--V--G--L-
440


1321
AGGTTAGCAGGCGGAAACGATGTGGGAATTTTTGTGGCAGGAGTTTTGGAAGACAGCCCC
1380


441
-R--L--A--G--G--N--D--V--G--I--F--V--A--G--V--L--E--D--S--P-
460


1381
GCAGCCAAGGAGGGGCTGGAAGAGGGAGACCAGATTCTCAGGGTGAACAACGTGGACTTT
1440


461
-A--A--K--E--G--L--E--E--G--D--Q--I--L--R--V--N--N--V--D--F-
480


1441
GCTAACATCATCCGGGAAGAGGCTGTGCTTTTTCTGCTCGATCTTCCAAAAGGAGATGAC
1500


481
-A--N--I--I--R--E--E--A--V--L--F--L--L--D--L--P--K--G--D--D-
500


1501
GTTACTATTCTGGCTCAGAAGAAAAAGGATGTGTATCGAAGGATAGTGGAATCAGACGTG
1560


501
-V--T--I--L--A--Q--K--K--K--D--V--Y--R--R--I--V--E--S--D--V-
520


1561
GGTGACTCCTTCTACATTCGAACGCATTTTGAATATGAAAAAGAGTCACCGTATGGGCTG
1620


521
-G--D--S--F--Y--I--R--T--H--F--E--Y--E--K--E--S--P--Y--G--L-
540


1621
AGCTTTAACAAGGGAGAGGTTTTCCGTGTGGTAGACACACTCTATAATGGCAAATTAGGC
1680


541
-S--F--N--K--G--E--V--F--R--V--V--D--T--L--Y--N--G--K--L--G-
560


1681
TCCTGGCTCGCTATCCGTATCGGCAAGAACCACCAGGAAGTGGAAAGAGGCATAATCCCC
1740


561
-S--W--L--A--I--R--I--G--K--N--H--Q--E--V--E--R--G--I--I--P-
580


1741
AACAAGAATAGAGCCGAGCAGCTATCCAGTGTGCAGTACACCCTTCCTAAAACGCCTGGG
1800


581
-N--K--N--R--A--E--Q--L--S--S--V--Q--Y--T--L--P--K--T--P--G-
600


1801
GGCGACAGAGCTGACTTCTGGAGGTTCAGAGGGCTGCGGAGTTCCAAGAGGAATTTGCGG
1860


601
-G--D--R--A--D--F--W--R--F--R--G--L--R--S--S--K--R--N--L--R-
620


1861
AAAAGCAGGGAGGACCTGTCGGCCCAGCCTGTTCAGACCAAGTTCCCTGCCTATGAGAGG
1920


621
-K--S--R--E--D--L--S--A--Q--P--V--Q--T--K--F--P--A--Y--E--R-
640


1921
GTGGTGCTGAGGGAAGCTGGGTTCCTGAGGCCTGTGGTTATCTTTGGGCCGATTGCAGAC
1980


641
-V--V--L--R--E--A--G--F--L--R--P--V--V--I--F--G--P--I--A--D-
660


1981
GTGGCCCGAGAGAAACTGGCCAGGGAGGTGCCCGAAGTGTTTGAGCTAGCCAAGAGTGAA
2040


661
-V--A--R--E--K--L--A--R--E--V--P--E--V--F--E--L--A--K--S--E-
680


2041
CCCAGGGATGCAGGAACAGACCAGAAGAGCTCTGGCATCATCCGCCTGCACACCATTAAG
2100


681
-P--R--D--A--G--T--D--Q--K--S--S--G--I--I--R--L--H--T--I--K-
700


2101
CAGATCATTGATCGAGACAAGCATGCAGTGCTGGATATAACCCCGAATGCAGTGGACCGA
2160


701
-Q--I--I--D--R--D--K--H--A--V--L--D--I--T--P--N--A--V--D--R-
720


2161
CTGAACTACGCTCAGTGGTATCCAATTGTGGTGTTTCTCAACCCGGACACCAAGCAGGGC
2220


721
-L--N--Y--A--Q--W--Y--P--I--V--V--F--L--N--P--D--T--K--Q--G-
740


2221
ATCAAGAACATGAGGACACGGCTCTGCCCCGAGTCTAGGAAGAGCGCGAGAAAGCTTTAT
2280


741
-I--K--N--M--R--T--R--L--C--P--E--S--R--K--S--A--R--K--L--Y-
760


2281
GATCGAGCCCTCAAGTTAAGAAAGAACAACCACCACCTCTTCACCACAACCATTAACTTG
2340


761
-D--R--A--L--K--L--R--K--N--N--H--H--L--F--T--T--T--I--N--L-
780


2341
AACAACATGAACGATGGTTGGTTTGGAGCACTGAAAGAAATCATCCATCAGCAGCAGAAC
2400


781
-N--N--M--N--D--G--W--F--G--A--L--K--E--I--I--H--Q--Q--Q--N-
800


2401
CAGCTGGTGTGGGTTTCAGAGGGCAAGGCTGATGGAGTTGGCGACGATGACCTGGACATC
2460


801
-Q--L--V--W--V--S--E--G--K--A--D--G--V--G--D--D--D--L--D--I-
820


2461
CACGACGACCGCCTTTCCTACCTGTCGGCGCCAGGCAGTGAGTATTCCATGTACAGCACC
2520


821
-H--D--D--R--L--S--Y--L--S--A--P--G--S--E--Y--S--M--Y--S--T-
840


2521
GACAGCCGCCACACCTCCGATTACGAGGACACGGACACAGAGGGAGGAGCCTACACCGAC
2580


841
-D--S--R--H--T--S--D--Y--E--D--T--D--T--E--G--G--A--Y--T--D-
860


2581
CAGGAGCTGGATGAAACGCTGAACGATGACGTGGGTCCACCCACGGAGCCTGCCATCACG
2640


861
-Q--E--L--D--E--T--L--N--D--D--V--G--P--P--T--E--P--A--I--T-
880


2641
CGGTCCTCTGAGCCTGTCCGTGAGGACCCGCCTGTCATCCAAGAGCCCCCTGGCTATGTC
2700


881
-R--S--S--E--P--V--R--E--D--P--P--V--I--Q--E--P--P--G--Y--V-
900


2701
AGCTACCCGCACACAGTGCAGCCGGACCCCCTGAACCGCATCGACCCGGCTGGTTTCAAG
2760


901
-S--Y--P--H--T--V--Q--P--D--P--L--N--R--I--D--P--A--G--F--K-
920


2761
GCACCAGCGCCGCAGCAGATGTTTCAGAAGGATCCGTACAGCACAGACAACATAGGCAGA
2820


921
-A--P--A--P--Q--Q--M--F--Q--K--D--P--Y--S--T--D--N--I--G--R-
940


2821
GGTGGTCACGGCATGAAGCCTGTGACGTACAACCCTCAGCAGGGGTATCACCCCGACGAG
2880


941
-G--G--H--G--M--K--P--V--T--Y--N--P--Q--Q--G--Y--H--P--D--E-
960


2881
CAGCCATACAGAGATTACGATCACCCACCCAGCCGGTATGACATCAGCAGCAGTGGTGTC
2940


961
-Q--P--Y--R--D--Y--D--H--P--P--S--R--Y--D--I--S--S--S--G--V-
980


2941
GGCGGTGGCTACCAGGAGCCAAAGTACCGTAACTATGAGAGCTATGAGAACAGCGTGCCT
3000


981
-G--G--G--Y--Q--E--P--K--Y--R--N--Y--E--S--Y--E--N--S--V--P-
1000


3001
CACTACGACCAGCAACCGTGGAACCCCTACAACCAGCCGTTCTCCACTGCCAACACCCAG
3060


1001
-H--Y--D--Q--Q--P--W--N--P--Y--N--Q--P--F--S--T--A--N--T--Q-
1020


3061
GCCTACGATCCCCGTCCTCCTTACGGTGAGGGCCCCGACTCTCATTACACCCCTCCCCTG
3120


1021
-A--Y--D--P--R--P--P--Y--G--E--G--P--D--S--H--Y--T--P--P--L-
1040


3121
CGCTACGACGAGCCGCCACCTCAGCAGGGATTTGACGGACGGCCTCGCTACGGCAAACCG
3180


1041
-R--Y--D--E--P--P--P--Q--Q--G--F--D--G--R--P--R--Y--G--K--P-
1060


3181
ACAGTTTCAGCACCTGTCCGTTACGATGATCTTCCGCCTCCCCCTCAGCCGTCTGAATTG
3240


1061
-T--V--S--A--P--V--R--Y--D--D--L--P--P--P--P--Q--P--S--E--L-
1080


3241
CACTATGACCCAAATTCTCACCTGAGCACATACCCCTCAGCTGCCCGCTCACCAGAACCC
3300


1081
-H--Y--D--P--N--S--H--L--S--T--Y--P--S--A--A--R--S--P--E--P-
1100


3301
GCTGCCCAGCGACCCGCCTATAACCAGGGACCAGCATCGCAGCAGAAAGGTTACAAACCT
3360


1101
-A--A--Q--R--P--A--Y--N--Q--G--P--A--S--Q--Q--K--G--Y--K--P-
1120


3361
CAGCAGTACGATCCTGCTCCTGTGAACTCTGAATCCAGCCCCAGCCTTCATAAAGTCGAG
3420


1121
-Q--Q--Y--D--P--A--P--V--N--S--E--S--S--P--S--L--H--K--V--E-
1140


3421
ACGCCCTCACCTTCACCTGCTGATGTTCCAAAAGCTGCACCTGCAAGAGATGAGCAGCAG
3480


1141
-T--P--S--P--S--P--A--D--V--P--K--A--A--P--A--R--D--E--Q--Q-
1160


3481
GAGGAGGATCCAGCCATGCGGCCTCAGTCAGTACTGACGAGGGTCAAAATGTTTGAGAAC
3540


1161
-E--E--D--P--A--M--R--P--Q--S--V--L--T--R--V--K--M--F--E--N-
1180


3541
AAACGCTCTGTGTCCATGGACCGAGCCAGAGATGCCGGGGATTCATTTGGGAATAAGGCA
3600


1181
-K--R--S--V--S--M--D--R--A--R--D--A--G--D--S--F--G--N--K--A-
1200


3601
GCCGATTTGCCCTTGAAAGCTGGTGGAGTAATCCCTAAAGCAAATTCTCTGAGCAACCTG
3660


1201
-A--D--L--P--L--K--A--G--G--V--I--P--K--A--N--S--L--S--N--L-
1220


3661
GATCAAGAGAAGACCTTTAGCAGAGGGCCAGAGCCTCAGAAGCCTCAGTCCAAGGGATCC
3720


1221
-D--Q--E--K--T--F--S--R--G--P--E--P--Q--K--P--Q--S--K--G--S-
1240


3721
GATGACATCGTGCGCTCCAACCATTATGACCCTGATGAGGATGAGGACTACTACAGGAAA
3780


1241
-D--D--I--V--R--S--N--H--Y--D--P--D--E--D--E--D--Y--Y--R--K-
1260


3781
CAGTTGTCTTACTTTGACAGACTGCAGACTGGCTCCAATAAACCCCAACCACAAGCACAG
3840


1261
-Q--L--S--Y--F--D--R--L--Q--T--G--S--N--K--P--Q--P--Q--A--Q-
1280


3841
TCCAGCCACAGCTTCCCCAGCCATTATACACATTTTGGATATTCAAGTGTCTTTCTTTTC
3900


1281
-S--S--H--S--F--P--S--H--Y--T--H--F--G--Y--S--S--V--F--L--F-
1300


3901
TTTTCCTTAATGATGGACTCTGTGGAGAAACCAAGCCCACTGGAGAAAAAATATGAACCA
3960


1301
-F--S--L--M--M--D--S--V--E--K--P--S--P--L--E--K--K--Y--E--P-
1320


3961
GTTCCCCAAGTGACACCAGCTGTGCCACCGGCCACGCTGCCCAAGCCCTCACCTGATGGT
4020


1321
-V--P--Q--V--T--P--A--V--P--P--A--T--L--P--K--P--S--P--D--G-
1340


4021
AAAATTGACTGTAGTCAGGATTTTTATCTCATCTCTTTGACTGATGTGCGTTGCTCTTCC
4080


1341
-K--I--D--C--S--Q--D--F--Y--L--I--S--L--T--D--V--R--C--S--S-
1360


4081
ACAGCCAAACCTCCTGCTCGAGAGGACACGGTCCAGACCAACTTTCTTCCTCACAAGAGC
4140


1361
-T--A--K--P--P--A--R--E--D--T--V--Q--T--N--F--L--P--H--K--S-
1380


4141
TTCCCTGAGAAGTCTCCAGTCAATGGCACCAGTGAACAGCCTCCAAAGACGGTCACTAGC
4200


1381
-F--P--E--K--S--P--V--N--G--T--S--E--Q--P--P--K--T--V--T--S-
1400


4201
ACCGGGGGTTTGCCCACATCCACCTACAACCGCTTTGCGCCCAAGCCCTACACCTCCTCT
4260


1401
-T--G--G--L--P--T--S--T--Y--N--R--F--A--P--K--P--Y--T--S--S-
1420


4261
GCCAAGCCTTTTTCGCGCAAGTTCGACAGTCCTAAATTCAACCACAACCTCCTGTCCAAT
4320


1421
-A--K--P--F--S--R--K--F--D--S--P--K--F--N--H--N--L--L--S--N-
1440


4321
GACAAGCCTGAGAGTGCTCCCAAGGGACGGAGCTCGAGTCCGGTAAAGCCTCAGGTACCC
4380


1441
-D--K--P--E--S--A--P--K--G--R--S--S--S--P--V--K--P--Q--V--P-
1460


4381
CCACAGCCCCAGAACGCAGACCAAGACAGTGGCCTGGACACTTTCACACGCACAACGGAC
4440


1461
-P--Q--P--Q--N--A--D--Q--D--S--G--L--D--T--F--T--R--T--T--D-
1480


4441
CCCCGATCCAAATACCAGCAGAACAACGTAAACGCCGTGCCCAAGGCCATCCCTGTGAGC
4500


1481
-P--R--S--K--Y--Q--Q--N--N--V--N--A--V--P--K--A--I--P--V--S-
1500


4501
CCCAGTGCCCTAGAGGATGATGAAGATGAAGACGAAGGTCACACTGTGGTGGCAACAGCT
4560


1501
-P--S--A--L--E--D--D--E--D--E--D--E--G--H--T--V--V--A--T--A-
1520


4561
CGTGGCATCTTCAACTCTAACGGTGGCGTTCTGAGCTCCATCGAGACAGGTGTCAGCATC
4620


1521
-R--G--I--F--N--S--N--G--G--V--L--S--S--I--E--T--G--V--S--I-
1540


4621
ATTATCCCACAGGGTGCCATCCCCGACGGCGTGGAGCAAGAGATTTACTTCAAGGTCTGT
4680


1541
-I--I--P--Q--G--A--I--P--D--G--V--E--Q--E--I--Y--F--K--V--C-
1560


4681
CGAGACAACAGCATCCTGCCGCCACTCGACAAGGAGAAAGGAGAGACTCTGCTCAGCCCT
4740


1561
-R--D--N--S--I--L--P--P--L--D--K--E--K--G--E--T--L--L--S--P-
1580


4741
CTGGTGATGTGTGGACCTCACGGCCTAAAGTTCCTGAAGCCTGTGGAGCTACGCTTACCT
4800


1581
-L--V--M--C--G--P--H--G--L--K--F--L--K--P--V--E--L--R--L--P-
1600


4801
CACTGTGCGTCAATGACCCCTGATGGTTGGTCTTTTGCTCTAAAATCCTCCGACTCCTCG
4860


1601
-H--C--A--S--M--T--P--D--G--W--S--F--A--L--K--S--S--D--S--S-
1620


4861
TCGGGTGATCCAAAAAGCTGGCAGAACAAGTCTCTCACCGGAGACCCCAACTACCTGGTG
4920


1621
-S--G--D--P--K--S--W--Q--N--K--S--L--T--G--D--P--N--Y--L--V-
1640


4921
GGAGCCAACTGTGTCTCTGTGCTCATTGACCACTTTTAAAGAAGAAGCAGCAGGTGTGAT
4980


1641
-G--A--N--C--V--S--V--L--I--D--H--F--*-.....................
1652


4981
GTTACTGAATGTGGAAGAATGGCGGATGAAATGAAGACGATGGAAACGCACGCACGCAAA
5040



............................................................



5041
CACACACATATACCACTACACACACACACACACTGACAGACGCACTCCAAGCAAACCAAC
5100



............................................................



5101
ACACAGCATAGAGTATGAAGAAGACCCAGACAGTGCTGGACGAAGGAGAGACACCAATGA
5160



............................................................



5161
TCGTTACGAGCTGTTCTTTAAACTCAATTTCAAAGTTTTGATGTAAAATGATGCATGCCC
5220



............................................................



5221
AACGTCACTGACGATTGACACTTATATATAAAGCAATGTTTAATGTAATTTTTCTTTTTT
5280



............................................................



5281
CTTTTTTTACAAAAGTATAGATGGATGTATGGCTTTTGAGGCAGCATACATGCTTGAAAA
5340



............................................................



5341
ATCTGTGTCAATGTATTTATGCTATATATGCCTACAGTATATATAGAAGAATAGAGAAGA
5400



............................................................



5401
AATTGGACTCGAATTCGATCGCCAGTCAACATCTTGTTGTTTTTTCAGTTCAGGGGACTG
5460



............................................................



5461
GATTTTTTGTTTGTTTGTTTGTTTGTTTTTTTCCCTTCCACATTGAAGGAATCTTACTGA
5520



............................................................



5521
AGGTTTGATACAGTTGGTTTAAGGAGGTGGCAAGACATGAGCTGGACATGAACCCAAGCA
5580



............................................................



5581
GCAGCAACAGCACACTTTTAGAGACGTTCTTCCTACACTTCTCACTTTGTTCTTCCTTTT
5640



............................................................



5641
CTTACCTTTTGTAGCTTCCTCTCTTACTGAGCACCACCTCTCTCCTTCCAGCCTGAGGGA
5700



............................................................



5701
GATCTATGCATGTTCTTTACTCAGGTCCAGTAGCCTCCTCGGTTCCTTCCTCACATCTAC
5760



............................................................



5761
TTAATATCTTTCCTTTCTCTGTGCACTCTTTGCACTCACACAAATAAGCAGTGATGCCTT
5820



............................................................



5821
ATCTGCAGATTATTCACTTTTCATTAAGAAAAAAAAGTAAGTTATGATAAATTATGGTAT
5880



............................................................



5881
AATGTCATTTGTTTTGCCATTTTTTTGTGAACCCTCTGTATAAATAAACTTGGGTTTAGC
5940



............................................................



5941
ACACGCAGAAACAGTCGATAAAAGATAACAAAGGTATGCTCTTCTTTTATCTGCTATGCA
6000



............................................................



6001
TTGCTTAAAAACAAAAAACCATCAGAGAAGAAGTGGCTGTAAATAAAGCTAGCATATTGC
6060



............................................................



6061
CTTGTTTCTTTTTTGTTGTAAATGAACTTTTTGTATGTCTTTCTTTTTTGTATAAAACTT
6120



............................................................



6121
AGAGAAAACATGTTTTAAAAAAGCAGAAGGAAGTGAAAGTGGTTATCTTTGTATTATGGG
6180



............................................................



6181
CATACCTTCAAGCCTTTGAATTGTAACCTAACAATAATACATCACACCTTTTCTACCGAT
6240



............................................................



6241
ATGTTGCCGCCGCTATTTTACCGTCTCAAAAAGGTCGTCTTTTTTTATTTTTATTTCTAT
6300



............................................................



6301
TTTTATTACTTTGTCCACGTAGGGTTAAGGAAAGTATTTGCGGCTCAGATGCATTTAAAA
6360



............................................................



6361
CATCTTCATTTGGAAGGGTGTGCTCTCAAAGTGTCCCTCTCACTGATTTCTGATACTGGA
6420



............................................................



6421
TGCTATATTGTGTGCCCTTAAATGTATTTTTGTACTAATAGACAATATATTACGTATGGC
6480



............................................................



6481
ACACCAGTACTGTTTTACTTTTAGATATAACACGGCTTTATTGGATATTAGCTCTTCACT
6540



............................................................



6541
TGTGGCTGACTTTTTTTTTTTTCCCCTCTGCAACACAATTTTAAGTATACCACTGTATTA
6600



............................................................



6601
ATAAATAAAATCATTTTTAAATTAAAGAGTGTGTAAGGATTTTTTATTTTTTTTTACCCT
6660



............................................................



6661
ACAGGGTTTTGTAT
6674



..............











SEQ ID NOs 72 and 74 (Tip1a mutant allele- 7 nt deletion)


LENGTH: 6674 bp and 439 aa


TYPE: cDNA (SEQ ID NO: 72) and Protein (SEQ ID NO: 74)


ORGANISM: Nile tilapia









1
AAAGAGGAAAACAATGCATCATATAACTTTATAAGTAAGAGTGCGGCGATGGAGGAAACC
60


1
-K--E--E--N--N--A--S--Y--N--F--I--S--K--S--A--A--M--E--E--T-
20


61
GTCATATGGGAACAGCACACAGTTACCCTTCACAGGGCCCCAGGATTTGGGTTTGGCATT
120


21
-V--I--W--E--Q--H--T--V--T--L--H--R--A--P--G--F--G--F--G--I-
40


121
GCCATCTCGGGTGGGCGAGACAACCCTCATTTCCAGAGTGGTGAAACATCTATTGTAATA
180


41
-A--I--S--G--G--R--D--N--P--H--F--Q--S--G--E--T--S--I--V--I-
60


181
TCGGATGTGCTGAAAGGAGGTCCTGCAGAGGGTCTGCTACAAGAAAATGATCGAGTAGTA
240


61
-S--D--V--L--K--G--G--P--A--E--G--L--L--Q--E--N--D--R--V--V-
80


241
ATGGTCAATGCAGTCTCTATGGACAATGTAGAGCATGCCTATGCTGTTCAACAACTTCGA
300


81
-M--V--N--A--V--S--M--D--N--V--E--H--A--Y--A--V--Q--Q--L--R-
100


301
AAGAGTGGCAAAAATGCAAAGATAACTATTCGCAGAAAAAGGAAAGTACAAATCCCAGCG
360


101
-K--S--G--K--N--A--K--I--T--I--R--R--K--R--K--V--Q--I--P--A-
120


361
TCACGGCACGGGGACAGGGAGACGATGTCTGAGCACGAGGAGGAGGACAGCGATGAGGCT
420


121
-S--R--H--G--D--R--E--T--M--S--E--H--E--E--E--D--S--D--E--A-
140


421
GATGCTTACGATCACCGCAGTGGACGTGGTGGACAAAACGATCGGGAGCGTAGCAGCAGT
480


141
-D--A--Y--D--H--R--S--G--R--G--G--Q--N--D--R--E--R--S--S--S-
160


481
GGGAGGCGGGATCACAGTGCCTCACAGGAGAGGAGCATCTCACCACGCTCCGATCGCCGA
540


161
-G--R--R--D--H--S--A--S--Q--E--R--S--I--S--P--R--S--D--R--R-
180


541
TCACAAGCCTCTTCTGCTCCACCCAGGCCCTCCAAGGTCACTCTTGTCAAGTCCCGCAAA
600


181
-S--Q--A--S--S--A--P--P--R--P--S--K--V--T--L--V--K--S--R--K-
200


601
AACGAAGAATATGGACTGCGGCTGGCCAGCCATATCTTTGTGAAGGACATCTCTCCAGAG
660


201
-N--E--E--Y--G--L--R--L--A--S--H--I--F--V--K--D--I--S--P--E-
220


661
AGCCTTGCAGCCAGAGATGGAAACATTCAGGAGGGAGATGTTGTACTTAAGATTAACGGC
720


221
-S--L--A--A--R--D--G--N--I--Q--E--G--D--V--V--L--K--I--N--G-
240


721
ACAGTTACAGAGAACCTATCACTGACAGATGCCAAGAAGCTGATTGAGAGGTCAAAGGGC
780


241
-T--V--T--E--N--L--S--L--T--D--A--K--K--L--I--E--R--S--K--G-
260


781
AAGCTGAAGATGGTAGTGCAGAGAGACGAGCGGGCCACGCTGCTCAATATTCCTGACCTT
840


261
-K--L--K--M--V--V--Q--R--D--E--R--A--T--L--L--N--I--P--D--L-
280


841
GACGACAGCATCCCATCAGCCAATAACTCAGACAGAGATGACATTTCAGAGATACATTCA
900


281
-D--D--S--I--P--S--A--N--N--S--D--R--D--D--I--S--E--I--H--S-
300


901
CTGACATCCGATCATTCCAATCGATCCCATGGGAGAGGAAGTCAATCCCATTCGCCTGAC
960


301
-L--T--S--D--H--S--N--R--S--H--G--R--G--S--Q--S--H--S--P--D-
320


961
AGGGTTGAAACATCCGAGCATCTCCGCCACTCACCGCGGCAGATCAGCAATGGCAGTAAT
1020


321
-R--V--E--T--S--E--H--L--R--H--S--P--R--Q--I--S--N--G--S--N-
340


1021
GGATTTCTCTGGGAAAGAGCTGAGGAATTAATCAAACAGGAATGGGTGGTGAAACAGGAA
1080


341
-G--F--L--W--E--R--A--E--E--L--I--K--Q--E--W--V--V--K--Q--E-
360


1081
TGTTATTTTGCCTGTGCCCATACTATAAAATGTGTAATAACCGTGACAGTTTGGGCAAAA
1140


361
-C--Y--F--A--C--A--H--T--I--K--C--V--I--T--V--T--V--W--A--K-
380


1141
AAACCCCAAAACAGTAACATGCCAGAACCAAAGCCAGTTTATGCACAGCCTGGTCAGCCT
1200


381
-K--P--Q--N--S--N--M--P--E--P--K--P--V--Y--A--Q--P--G--Q--P-
400


1201
GACGTGGACCTGCCTGTCAGCCCATCTGATGCCCCTGTACCCAGTGCTGCACATGATGAC
1260


401
-D--V--D--L--P--V--S--P--S--D--A--P--V--P--S--A--A--H--D--D-
420


1261
AGCATTCTCAGACCAAGTATGAAGCTGGTCAAGTTCAAGAAGGGAGAGAGTGTCGGTTAG
1320


421
-S--I--L--R--P--S--M--K--L--V--K--F--K--K--G--E--S--V--G--*-
439










SEQ ID NOs 75 and 77 (wild-type Hiat1a)


LENGTH: 5281 bp and 491 aa


TYPE: cDNA (SEQ ID NO: 75) and Protein (SEQ ID NO: 77)


ORGANISM: Nile tilapia









1
TTCTGCTTCGCCCTTGTATTAGACAGCCAATCGCTGGACGTCACTCCGCCAGAAGGGGTG
60



............................................................



61
GGTTGACGTAGTACAGGAAGCCAGGCGAGGTGAGGTGGGGAGGAGAGATCACAAAATTGT
120



............................................................



121
TAGCTCGCTGCTAGCTGCCTCCTCCGATTTGCCCGAAGTGCGATGAGCCCAGGAGGCGAA
180



............................................................



181
ATTTGTGGGGTTTTTTGGTTTTGATTGGCGCGACGATGACCCTCTGACCCTAAGAATGGA
240



............................................................



241
CATAAGTTAATGATGACGGGGGAGAAGAAGAAGAAGAAGCGGCTGAACCGCAGCATTCTT
300



.........-M--M--T--G--E--K--K--K--K--K--R--L--N--R--S--I--L-
17


301
CTTGCAAAGAAAATTATAATAAAAGATGGAGGAAGTCCTCAGGGAATCGGGGAGCCCAGT
360


18
-L--A--K--K--I--I--I--K--D--G--G--S--P--Q--G--I--G--E--P--S-
37


361
GTTTACCATGCTGTGGTGGTCATCTTCCTGGAGTTTTTTGCATGGGGTCTGCTCACTACC
420


38
-V--Y--H--A--V--V--V--I--F--L--E--F--F--A--W--G--L--L--T--T-
57


421
CCGATGCTCACGGTATTACACCAGACATTCCCCCAACACACATTCCTGATGAATGGGCTC
480


58
-P--M--L--T--V--L--H--Q--T--F--P--Q--H--T--F--L--M--N--G--L-
77


481
ATTCATGGTGTGAAGGGCCTGTTATCATTTCTCAGTGCTCCGCTAATTGGAGCGTTGTCA
540


78
-I--H--G--V--K--G--L--L--S--F--L--S--A--P--L--I--G--A--L--S-
97


541
GACGTATGGGGACGCAAGTCCTTCCTGCTGCTAACGGTCTTCTTCACTTGCGCGCCCATT
600


98
-D--V--W--G--R--K--S--F--L--L--L--T--V--F--F--T--C--A--P--I-
117


601
CCGCTGATGAAGATCAGTCCATGGTGGTACTTTGCAGTCATCTCGATGTCCGGTGTTTTT
660


118
-P--L--M--K--I--S--P--W--W--Y--F--A--V--I--S--M--S--G--V--F-
137


661
GCCGTCACCTTCTCTGTGATCTTTGCCTATGTGGCAGACATCACACAAGAGCATGAGAGG
720


138
-A--V--T--F--S--V--I--F--A--Y--V--A--D--I--T--Q--E--H--E--R-
157


721
AGCACAGCTTATGGTTTGGTATCAGCTACCTTTGCAGCAAGCCTGGTTACCAGCCCAGCC
780


158
-S--T--A--Y--G--L--V--S--A--T--F--A--A--S--L--V--T--S--P--A-
177


781
ATTGGAGCCTACCTGTCTGAGGCTTACAGTGACACCTTGGTTGTGATCCTGGCCACAGCC
840


178
-I--G--A--Y--L--S--E--A--Y--S--D--T--L--V--V--I--L--A--T--A-
197


841
ATCGCACTGCTCGACATCTGCTTCATCCTGGTGGCTGTACCAGAGTCGCTGCCGGAGAAG
900


198
-I--A--L--L--D--I--C--F--I--L--V--A--V--P--E--S--L--P--E--K-
217


901
ATGAGGCCAGCGTCATGGGGAGCGCCCATCTCCTGGGAACAGGCAGACCCCTTCGCTTCT
960


218
-M--R--P--A--S--W--G--A--P--I--S--W--E--Q--A--D--P--F--A--S-
237


961
CTGCGTAAAGTGGGCCAGGACTCTACGGTGCTCCTCATCTGTATCACAGTGTTCCTCTCC
1020


238
-L--R--K--V--G--Q--D--S--T--V--L--L--I--C--I--T--V--F--L--S-
257


1021
TACCTCCCTGAGGCCGGCCAGTACTCCAGCTTCTTCCTCTATCTCAGACAGGTCATAGGC
1080


258
-Y--L--P--E--A--G--Q--Y--S--S--F--F--L--Y--L--R--Q--V--I--G-
277


1081
TTCTCCTCAGAGACAGTGGCTGCCTTCATCGCTGTTGTGGGAATCCTCTCAATATTAGCT
1140


278
-F--S--S--E--T--V--A--A--F--I--A--V--V--G--I--L--S--I--L--A-
297


1141
CAGACGGTCGTGTTGGGGATCCTGATGCGCTCTATAGGAAATAAGAACACAATCCTGCTC
1200


298
-Q--T--V--V--L--G--I--L--M--R--S--I--G--N--K--N--T--I--L--L-
317


1201
GGCCTCGGCTTTCAGATCCTCCAGCTGGCCTGGTATGGCTTTGGATCTCAGCCCTGGATG
1260


318
-G--L--G--F--Q--I--L--Q--L--A--W--Y--G--F--G--S--Q--P--W--M-
337


1261
ATGTGGGCAGCTGGAGCCGTTGCTGCCATGTCCAGCATCACGTTCCCCGCCATCAGCGCC
1320


338
-M--W--A--A--G--A--V--A--A--M--S--S--I--T--F--P--A--I--S--A-
357


1321
ATTGTGTCCCGTAATGCGGATCCTGACCAGCAAGGTGTTGTTCAGGGCATGATCACTGGA
1380


358
-I--V--S--R--N--A--D--P--D--Q--Q--G--V--V--Q--G--M--I--T--G-
377


1381
ATTCGAGGCCTCTGTAACGGTTTGGGTCCTGCTCTTTACGGCTTCGTCTTCTACTTATTC
1440


378
-I--R--G--L--C--N--G--L--G--P--A--L--Y--G--F--V--F--Y--L--F-
397


1441
CACGTGGAGCTGACCGACACGGACGGCTCTGAGAAAGGTGCCAAAGGGAACATGGCCAAC
1500


398
-H--V--E--L--T--D--T--D--G--S--E--K--G--A--K--G--N--M--A--N-
417


1501
CCCACTGACGAGAGTGCCATCATCCCAGGTCCTCCCTTCCTCTTTGGTGCATGCTCAGTG
1560


418
-P--T--D--E--S--A--I--I--P--G--P--P--F--L--F--G--A--C--S--V-
437


1561
CTGCTGTCTCTGCTGGTGGCGCTGTTCATCCCGGAGCACACTGGGCCCGGTATGAGGCCC
1620


438
-L--L--S--L--L--V--A--L--F--I--P--E--H--T--G--P--G--M--R--P-
457


1621
GGCTCCTACAAGAAGCACAGCAACGGGGCACAGAGTCACTCCCACAGCCCGCAAGGCAGC
1680


458
-G--S--Y--K--K--H--S--N--G--A--Q--S--H--S--H--S--P--Q--G--S-
477


1681
GGGGCAGAGGGCAAGGAGCCGCTGCTGGAGGACAGCAGCGTATAACCTCAGCTCAGGGGG
1740


478
-G--A--E--G--K--E--P--L--L--E--D--S--S--V--*-...............
491


1741
GGCAGACTCCCTCGCTCCACCTCAAAATGCCCTGCACACATGGACAGATACACATAATTT
1800



............................................................



1801
ATCACAAGGACACACACGCACCTCAGGCACACGTCACACTCGAGTGCCGCAAAGAGATGT
1860



............................................................



1861
TTGTCTGTTTTGCTGTCCACAGCACAAAGTTGGGCGCTCCTTCCTTAGCAACCCTTTTCT
1920



............................................................



1921
TTATAATAGCTGGGTTATTGTGAGGACTTTCTAAAGACCCTGTGTGAAGAAAGTGTGTCG
1980



............................................................



1981
AGCATCATCAGGGCTGCAGTGGAAGACCGTGTATGTGTGTGTGTGTGTGTGTGTGTGTGT
2040



............................................................



2041
GTGTGTGTGGCTGAGCTGAGCTGAGCTGGACTCCAATCTTTGGTTTGTCTGAAGTTGTAA
2100



............................................................



2101
CAGTGGAGCACACAACAGCTTGTCCCCCTCCTGGCGCGAAACAGGACTGAAGTGACTTTG
2160



............................................................



2161
GTTTAATGTGCGAGTGGGGATATATCTCTGATACGTTACTAAATACCTGTGTGACTCTTG
2220



............................................................



2221
ATTATTCCTCTTTAGTTAGCCAAGTGGCACCTTCGTTTGTCAGAGGAGAGCGTGACGAAC
2280



............................................................



2281
GCCCTCTCACATGCTAATACTTCTGTTCTGATGCTTGTCTTTATGACTACAGCTCTGTTT
2340



............................................................



2341
AGGCGTCCAAGAAGGAAACATAGTTCTTCCTCTGTGTGGACAACAGGGGAGCGCAGCAGC
2400



............................................................



2401
TGTTAAACCTGTGAAAGGAGCCTGCAAACCAGTATTGGAGAGGCGCTGCCTAATTGCAGT
2460



............................................................



2461
CAGGGTTGGCAACCAGTTCAGATACAAAAAGCTTTGTTAGGACCAGGTTTTGTTCAAATA
2520



............................................................



2521
TCAAACTTCTTACAGAGAGATGACTAGAAGAGACCACTTTATTAGCTCAAAATGGTTTTT
2580



............................................................



2581
CAATGTTTACTTGCCATTCTCTAGATTAGTAGTACAGTTTGGGTTGTATATTTTTCTCTG
2640



............................................................



2641
TTCAAACTGAAGGCTAGTTGTGCTTCAAGTTTTTATTCAAGAAACAAATGTTGCCTTGAA
2700



............................................................



2701
GTGACTTAAGATATATATGGAGACATTACGTAACCTGTATGAAGACCGAGGTCTGAGAAG
2760



............................................................



2761
GCTCTGTAATCTTGCGCTATTGCTCCCATCGGAGCCGTTACACACTTTTTATTCCTTTGT
2820



............................................................



2821
ATTCATGCCCTTCCTGTTACTTTGTTTCCTGACATTTATCACCATCAAGTTGAGGCTTAC
2880



............................................................



2881
AGAGACACGGTTTTATTTTTAAAAAGCCTCTGGACCATTTGGAGCTGGAGCATTGCTATC
2940



............................................................



2941
AGGATGTCGGTGTCTGCACTGACTGTTTGAGTTGATATCATTAGGTTCAGCAGAATATCA
3000



............................................................



3001
GCCATGCTGCTGCAGTAGTAAATACAAAGGTTAATCAGTGTGGCGTAAAGTGGTGGATAA
3060



............................................................



3061
GAATTATAACTGTGTCTTGTAGTCCCTGACATTTAAGCTAACATGCGTACACTCAAAGAG
3120



............................................................



3121
GCAGGCCACACTTCTCCCAATGCCTAACATGAAGCACCTCACGGACGTGTCTGGCAACTT
3180



............................................................



3181
GTGTAGAAGCTCTGCAGATGCCAGCCTGCGCCACCTAAGAGGCAGAAACAAATAGCAGTA
3240



............................................................



3241
GTGGAGTAGATGGCTGGAAATGTTCATGTTATCCTCAAACAGTGAAGCAAAGTAAAAATC
3300



............................................................



3301
TGGAGGTTGTGTCAATGTGGAGAGTATTGCGAAATCTGCAATGATCCCAGATTTCATTAG
3360



............................................................



3361
TTTAAAAAAAAGAGAAAATAAGAAGAAGAAGAAAATCCACTTAAAAGTGTAAATCCTGAA
3420



............................................................



3421
TTTTTATTATCGTTCAGATCTGCAGATGTCTCTGGGTTTTTCTGCAGGTCTGAACTGCTG
3480



............................................................



3481
CTGCCACGTTTATTTTTATTTTCCCCGGTCAACAGGTGGCGCAGTCTGTACCTGGCATGC
3540



............................................................



3541
CTGTAAGGTGCTCGTGTGGTTTTTGTTTTCTTTTTTTCAGTCATGTGGATCAGCGATACT
3600



............................................................



3601
GCGTTCCCTTCATTCACATACTATGTCGCCACCTTTCCACATTGTAACTTTGATCTGTGA
3660



............................................................



3661
ATGCCTCTCGTAGCTAACAACTGGTTTCATGCTGTTTAACATCTGTATGAACTGAAACAT
3720



............................................................



3721
ACGTCACGTATTTAGTGCCATATCTTCTTGATTTGCTTTTTTCTTTTGTACTGTGTGTGT
3780



............................................................



3781
GAATGTACACTTGTGTGATTTGAGTGTTTTTGTTGTTCTTTTTATTTTCTCTTGTCTTAA
3840



............................................................



3841
TTTCTTTGACTGAAGATTTAAGTTTTAATGCTATTTTTTTAATAGCTTTTTAAAACTTCA
3900



............................................................



3901
GTCATTTTTTTAGGATTAATTGTCAAAATTGGATGGTAAATTATCAAATGTCCATCTGTC
3960



............................................................



3961
CCCTTTGTTATGTTGTTTGTTTTTGATTTCAGCCTCGGTCTTCATTTAATAACAAGCATT
4020



............................................................



4021
TCACCATGGTTTGTTAAGCTCATAATTTTTTCCCAGATTTCTCTGAATGTTTCCAATGAA
4080



............................................................



4081
ACTGAACATGTTGACCACACAGTACCCTCAATCTTTAGGTTTTTTTTGTTTTGTCTTTTA
4140



............................................................



4141
AGAGGGGATGTTACTACACAGGAGGCCATTATTCCCGTTTTTTTTTTTTTGTTTGTTTTT
4200



............................................................



4201
TTTAAATCATGTAATTGAACAACAGAAAATCGGATCCTGGTAAGATTCTGCACCAGCCCC
4260



............................................................



4261
CCACCACCACCACCCACGTGCACACCTACAGCCTCCAAGCAGACGACTGTAAATGTACAA
4320



............................................................



4321
AAATCACCTGTACCTAGAGAAAAATGTATATATTTATTCCTCAAGGAGATGGCCACCTCT
4380



............................................................



4381
TGGTCAATTTGGTTGTATGGTGCAATTATTATTATAATTATTATATATTTCTCCAGAATT
4440



............................................................



4441
ACCTGCTAGCCACTCCTGTTTTTAGTACAATGTGGTTTGTGGCCTGAACTCCCCTCTCTG
4500



............................................................



4501
TGTGCCTAAAATTAGCCAAGAAATGAGTATGGCAACCTAAGTAAGTAAAATGGTGGTTAT
4560



............................................................



4561
TAATGTAAATATGGGAAACTAATGATAAACTATTTATTAAAGGTTTATTGTACAATGAAA
4620



............................................................



4621
CGTTTCGGGTTGCCTCTGTGGTTTCTGGGTGGGTAACACAGGTGAAATCATGTTACTGTA
4680



............................................................



4681
GCAGTGAGTGAGCATCTGAGCAGCGATAATCATTTGGTCGTTGCATTTACGGCGATGATC
4740



............................................................



4741
CTATAGTTAATGGCTGCTAAATCCCAGTAAGTCTCACTATAAACTGGTAGCATTCCTGTT
4800



............................................................



4801
GGGCTTTACTTGCTGTTATATTACTGCACCCCCATTTTTTTTTTAATGTAATGCTCTGAC
4860



............................................................



4861
TTTGCTGGCTGTTGGTTTTGTAAACCTGCCCTTTGAAGCTTAATGTTACCGCTAATGCCT
4920



............................................................



4921
CCTCCACCTACACAGTGTATATAGTCGTGCATTGACCTGAGCTCATTTATGGGCGGTGGA
4980



............................................................



4981
TTTGTAATTAAATCCACATGGAGGCAGTAGTTACATCTGGCAGGAACTTTAAAGAGTCTT
5040



............................................................



5041
CTCCCTGAATAACAGTGAACGCAAAGTGGGAGATGTCACAAAATGTGATATTTATCCAAA
5100



............................................................



5101
ATAAAGAATACGATAAAGTGGCCAGAACAATTTATTTTTGTTATTAATGTAGTGTAGGGG
5160



............................................................



5161
AATTTAATGTCTTATAATTAGCAGCTAATAACTTGCCCATCATTTTGTTGAATTTCTGTG
5220



............................................................



5221
TGAATGATGAAGTTTTACTGGGTCAATGCTCAAATCTTAAGGTGATTAATGAGTATTTGC
5280



............................................................



5281
A
5281



.











SEQ ID NOs 76 and 78 (Hiat1a mutant allele-17 nt deletion)


LENGTH: 5281 bp and 234 aa


TYPE: cDNA (SEQ ID NO: 76) and Protein (SEQ ID NO: 78)


ORGANISM: Nile tilapia









1
TTCTGCTTCGCCCTTGTATTAGACAGCCAATCGCTGGACGTCACTCCGCCAGAAGGGGTG
60



............................................................



61
GGTTGACGTAGTACAGGAAGCCAGGCGAGGTGAGGTGGGGAGGAGAGATCACAAAATTGT
120



............................................................



121
TAGCTCGCTGCTAGCTGCCTCCTCCGATTTGCCCGAAGTGCGATGAGCCCAGGAGGCGAA
180



............................................................



181
ATTTGTGGGGTTTTTTGGTTTTGATTGGCGCGACGATGACCCTCTGACCCTAAGAATGGA
240



............................................................



241
CATAAGTTAATGATGACGGGGGAGAAGAAGAAGAAGAAGCGGCTGAACCGCAGCATTCTT
300



.........-M--M--T--G--E--K--K--K--K--K--R--L--N--R--S--I--L-
17


301
CTTGCAAAGAAAATTATAATAAAAGATGGAGGAAGTCCTCAGGGAATCGGGGAGCCCAGT
360


18
-L--A--K--K--I--I--I--K--D--G--G--S--P--Q--G--I--G--E--P--S-
37


361
GTTTACCATGCTGTGGTGGTCATCTTCCTGGAGTTTTTTGCATGGGGTCTGCTCACTACC
420


38
-V--Y--H--A--V--V--V--I--F--L--E--F--F--A--W--G--L--L--T--T-
57


421
CCGATGCTCACGGTATTACACCAGACATTCCCCCAACACACATTCCTGATGAATGGGCTC
480


58
-P--M--L--T--V--L--H--Q--T--F--P--Q--H--T--F--L--M--N--G--L-
77


481
ATTCATGGTGTGAAGGGCCTGTTATCATTTCTCAGTGCTCCGCTAATTGGAGCGTTGTCA
540


78
-I--H--G--V--K--G--L--L--S--F--L--S--A--P--L--I--G--A--L--S-
97


541
GACGTATGGGGACGCAAGTCCTTCCTGCTGCTAACGGTCTTCTTCACTTGCGCGCCCATT
600


98
-D--V--W--G--R--K--S--F--L--L--L--T--V--F--F--T--C--A--P--I-
117


601
CCGCTGATGAAGATCAGTCCATGGTGGTACTTTGCAGTCATCTCGATGTCCGGTGTTTTT
660


118
-P--L--M--K--I--S--P--W--W--Y--F--A--V--I--S--M--S--G--V--F-
137


661
GCCGTCACCTTCTCTGTGATCTTTGCCTATGTGGCAGACATCACACAAGAGCATGAGAGG
720


138
-A--V--T--F--S--V--I--F--A--Y--V--A--D--I--T--Q--E--H--E--R-
157


721
AGCACAGCTTATGGTTTGGTATCAGCTACCTTTGCAGCAAGCCTGGTTACCAGCCCAGCC
780


158
-S--T--A--Y--G--L--V--S--A--T--F--A--A--S--L--V--T--S--P--A-
177


781
ATTGGAGCCTACCTGTCTGAGGCTTACAGTGACACCTTGGTTGTGATCCTGGCCACAGCC
840


178
-I--G--A--Y--L--S--E--A--Y--S--D--T--L--V--V--I--L--A--T--A-
197


841
ATCGCACTGCTCGACATCTGCTTCATCCTGGTGGCTGTACCAGAGTCGCTGCCGGAGAAG
900


198
-I--A--L--L--D--I--C--F--I--L--V--A--V--P--E--S--L--P--E--K-
217


901
ATGAGCGCCCATCTCCTGGGAACAGGCAGACCCCTTCGCTTCTCTGCGTAAAGTGGGCCA
960


218
-M--S--A--H--L--L--G--T--G--R--P--L--R--C--V--S--A--*-
234










SEQ ID NOs 79 and 81 (wild-type Smap2)


LENGTH: 4207 bp and 429 aa


TYPE: cDNA (SEQ ID NO: 79) and Protein (SEQ ID NO: 81)


ORGANISM: Nile tilapia









1
ATGACGGGCAAATCTGTGAAAGACGTTGACAGATACCAGGCTGTCCTCAACTCTTTACTG
60


1
-M--T--G--K--S--V--K--D--V--D--R--Y--Q--A--V--L--N--S--L--L-
20


61
GCGCTGGAGGAGAACAAATACTGCGCTGACTGTGAATCGAAAGGTCCACGATGGGCATCC
120


21
-A--L--E--E--N--K--Y--C--A--D--C--E--S--K--G--P--R--W--A--S-
40


121
TGGAATTTGGGCATCTTCATCTGTATCCGCTGTGCTGGTATCCATCGAAACCTGGGGGTT
180


41
-W--N--L--G--I--F--I--C--I--R--C--A--G--I--H--R--N--L--G--V-
60


181
CACATCTCCAAGGTCAAGTCTGTCAACCTGGATCAGTGGACGCAGGAGCAAGTCCAGTGT
240


61
-H--I--S--K--V--K--S--V--N--L--D--Q--W--T--Q--E--Q--V--Q--C-
80


241
GTTCAAGAGATGGGAAATGCCAAGGCCAAACGGCTCTACGAGGCTTTTTTACCCGAGTGC
300


81
-V--Q--E--M--G--N--A--K--A--K--R--L--Y--E--A--F--L--P--E--C-
100


301
TTCCAGCGTCCCGAGACAGACCAGGCTGCCGAGATCTTCATTAGGGACAAATACGAAAAG
360


101
-F--Q--R--P--E--T--D--Q--A--A--E--I--F--I--R--D--K--Y--E--K-
120


361
AAGAAATACATGGATAAAGTTATTGACATCCAGATGCTCAGGAAAGAAAAGAGTTGTGAC
420


121
-K--K--Y--M--D--K--V--I--D--I--Q--M--L--R--K--E--K--S--C--D-
140


421
AACATCCCAAAGGAGCCAGTTGTATTTGAGAAGATGAAATTGGTAGTTAAAAAGGAGAAC
480


141
-N--I--P--K--E--P--V--V--F--E--K--M--K--L--V--V--K--K--E--N-
160


481
ACTAAGAAAAAAGACGTCAGCCCAAAGACAGATTCCCAGTCTGTCACAGACCTGCTCGGA
540


161
-T--K--K--K--D--V--S--P--K--T--D--S--Q--S--V--T--D--L--L--G-
180


541
CTAGAACTGCTTTTATGTTGCAAGTCTGCACCTAAAAAGCAAATAAACACGTCAGACTCT
600


181
-L--E--L--L--L--C--C--K--S--A--P--K--K--Q--I--N--T--S--D--S-
200


601
GCCCTGGATCTCTTCAGCTCCCTCGCAGCCCCCTCCCCTGCTTCCTCTACAAAAAGCACG
660


201
-A--L--D--L--F--S--S--L--A--A--P--S--P--A--S--S--T--K--S--T-
220


661
GTAGTAGACACCATGCCTCAGAGCAGAGTGACTGCCTCAGTGCCTGAGAATCTGAGCTTG
720


221
-V--V--D--T--M--P--Q--S--R--V--T--A--S--V--P--E--N--L--S--L-
240


721
TTCTTAGGCCCAGCACCCAAAGCAGAGGAGGGCACAGTCAAGAAACTATCCAAGGACTCC
780


241
-F--L--G--P--A--P--K--A--E--E--G--T--V--K--K--L--S--K--D--S-
260


781
ATTCTTTCCCTGTACGCCTCCACTCCCTCGGTACATGCCAGCAGTATGGCCGCACATGGC
840


261
-I--L--S--L--Y--A--S--T--P--S--V--H--A--S--S--M--A--A--H--G-
280


841
TTGTACATGAACCAAATGGGATATCCAACACACCCGTACGGTCCATACCATTCTTTAGCC
900


281
-L--Y--M--N--Q--M--G--Y--P--T--H--P--Y--G--P--Y--H--S--L--A-
300


901
CAGGCAGGGGGAATGGGAGGCACTATGATGACATCACAGATGGCCATGATGGGGCAGCAG
960


301
-Q--A--G--G--M--G--G--T--M--M--T--S--Q--M--A--M--M--G--Q--Q-
320


961
CAGAGCGGGGTGATGGCGGTGCCACAAAACAGCATGATTGGAATTCAGCAGAACTGCATG
1020


321
-Q--S--G--V--M--A--V--P--Q--N--S--M--I--G--I--Q--Q--N--C--M-
340


1021
ATGGGGCAGCAGAATGGCTTAATGGGACAGCAACAAAGTGGGATGATAGGACAGCAGCAG
1080


341
-M--G--Q--Q--N--G--L--M--G--Q--Q--Q--S--G--M--I--G--Q--Q--Q-
360


1081
CAGGTTGGGGGTTTGCCCGCATTACCCCAGCAGCAGGCTTACGGAGTCCAGCAAGCCCAG
1140


361
-Q--V--G--G--L--P--A--L--P--Q--Q--Q--A--Y--G--V--Q--Q--A--Q-
380


1141
CAGCTACAGTGGAACATCAGCCAGATGACTCAGCACATGGCCGGCGTGAATCTTTACAAC
1200


381
-Q--L--Q--W--N--I--S--Q--M--T--Q--H--M--A--G--V--N--L--Y--N-
400


1201
ACCAGCGGTATGATGGGATACAGCGGTCAACAAATGGGAGGTTCAGCAGCTCCAAGTTCG
1260


401
-T--S--G--M--M--G--Y--S--G--Q--Q--M--G--G--S--A--A--P--S--S-
420


1261
GCACACATGACAGCGCACGTGTGGAAATGAGCTTGTCTATCTGAGATTCGATGGAGTGCC
1320


421
-A--H--M--T--A--H--V--W--K--*-..............................
429


1321
AACGACCCACAAAAGGAGAAGAGAAACGCCGTGGATCAGACTCTCCATTAAACATTTTCT
1380



............................................................



1381
GATGCAAGGGAGGAGGAGGAGGAGAAGAAGAAGAAGAAGGTTTGAGAAACCACTACTACC
1440



............................................................



1441
TCTCTCTCTCCTCTCTGGCCGCGCTTCCTCTTGCCGTCTCATGCATAGCCATGTTCTGCA
1500



............................................................



1501
GATTTCCATGTTTGCCTTCAGGACCTTTTCATATGATGACTAAGACAAGGGGGTTCTGAG
1560



............................................................



1561
GCCACTGGTTAGGACTCCAGAGCTTTCTTTCTGCCTAGCCTTTATGAGAGAGCGCTCGTG
1620



............................................................



1621
TGCAGAAACATTATGAGGGTATCAAGCAGCTGCAGAATTGCACTGTTTCTTATTTAATCA
1680



............................................................



1681
GATGGCACTGGGGTTGGCATTGGGGTTAGCCTAGCTTTAAAAGCTCAAATAGACCGAGAT
1740



............................................................



1741
ATATAATCTGGTAACCTAAATAGGTGGCTCATACTTTAAATTCATTAGCCCTACATTACC
1800



............................................................



1801
AGTATTTACCCAACTGATGGAGCGACATTTAGTGATGATATGTACAGTGGCCCTGAGAGG
1860



............................................................



1861
TCAAACACACTGCAGCCTAATAAAACACCAGCAAAAATGAAAAATGGTGCAAAAGCACAC
1920



............................................................



1921
AAAACATAATGGAAGGTCAATAAAACCCAATGGAAATAGAAAGAAAAACACTGGAGAAGC
1980



............................................................



1981
TAGCAGAAAAAAATCTCACAAAACACAACAGAAATGTTTTTGGCTAAAATGTGACGGCTA
2040



............................................................



2041
ACAGCTAACAGTAAACGGCTAACAGCAACCATGTACCTACAGTGTCCATTGTGTTTTGTC
2100



............................................................



2101
AGAATTTTTTTTTCTATGTCCATTGTATTTTAATCAACTTCTGTGGTGCTTTTGCAAAAT
2160



............................................................



2161
TTTTCTGTTTTGCTGGTGTTTCCTACAGTTGCAGTGCATGTGACCTCTCAGGGCCACCGT
2220



............................................................



2221
AGACATAGCTACATTTTAACAGCAGCCATATTTGCAAAGTGTAGCAACTACAACTTTATT
2280



............................................................



2281
CAGCCAATTTCAAGGTAGAGATTTAGAGCTTTTCAAAAGTATATTTTCACATAAGTGAGA
2340



............................................................



2341
TGAGCTGCTGCTAATTCACTTAATAATCATTAACAAATATAAAAGCTAGGCTAGCCTAAT
2400



............................................................



2401
AGTCCCTTCATGCTGCATGCAGAAGACAAATACACATAACCATTTTTAGCAACATATATC
2460



............................................................



2461
TAGAAATTTCTACTCATTTAACAATATTTAATTCAAGCAACAAAACCTACCTACACAGCC
2520



............................................................



2521
CGTAATATTGATGTCTTCATCTCAATTTCTAGAGGGCTTCTTTTAGAATCTTTAATCTTG
2580



............................................................



2581
ACTTTAAAGTGTCAAAAGTCCAAAACCATATTTTGGGAGACCAAAGATCAACACTAGCTT
2640



............................................................



2641
TACTGTAAGTGGACAGTATTCCTGTATGCTTATTCCTGTTCAACCACTTAACTAGTGATT
2700



............................................................



2701
AATAGAAAAAAAAAACAGCAATTCAGCAGTCCGGCATCACTGTCTTCACTGTGCTGTTCT
2760



............................................................



2761
TTCACCAAGGGTAGGACACTTAAAAAAAAGAAAAAGAAGAAAGAAATCATTTTGCATGCA
2820



............................................................



2821
GTGTCATCAGCGCCCGCACACCTCCAGTTAAGAATCTACCTGGTGCATTAGTGGCCTCAA
2880



............................................................



2881
ATAACGTTGAATGTCTGTAAATAGGAGGTGAACAGAGAAGTGGGAGTAGAGACGGAAAAC
2940



............................................................



2941
TTCAAGGTGAAGGTCAGCCGGGTTTCAGATGCTTCCACTGAATTGCATGAAAAGAATGTG
3000



............................................................



3001
TATCTAGCTCTGATTGTATGTACTGTACTGTATGTTTGTTAAGATTTGCGAATGTGTCTC
3060



............................................................



3061
TCTGAATGTTTCTCCCTCTGACTCAGTCTTTGACAAAGACTGACAAAAAAACTATAAAAA
3120



............................................................



3121
AAAATAGGTAAAACATATGTTCTGAATGTGATCTCGGTTGACTCGTTTGATCGCGCGCAA
3180



............................................................



3181
TTGTTCTTCGGTGTGTTTTTGTTTTTTATATATTCCTTGTCTAGAAACGTACACCTTGTG
3240



............................................................



3241
TCTCTGGAATGTCTGTGCTCGATGGCATCCTGTGGGTTTCCAGTTTTGCTGTAACGGCCT
3300



............................................................



3301
CACCTTTGCGTTGGGGGCAAACAGTGAGCTGTTTTGTTTTTTTTTTCTTTTTGAGAGGGG
3360



............................................................



3361
ATGGGAGTATTTAACAATCTGGCCAAACCACATCGTGAAGCATAAAGCGATTGTAAAACC
3420



............................................................



3421
ACAATCTTTCACGTCTGTTTAAGCTGATGCTTGTACGCTTCTCCCACACAAACCATCTCT
3480



............................................................



3481
GTGCCCCGATTTCTCTTAAAAGTGTTGCTAAATCTGCCTTTTCTGATAAATGCTTATGGA
3540



............................................................



3541
AATGCTGTGTTTCTCTTATTTAATTTTATTTGACACTTGTGTTAAGCTGGTAAGATGCTG
3600



............................................................



3601
CTTTTAATGTGAGTGGCAGCAATATAGGAGGTGCCTATGTGCAGCATATAAGGTCTTATT
3660



............................................................



3661
TCACAACAGTGTGACAGCAGCAGTCACCTTCTCCACTGAGAGCAACATTTATATAAGAGA
3720



............................................................



3721
GAGCACATCCAGCACAGCAACAGCAAATCTGTCAGTCAACAAAAGTTTCTGGAAAGGCAG
3780



............................................................



3781
TGCAAGTCCACCTCTGTGGACGCTCAGGCCTCACCTGAGTTTTTCCATTTGTGATCAGGC
3840



............................................................



3841
TACTTTTTTTTTGGTCCGATATTTTTTCAATGAAACAAAAACGAATAAAGGAATGTAACT
3900



............................................................



3901
TTGTACGTACTTGTCGATCAAGATACTGTATATTTTAATTCTTTATCAAAATATCGCTGT
3960



............................................................



3961
ATATTATGTTTCTTAAACAACATGTTCTGTATATTAGTTTTTCTTTTCCACATGCTTTGC
4020



............................................................



4021
CCCACTTTACACAATTTCAATAAAATTTAACAATGTATATGTGACATATGATAATTGTCC
4080



............................................................



4081
CTGTGAAAACATGCAAATAAATATTGTTTTGGTTAAATTTTATGTTGTTTTGTTTGTTGT
4140



............................................................



4141
GTTCATTGCTGGGTGTCAGGAGTTTTCCTGTTATGCAACTCAGGTCAGAATAAAACGCTC
4200



............................................................



4201
AGACAGG
4207



.......











SEQ ID NOs 80 and 82 (Smap2 mutant allele- 17 nt deletion)


LENGTH: 4207 bp and 118 aa


TYPE: cDNA (SEQ ID NO: 80) and Protein (SEQ ID NO: 82)


ORGANISM: Nile tilapia









1
ATGACGGGCAAATCTGTGAAAGACGTTGACAGATACCAGGCTGTCCTCAACTCTTTACTG
60


1
-M--T--G--K--S--V--K--D--V--D--R--Y--Q--A--V--L--N--S--L--L-
20


61
GCGCTGGAGGAGAACAAATACTGCGCTGACTGTGAATCGAAAGGTCCACGATGGGCATCC
120


21
-A--L--E--E--N--K--Y--C--A--D--C--E--S--K--G--P--R--W--A--S-
40


121
TGGAATTTGGGCATCTTCATCTGTATCCGCTGTGCTGGGGGTTCACATCTCCAAGGTCAA
180


41
-W--N--L--G--I--F--I--C--I--R--C--A--G--G--S--H--L--Q--G--Q-
60


181
GTCTGTCAACCTGGATCAGTGGACGCAGGAGCAAGTCCAGTGTGTTCAAGAGATGGGAAA
240


61
-V--C--Q--P--G--S--V--D--A--G--A--S--P--V--C--S--R--D--G--K-
80


241
TGCCAAGGCCAAACGGCTCTACGAGGCTTTTTTACCCGAGTGCTTCCAGCGTCCCGAGAC
300


81
-C--Q--G--Q--T--A--L--R--G--F--F--T--R--V--L--P--A--S--R--D-
100


301
AGACCAGGCTGCCGAGATCTTCATTAGGGACAAATACGAAAAGAAGAAATACATGGATAA
360


101
-R--P--G--C--R--D--L--H--*-
118










SEQ ID NOs 83 and 85 (wild-type Csnk2a2)


LENGTH: 1053 bp and 350 aa


TYPE: cDNA (SEQ ID NO: 83) and Protein (SEQ ID NO: 85)


ORGANISM: Nile tilapia









1
ATGCCTGGCCCCACACCGACCATCAGCAAAGCTCGGGTTTACACCGACGTTAATACACAG
60


1
-M--P--G--P--T--P--T--I--S--K--A--R--V--Y--T--D--V--N--T--Q-
20


61
AAGAACAGAGAGTACTGGGACTACGATGCTCATGTGCCAAACTGGAGTAATCAAGACAAC
120


21
-K--N--R--E--Y--W--D--Y--D--A--H--V--P--N--W--S--N--Q--D--N-
40


121
TATCAGCTGGTGCGTAAACTGGGCAGAGGGAAGTACAGTGAAGTGTTTGAGGCCATAAAT
180


41
-Y--Q--L--V--R--K--L--G--R--G--K--Y--S--E--V--F--E--A--I--N-
60


181
GTGACCAATAATGAGAAAGTGGTGGTGAAAATCCTGAAGCCTGTCAAGAAGAAGAAGATC
240


61
-V--T--N--N--E--K--V--V--V--K--I--L--K--P--V--K--K--K--K--I-
80


241
AAACGCGAAATCAAAATTCTTGAAAACTTGCGAGGAGGAACCAACATCATCCGCCTGGTG
300


81
-K--R--E--I--K--I--L--E--N--L--R--G--G--T--N--I--I--R--L--V-
100


301
GACACGGTCAAAGACCCGGTGTCCAGAACACCAGCGCTAGTCTTTGAGTACATCAATAAC
360


101
-D--T--V--K--D--P--V--S--R--T--P--A--L--V--F--E--Y--I--N--N-
120


361
ACAGATTTTAAGGAGCTTTACCAGAAGCTGACAGACTACGATATCCGTTACTACATGTAT
420


121
-T--D--F--K--E--L--Y--Q--K--L--T--D--Y--D--I--R--Y--Y--M--Y-
140


421
GAGCTTCTAAAGGCTCTGGACTTCTGTCACAGTATGGGGATCATGCACAGGGACGTGAAG
480


141
-E--L--L--K--A--L--D--F--C--H--S--M--G--I--M--H--R--D--V--K-
160


481
CCGCACAATGTGATGATTGACCACCAGCTGAGGAAGCTGCGTCTTATAGATTGGGGTTTG
540


161
-P--H--N--V--M--I--D--H--Q--L--R--K--L--R--L--I--D--W--G--L-
180


541
GCTGAATTTTACCATCCCGCTCAGGAATATAATGTCAGGGTGGCCTCGCGCTATTTCAAA
600


181
-A--E--F--Y--H--P--A--Q--E--Y--N--V--R--V--A--S--R--Y--F--K-
200


601
GGCCCCGAGCTGCTAGTGGACTATCAGATGTATGATTACAGTTTGGACATGTGGAGTCTC
660


201
-G--P--E--L--L--V--D--Y--Q--M--Y--D--Y--S--L--D--M--W--S--L-
220


661
GGCTGCATGTTGGCCAGTATGATTTTCCTGAAGGAACCGTTTTTTCATGGCCAGGACAAC
720


221
-G--C--M--L--A--S--M--I--F--L--K--E--P--F--F--H--G--Q--D--N-
240


721
TATGACCAGCTGGTCCGCATCGCTAAGGTTCTCGGCACCGATGAGCTCTTTGGCTACCTG
780


241
-Y--D--Q--L--V--R--I--A--K--V--L--G--T--D--E--L--F--G--Y--L-
260


781
CACAAATATCACATAGAACTGGACACTCGCTTCAAAGACATGCTGGGGCAGCAAACACGG
840


261
-H--K--Y--H--I--E--L--D--T--R--F--K--D--M--L--G--Q--Q--T--R-
280


841
AAACGCTGGGAGCAGTTCATCCAATCAGAGAACCAGCACCTGGTGAGTCCAGAGGCTCTG
900


281
-K--R--W--E--Q--F--I--Q--S--E--N--Q--H--L--V--S--P--E--A--L-
300


901
GACCTGCTGGACAAGCTGCTGCGCTATGACCACCAGCAGAGGCTGACGGCGGCCGAGGCC
960


301
-D--L--L--D--K--L--L--R--Y--D--H--Q--Q--R--L--T--A--A--E--A-
320


961
ATGCAGCACCCGTACTTCTATCCTGTGGTGAAGGAACAAGCAAATGCCAACACAGATGGC
1020


321
-M--Q--H--P--Y--F--Y--P--V--V--K--E--Q--A--N--A--N--T--D--G-
340


1021
TCAAAGGCAATAAGCAGCTCCAATGCAACATGA
1053


341
-S--K--A--I--S--S--S--N--A--T--*-
350










SEQ ID NOs 84 and 86 (Csnk2a2 mutant allele-22 nt deletion)


LENGTH: 1053 bp and 31 aa


TYPE: cDNA (SEQ ID NO: 84) and Protein (SEQ ID NO: 86)


ORGANISM: Nile tilapia









1
ATGCTCATGTGCCAAACTGGAGTAATCAAGACAACTATCAGCTGGTGCGTAAACTGGGCA
60


1
-M--L--M--C--Q--T--G--V--I--K--T--T--I--S--W--C--V--N--W--A-
20


61
GAGGGAAGTACAGTGAAGTGTTTGAGGCCATAAATGTGACCAATAATGAGAAAGTGGTG
120


21
-E--G--S--T--V--K--C--L--R--P--*-
31










SEQ ID NOs 87 and 89 (wild-type Gone)


LENGTH: 1335 bp and 444 aa


TYPE: cDNA (SEQ ID NO: 87) and Protein (SEQ ID NO: 89)


ORGANISM: Nile tilapia









1
ATGTCTGCTTCGACTGGATGCTCCCCATCGGGCCAGCACTCGGGCCTTGTCCCCAGTATG
60


1
-M--S--A--S--T--G--C--S--P--S--G--Q--H--S--G--L--V--P--S--M-
20


61
TCCATGTTTCGATGGCTAGAAGTGCTGGAGAAGGAATTTGATAAGGCTTTCGTGGATGTG
120


21
-S--M--F--R--W--L--E--V--L--E--K--E--F--D--K--A--F--V--D--V-
40


121
GATCTGTTGCTTGGAGAAATAGATCCAGATCAAGTGGATATAACGTATGAGGGTCGGCAG
180


41
-D--L--L--L--G--E--I--D--P--D--Q--V--D--I--T--Y--E--G--R--Q-
60


181
AAGATGACCAGCCTCAGCTCCTGTTTCGCTCAGCTCTGTCATAAAACCCAGACTGTCTTC
240


61
-K--M--T--S--L--S--S--C--F--A--Q--L--C--H--K--T--Q--T--V--F-
80


241
CAGCTCAACCATAAACTAGAGGCTCAGCTGGTGGACCTGCGCTCAGAGTTGACCGAAGCT
300


81
-Q--L--N--H--K--L--E--A--Q--L--V--D--L--R--S--E--L--T--E--A-
100


301
AAAGCTGCACGGGTGGTGGCAGAAAGGGAGGTCCACGACTTGCTCCTGCAGCTTCATGCT
360


101
-K--A--A--R--V--V--A--E--R--E--V--H--D--L--L--L--Q--L--H--A-
120


361
CTCCAACTGCAGCTTCATGTCAAGCAAGGCCAAGCTGAGGAGTCAGATACCATCAAAGAT
420


121
-L--Q--L--Q--L--H--V--K--Q--G--Q--A--E--E--S--D--T--I--K--D-
140


421
AAACTGCCTACACCAACCTTAGAAGAGCTGGAACAGGAGCTCGAGGCCAGTAAGAAGGAG
480


141
-K--L--P--T--P--T--L--E--E--L--E--Q--E--L--E--A--S--K--K--E-
160


481
AAATTAGCAGAGGCAAAAATGGAGGCAGAAACCAGACTATATAAGAAAGAAAACGAGGCC
540


161
-K--L--A--E--A--K--M--E--A--E--T--R--L--Y--K--K--E--N--E--A-
180


541
CTTCGCAGGCACATGGCAGTACTGCAGGCCGAAGTCTACGGAGCCAGACTGGCTGCTAAA
600


181
-L--R--R--H--M--A--V--L--Q--A--E--V--Y--G--A--R--L--A--A--K-
200


601
TACTTGGACAAGGAACTGGCTGGCAGGGTGCAGCAGATACAGTTACTGGGTCGTGACATG
660


201
-Y--L--D--K--E--L--A--G--R--V--Q--Q--I--Q--L--L--G--R--D--M-
220


661
AAAGGGCCAGCACATGACAAGCTCTGGAATCAACTGGAGGCAGAAATTCACCTTCACCGC
720


221
-K--G--P--A--H--D--K--L--W--N--Q--L--E--A--E--I--H--L--H--R-
240


721
CATAAAACTGTGATCCGAGCATGTAGAGGTCGAAGTGACCCTAAGAGACCTCTTCCCTCT
780


241
-H--K--T--V--I--R--A--C--R--G--R--S--D--P--K--R--P--L--P--S-
260


781
CCTGTGGGACATGATCCAGACATGCTGAAGAAAACCCAGGGAGTTGGCCCTATCCGAAAG
840


261
-P--V--G--H--D--P--D--M--L--K--K--T--Q--G--V--G--P--I--R--K-
280


841
GTTGTGCTGGTCAAAGAGGATCATGAGGGTCTAGGAATTTCCATTACAGGTGGGAAGGAG
900


281
-V--V--L--V--K--E--D--H--E--G--L--G--I--S--I--T--G--G--K--E-
300


901
CACGGCGTTCCCATTTTAATTTCAGAGATCCATCCCAGTCAGCCCGCAGACAGATGTGGA
960


301
-H--G--V--P--I--L--I--S--E--I--H--P--S--Q--P--A--D--R--C--G-
320


961
GGGCTGCATGTTGGAGATGCCATCCTTGCTGTCAACAGCATCAATTTGCGAGATGCCAAA
1020


321
-G--L--H--V--G--D--A--I--L--A--V--N--S--I--N--L--R--D--A--K-
340


1021
CATAAGGAAGCTGTCACCATTCTCTCTCAGCAGCGAGGACAGATAGAGTTTGAGGTCGTG
1080


341
-H--K--E--A--V--T--I--L--S--Q--Q--R--G--Q--I--E--F--E--V--V-
360


1081
TACGTGGCTCCTGAAGTGGACAGCGATGATGAGAATGTGGAGTACGAGGATGACAGCGGT
1140


361
-Y--V--A--P--E--V--D--S--D--D--E--N--V--E--Y--E--D--D--S--G-
380


1141
CATCGCTACAGACTCTACCTGGATGAACTGGATGACAGCATCACAGCACCACCTAGCAAC
1200


381
-H--R--Y--R--L--Y--L--D--E--L--D--D--S--I--T--A--P--P--S--N-
400


1201
AGTTCAGCATCACTTCAAGCACTGGAGAAGTTGTCACTGAGCAATGGAGCAGAGTCTGGA
1260


401
-S--S--A--S--L--Q--A--L--E--K--L--S--L--S--N--G--A--E--S--G-
420


1261
GATACTGGGATGTCCAGTGAGACACCTTCAGGGGAAACCCCTTCAAAGCCACCAGAAACT
1320


421
-D--T--G--M--S--S--E--T--P--S--G--E--T--P--S--K--P--P--E--T-
440


1321
GACTGCTCTTCCTAG
1335


441
-D--C--S--S--*-
444










SEQ ID NOs 88 and 90 (Gone mutant allele- 8 nt deletion)


LENGTH: 1335 bp and 30 aa


TYPE: cDNA (SEQ ID NO: 88) and Protein (SEQ ID NO: 90)


ORGANISM: Nile tilapia









1
ATGTCTGCTTCGACTGGATGCTCCCCAGCACTCGGGCCTTGTCCCCAGTATGTCCATGTT
60


1
-M--S--A--S--T--G--C--S--P--A--L--G--P--C--P--Q--Y--V--H--V-
20


61
TCGATGGCTAGAAGTGCTGGAGAAGGAATTTGATAAGGCTTTCGTGGATGTGGATCTGTC
120


21
-S--M--A--R--S--A--G--E--G--I--*-
30










SEQ ID NOs 91 and 94 (wild-type DMRT-1)


LENGTH: 882 bp and 293 aa


TYPE: cDNA (SEQ ID NO: 91) and Protein (SEQ ID NO: 94)


ORGANISM: Nile tilapia









1
ATGAGCCAGGACAAACAGAGTAAGCAGGTACCGGATTGCAGCGGACCGATGTCCCCGACC
60


1
-M--S--Q--D--K--Q--S--K--Q--V--P--D--C--S--G--P--M--S--P--T-
20


61
AAAGCCCAGAAATCCCCCAGGATGCCCAAGTGCTCTCGCTGTAGAAATCACGGATACGTG
120


21
-K--A--Q--K--S--P--R--M--P--K--C--S--R--C--R--N--H--G--Y--V-
40


121
TCTCCACTGAAGGGACACAAGCGCTTTTGCAACTGGAGGGACTGCCAGTGTCCCAAATGC
180


41
-S--P--L--K--G--H--K--R--F--C--N--W--R--D--C--Q--C--P--K--C-
60


181
AAATTGATCGCGGAGAGGCAGAGAGTCATGGCGGCCCAGGTTGCTCTGAGGAGGCAGCAG
240


61
-K--L--I--A--E--R--Q--R--V--M--A--A--Q--V--A--L--R--R--Q--Q-
80


241
GCCCAAGAAGAAGAGCTTGGGATTTGTAGTCCTGTGTCTCTGTCCGGTTCCGAGATGATG
300


81
-A--Q--E--E--E--L--G--I--C--S--P--V--S--L--S--G--S--E--M--M-
100


301
GTCAAGAATGAAGTTGGAGCAGACTGCCTGTTCTCTGTGGAGGGACGGTCCCCGACACCT
360


101
-V--K--N--E--V--G--A--D--C--L--F--S--V--E--G--R--S--P--T--P-
120


361
ACCAGCCACGCCACCTCTGCTGTCACAGGGACCCGCTCGGCATCGTCCCCCAGCCCATCT
420


121
-T--S--H--A--T--S--A--V--T--G--T--R--S--A--S--S--P--S--P--S-
140


421
GCTGCTGCCAGGGCTCATACCGAGGGACCGTCTGACCTCCTGCTGGAAACCCCCTATTAC
480


141
-A--A--A--R--A--H--T--E--G--P--S--D--L--L--L--E--T--P--Y--Y-
160


481
AATTTCTACCAGCCTTCGCGCTACCCCACCTACTATGGAAACCTTTACAACTACTCGCAG
540


161
-N--F--Y--Q--P--S--R--Y--P--T--Y--Y--G--N--L--Y--N--Y--S--Q-
180


541
TACCAGCAGATGCCTCATGGTGATGGCCGCCTGCCCAGCCACAGCGTGTCGTCTCAGTAC
600


181
-Y--Q--Q--M--P--H--G--D--G--R--L--P--S--H--S--V--S--S--Q--Y-
200


601
CGCATGCACTCCTACTACCCAGCAGCCACCTACCTGACTCAGGGCCTGGGCTCCACCAGC
660


201
-R--M--H--S--Y--Y--P--A--A--T--Y--L--T--Q--G--L--G--S--T--S-
220


661
TGTGTGCCACCCTTCTTTAGCCTGGATGACAACAATAACAGCTGCTCTGAGACCATGGCA
720


221
-C--V--P--P--F--F--S--L--D--D--N--N--N--S--C--S--E--T--M--A-
240


721
GCCTCCTTCTCACCCGGCAGCATCTCCGCTGGTCACGACTCCACCATGGTCTGCCGCTCC
780


241
-A--S--F--S--P--G--S--I--S--A--G--H--D--S--T--M--V--C--R--S-
260


781
ATCAGCTCCCTGGTTAACGGCGACGCCAAGGCTGAATGCGAGGCCAGCAGCCAGGCAGCC
840


261
-I--S--S--L--V--N--G--D--A--K--A--E--C--E--A--S--S--Q--A--A-
280


841
GGCTTCACCGTCGACGCCATCGAAGGCGGCGCCACCAAATAA
882


281
-G--F--T--V--D--A--I--E--G--G--A--T--K--*-
293










SEQ ID NOs 92 and 95 (DMRT-1 mutant allele- 7 nt deletion)


LENGTH: 882 bp and 40 aa


TYPE: cDNA (SEQ ID NO: 92) and Protein (SEQ ID NO: 95)


ORGANISM: Nile tilapia









1
ATGAGCCAGGACAAACAGAGTAAGCAGGTACCGGATTGCAGCGGACCCCGACCAAAGCCC
60


1
-M--S--Q--D--K--Q--S--K--Q--V--P--D--C--S--G--P--R--P--K--P-
20


61
AGAAATCCCCCAGGATGCCCAAGTGCTCTCGCTGTAGAAATCACGGATACGTGTCTCCAC
120


21
-R--N--P--P--G--C--P--S--A--L--A--V--E--I--T--D--T--C--L--H-
40


121
TGAAGGGACACAAGCGCTTTTGCAACTGGAGGGACTGCCAGTGTCCCAAATGCAAATTGA
180


41
-*-
40










SEQ ID NOs 93 and 96 (DMRT-1 mutant allele- 13 nt deletion)


LENGTH: 882 bp and 38 aa


TYPE: cDNA (SEQ ID NO: 93) and Protein (SEQ ID NO: 96)


ORGANISM: Nile tilapia









1
ATGAGCCAGGACAAACAGAGTAAGCAGGTACCGGATTGCAGCGGACCAAAGCCCAGAAAT
60


1
-M--S--Q--D--K--Q--S--K--Q--V--P--D--C--S--G--P--K--P--R--N-
20


61
CCCCCAGGATGCCCAAGTGCTCTCGCTGTAGAAATCACGGATACGTGTCTCCACTGAAGG
120


21
-P--P--G--C--P--S--A--L--A--V--E--I--T--D--T--C--L--H--*-
38










SEQ ID NOs 97 and 100 (wild-type GSDF)


LENGTH: 840 bp and 213 aa


TYPE: cDNA (SEQ ID NO: 97) and Protein (SEQ ID NO: 100)


ORGANISM: Nile tilapia









1
AACAGGGGAAAAGTCTACAGTGTTAACTATGTCAAGGCCACCTTGGGGTACAAGCAGATA
60



............................................................



61
AAAACCGTGGTTCTCAGACCCTGACAAACAATACCTAGGGCAGCATCCCAGTTTTGTCGC
120



............................................................



121
TACTATCTCCTCCTCCGACCAGACGTTCGGGACCAACCGCAGCTTTTGTCTGCAGCCAGT
180



............................................................



181
CTTACGTGTTCATCCACCATGGCCTTTCCATTCATTGTCATGACATTACTTTTGGGCTCT
240



..................-M--A--F--P--F--I--V--M--T--L--L--L--G--S-
14


241
TCCATGATGATGGCATTTGTCTTGGATCCATCCAGGAAAGAACCCGAAGCTGCCGTCTTA
300


15
-S--M--M--M--A--F--V--L--D--P--S--R--K--E--P--E--A--A--V--L-
34


301
GGTGACAGGTGCCAAGGTGAGTCATGGCAGTCCATCAGAAAGAACCTCCTTAGGGTTCTG
360


35
-G--D--R--C--Q--G--E--S--W--Q--S--I--R--K--N--L--L--R--V--L-
54


361
AACTTGCAGACTGAGCCGCAGCTACCTGCCGGTGCACTGGACAGTGTCAGAGAGCAGTGG
420


55
-N--L--Q--T--E--P--Q--L--P--A--G--A--L--D--S--V--R--E--Q--W-
74


421
AACCGAACCTTCAGCATCGTTTCTCACACAGCCAAGCATACTGCAACCCCAGCAGTCCCA
480


75
-N--R--T--F--S--I--V--S--H--T--A--K--H--T--A--T--P--A--V--P-
94


481
GGCTACTCTGCATCAGCTGATAATGGAAACAGTGCGAGCCTGAAGTGTTGTTCCATTGCC
540


95
-G--Y--S--A--S--A--D--N--G--N--S--A--S--L--K--C--C--S--I--A-
114


541
TCAGAGATCTTCATGAAAGATCTGGGCTGGGACAGCTGGGTGATCCACCCGTTGAGTCTT
600


115
-S--E--I--F--M--K--D--L--G--W--D--S--W--V--I--H--P--L--S--L-
134


601
ACCTATGTTCAGTGCGCAACCTGCAACTCTGCCATGACCACTGTTCAATGTCCATCATCC
660


135
-T--Y--V--Q--C--A--T--C--N--S--A--M--T--T--V--Q--C--P--S--S-
154


661
CAAGTAAATGTCCAGGATGCCAACACACAGGACCAGGTGCCATGCTGTCGGCCCACCTCC
720


155
-Q--V--N--V--Q--D--A--N--T--Q--D--Q--V--P--C--C--R--P--T--S-
174


721
CAAGAAGAGGTGCCCATAGTCTATATGGATGGATCCAGCGCCATTGTCATGTCCTCCATG
780


175
-Q--E--E--V--P--I--V--Y--M--D--G--S--S--A--I--V--M--S--S--M-
194


781
CAGCTGACCCGCAGTTGTGGCTGTGAGCTGGGCAACTCTGAGGATCGTGGCAAGGAGTAG
840


195
-Q--L--T--R--S--C--G--C--E--L--G--N--S--E--D--R--G--K--E--*-
213










SEQ ID NOs 98 and 101 (GSDF mutant allele- 5 nt deletion)


LENGTH: 840 bp and 56 aa


TYPE: cDNA (SEQ ID NO: 98) and Protein (SEQ ID NO: 101)


ORGANISM: Nile tilapia









1
AACAGGGGAAAAGTCTACAGTGTTAACTATGTCAAGGCCACCTTGGGGTACAAGCAGATA
60



............................................................



61
AAAACCGTGGTTCTCAGACCCTGACAAACAATACCTAGGGCAGCATCCCAGTTTTGTCGC
120



............................................................



121
TACTATCTCCTCCTCCGACCAGACGTTCGGGACCAACCGCAGCTTTTGTCTGCAGCCAGT
180



............................................................



181
CTTACGTGTTCATCCACCATGGCCTTTCCATTCATTGTCATGACATTACTTTTGGGCTCT
240



..................-M--A--F--P--F--I--V--M--T--L--L--L--G--S-
14


241
TCCATGATGATGGCATTTGTCTTGGATCCATCCAGGAAAGAACCCGAAGCTGCCGTCTTA
300


15
-S--M--M--M--A--F--V--L--D--P--S--R--K--E--P--E--A--A--V--L-
34


301
GGTGACAGGTGCCAAGGTGAGTCATGGCAGTCCATCAGAAAGAACCTCCGTTCTGAACTT
360


35
-G--D--R--C--Q--G--E--S--W--Q--S--I--R--K--N--L--L--R--S--E-
54


361
GCAGACTGAGCCGCAGCTACCTGCCGGTGCACTGGACAGTGTCAGAGAGCAGTGGAACCG
420


55
-L--A--*-
56










SEQ ID NOs 99 and 102 (GSDF mutant allele- 22 nt deletion)


LENGTH: 840 bp and 46 aa


TYPE: cDNA (SEQ ID NO: 99) and Protein (SEQ ID NO: 102)


ORGANISM: Nile tilapia









1
AACAGGGGAAAAGTCTACAGTGTTAACTATGTCAAGGCCACCTTGGGGTACAAGCAGATA
60



............................................................



61
AAAACCGTGGTTCTCAGACCCTGACAAACAATACCTAGGGCAGCATCCCAGTTTTGTCGC
120



............................................................



121
TACTATCTCCTCCTCCGACCAGACGTTCGGGACCAACCGCAGCTTTTGTCTGCAGCCAGT
180



............................................................



181
CTTACGTGTTCATCCACCATGGCCTTTCCATTCATTGTCATGACATTACTTTTGGGCTCT
240



..................-M--A--F--P--F--I--V--M--T--L--L--L--G--S-
14


241
TCCATGATGATGGCATTTGTCTTGGATCCATCCAGGAAAGAACCCGAAGCTGCCGTCTTA
300


15
-S--M--M--M--A--F--V--L--D--P--S--R--K--E--P--E--A--A--V--L-
34


301
GGTGACAGGTGCCAAGGTGAGTCATGGCAGTCCATCTGAACTTGCAGACTGAGCCGCAGC
360


35
-G--D--R--C--Q--G--E--S--W--Q--S--I--*-
46










SEQ ID NOs 103 and 105 (wild-type FSHR)


LENGTH: 5853 bp and 689 aa


TYPE: cDNA (SEQ ID NO: 103) and Protein (SEQ ID NO: 105)


ORGANISM: Nile tilapia









1
GCATTCACTACTGCATGACAGAAAACACCAAAACACCTCACATTTCTCTCTAGCTGACCT
60



............................................................



61
GGCGCCGAACCCTCGAGCGGACAGACAGGCAAAGGCGTTCATATCAAATGTGGAGTGTGG
120



...............................................-M--W--S--V--
4


121
ACCAGAGACAATATCAGAGTAAAATACACAAAAGAAGACAAACTAGAAAAGTGAAACCAC
180


5
D--Q--R--Q--Y--Q--S--K--I--H--K--R--R--Q--T--R--K--V--K--P--
24


181
TCTGTGGACCCAGGCAGACTGAAATGATGCTGGTGATGTTTGGAGTCACGGCGTTTCCCT
240


25
L--C--G--P--R--Q--T--E--M--M--L--V--M--F--G--V--T--A--F--P--
44


241
CCAACATCTCCAACGCCCAGTGCCTGGAAGTTAAGCAGACGCAGATCAGAGAGATTCAGC
300


45
S--N--I--S--N--A--Q--C--L--E--V--K--Q--T--Q--I--R--E--I--Q--
64


301
AGGGCGCCCTCTCCAGCCTCCAGCATCTAATGGAACTGACCATTTCTGAGAACGACCTGC
360


65
Q--G--A--L--S--S--L--Q--H--L--M--E--L--T--I--S--E--N--D--L--
84


361
TGGAGAGTATCGGTGCTTTTGCCTTTTCTGGCCTCCCTCACCTCACCAAAATCTTAATAT
420


85
L--E--S--I--G--A--F--A--F--S--G--L--P--H--L--T--K--I--L--I--
104


421
CTAAAAATGCTGCTCTGAGGAATATCGGGGCTTTTGTTTTCTCCAACCTCCCTGAACTCA
480


105
S--K--N--A--A--L--R--N--I--G--A--F--V--F--S--N--L--P--E--L--
124


481
GTGAGATAATCATAACAAAATCAAAACACCTGAGTTTCATCCACCCCGATGCATTCAGGA
540


125
S--E--I--I--I--T--K--S--K--H--L--S--F--I--H--P--D--A--F--R--
144


541
ACATGGCAAGACTACGGTTCTTGACTATCTCCAACACCGGGCTGAGGATTTTTCCAGACT
600


145
N--M--A--R--L--R--F--L--T--I--S--N--T--G--L--R--I--F--P--D--
164


601
TCTCCAAGATCCATTCCACCGCCTGCTTTCTGCTGGATCTTCAGGACAACAGCCACATAA
660


165
F--S--K--I--H--S--T--A--C--F--L--L--D--L--Q--D--N--S--H--I--
184


661
AGAGAGTCCCTGCCAATGCCTTCAGAGGCCTCTGCACTCAAACCTTCGCAGAGATACGGC
720


185
K--R--V--P--A--N--A--F--R--G--L--C--T--Q--T--F--A--E--I--R--
204


721
TCACCAGAAATGGCATCAAGGAGGTGGCAAGTGACGCCTTCAACGGAACAAAGATGCACA
780


205
L--T--R--N--G--I--K--E--V--A--S--D--A--F--N--G--T--K--M--H--
224


781
GACTGTTCCTAGGAGGCAACCGACAGCTTACTCACATCAGTCCCAATGCCTTTGTGGGTT
840


225
R--L--F--L--G--G--N--R--Q--L--T--H--I--S--P--N--A--F--V--G--
244


841
CCAGTGAGTTGGTGGTACTAGACGTCTCCGAAACAGCCCTCACCTCTTTGCCAGACTCGA
900


245
S--S--E--L--V--V--L--D--V--S--E--T--A--L--T--S--L--P--D--S--
264


901
TCCTTGATGGCCTCAAGAGGCTGATTGCCGAGTCAGCCTTCAACCTGAAAGAACTTCCTC
960


265
I--L--D--G--L--K--R--L--I--A--E--S--A--F--N--L--K--E--L--P--
284


961
CTATTCAGCTCTTTACCAAACTGCACCAGGCAAAGCTGACATACCCATCACACTGCTGCG
1020


285
P--I--Q--L--F--T--K--L--H--Q--A--K--L--T--Y--P--S--H--C--C--
304


1021
CTTTCCTGAACATGCACAGAAACAGATCGAGATGGCACTCACTGTGTGACAACCCCGAGG
1080


305
A--F--L--N--M--H--R--N--R--S--R--W--H--S--L--C--D--N--P--E--
324


1081
CTAAAAATAACCTGCACTTCTTCAGGGAATACTGCTCCAACTCCACCAACATCACTTGCA
1140


325
A--K--N--N--L--H--F--F--R--E--Y--C--S--N--S--T--N--I--T--C--
344


1141
GCCCGGCCCCTGATGACTTTAACCCCTGTGAAGATATCATGTCTGCTACCCCCTTACGCA
1200


345
S--P--A--P--D--D--F--N--P--C--E--D--I--M--S--A--T--P--L--R--
364


1201
TCCTCATCTGGATCATCTCTGTCCTCGCCCTGCTGGGCAACGCAGTAGTTCTCCTTGTAT
1260


365
I--L--I--W--I--I--S--V--L--A--L--L--G--N--A--V--V--L--L--V--
384


1261
TGTTAGGCAGCCGCTATAAGCTGACTGTTCCTCGATTCCTCATGTGCCACCTGGCCTTTG
1320


385
L--L--G--S--R--Y--K--L--T--V--P--R--F--L--M--C--H--L--A--F--
404


1321
CTGACCTCTGCATGGGCATCTACCTGGTAGTCATAGCAACCGTGGATATGCTCACACGTG
1380


405
A--D--L--C--M--G--I--Y--L--V--V--I--A--T--V--D--M--L--T--R--
424


1381
GACGGTACTACAACTATGCTATAGACTGGCAGATGGGCTTGGGCTGCAATGCTGCAGGCT
1440


425
G--R--Y--Y--N--Y--A--I--D--W--Q--M--G--L--G--C--N--A--A--G--
444


1441
TCTTCACGGTGTTCGCCAGTGAGCTGTCAGTGTTTACCTTGACAGCAATCACCGTGGAGC
1500


445
F--F--T--V--F--A--S--E--L--S--V--F--T--L--T--A--I--T--V--E--
464


1501
GCTGGCACACCATCACGCATGCTCTGCGACTTGACCGCAAACTTCGCCTGAGACACGCCT
1560


465
R--W--H--T--I--T--H--A--L--R--L--D--R--K--L--R--L--R--H--A--
484


1561
GCATCATCATGACAATAGGTTGGATCTTCTCCTTGCTGGCTGCACTGCTGCCCACAGTTG
1620


485
C--I--I--M--T--I--G--W--I--F--S--L--L--A--A--L--L--P--T--V--
504


1621
GGATCAGCAGCTATGGCAAAGTGAGCATCTGCCTCCCCATGGATGTTGAGTCCCTAGTCT
1680


505
G--I--S--S--Y--G--K--V--S--I--C--L--P--M--D--V--E--S--L--V--
524


1681
CCCAGTTCTACGTGGTCTGTCTTCTCCTCCTCAACATCTTGGCGTTCTTCTGTGTGTGCG
1740


525
S--Q--F--Y--V--V--C--L--L--L--L--N--I--L--A--F--F--C--V--C--
544


1741
GCTGCTACCTCAGCATCTACCTCACCTTTCGCAAGCCTTCATCAGCGGCAGCCCACGCCG
1800


545
G--C--Y--L--S--I--Y--L--T--F--R--K--P--S--S--A--A--A--H--A--
564


1801
ACACCCGTGTGGCTCAACGCATGGCCGTCCTCATCTTCACAGACTTCATCTGCATGGCTC
1860


565
D--T--R--V--A--Q--R--M--A--V--L--I--F--T--D--F--I--C--M--A--
584


1861
CGATCTCCTTCTTCGCCATCTCAGCTGCCCTCAAGCTCCCTCTCATCACCGTCTCAGACT
1920


585
P--I--S--F--F--A--I--S--A--A--L--K--L--P--L--I--T--V--S--D--
604


1921
CCAAGCTACTGTTGGTGCTATTCTACCCCATCAACTCGTGCTCCAACCCCTTCTTATATG
1980


605
S--K--L--L--L--V--L--F--Y--P--I--N--S--C--S--N--P--F--L--Y--
624


1981
CCTTTTTCACCCGTAACTTCAGAAGGGATTTCTTTCTCCTCGCAGCTCGCTTCGGGCTGT
2040


625
A--F--F--T--R--N--F--R--R--D--F--F--L--L--A--A--R--F--G--L--
644


2041
TTAAGACTCGAGCACAGATTTACCGGACAGAGGGTTCCTCGTGTCAGCAGCCAACATGGA
2100


645
F--K--T--R--A--Q--I--Y--R--T--E--G--S--S--C--Q--Q--P--T--W--
664


2101
CCTCTCCAAAGAACAGCCGTGTTATCTTGTATTCCTTGGTCAATACGTTAAGTCTAGATG
2160


665
T--S--P--K--N--S--R--V--I--L--Y--S--L--V--N--T--L--S--L--D--
684


2161
GAAAACAAGAGTGCTGACTTTTACGCACATTTACAGGTACGGACTGTTTGCCTTGATTGC
2220


685
G--K--Q--E--C--*-...........................................
689


2221
ATATTATATCCATACAAACAGGCTGCTAATTCCTTAAAATGATGCCTCAGATCATGTCTT
2280



............................................................



2281
TTGATCACTACCTGGGAAAATTTTTCTATCTACTTAGACTAGAAAGAAAAAAAACACAAA
2340



............................................................



2341
AGGCAACCAAGTGGAAGGCAAAAGAGCTGAGAACTCTTTTTTGACAATTTGACCCAGGAG
2400



............................................................



2401
TCTGCAAAACACAGTGATTGTTAAAATAAACAATGCTCTTGCTCTTGCTTCTGTTTGTGC
2460



............................................................



2461
TCCTAATCTGATGCTGTGTTTTTTGGGCTTGAGCCAGTGAAGGCTTCCACTGAAGACTGC
2520



............................................................



2521
TCTTCAGTCAATAAATAGCATCCAGAGACCCAGCTCTCAACAGAGGTGATGATCCTCTAT
2580



............................................................



2581
ATAAAGATGTTGGTCAGTTCAACAAAGAAGTTGATGCTTGTCTCTGTGCAAGTCTGAGAT
2640



............................................................



2641
CTCTGTTAGGGATGTACATGTACAAGTGGTCAAGATTGGACTTCCAGGCCATGAGACCAG
2700



............................................................



2701
AGGTCTACAAGTCACAAAACCTTTTAAAGCTTTTTATAAAATTATATATATCTATGTCGC
2760



............................................................



2761
CACAATCTGAGCAGTTCAGACACTGATGATTCCAGACTGATCACTGACCCAAGAGAAAGC
2820



............................................................



2821
ATGCATACATGTTCCCACCTGTCTTTTAAGGTTACACATAAATCAACATGTTTCAATCAC
2880



............................................................



2881
AATAGTATCAGTTGACTATTCAGCACAAAGTACACACAGCGTTCAGTGGCATGTCTAAAC
2940



............................................................



2941
CTGGTTACCTGAGCTATGCTCTGCAGCAATCCATGCAAACATGACCACAAAAGAACTAAT
3000



............................................................



3001
TATACACTCACTGGCCACTTTATTAGGTATACTTGTTTGGCTGCTTGGTAATGCAAATAC
3060



............................................................



3061
TTAATGAGCCAATCGCATGGTAGCAGCTCAGTGCATTTAGACATGTAATCTGGGGCATTT
3120



............................................................



3121
TTAAGATTTTTTAAATGTGGTGGCACGGCAGAGACCAAGAACACAGTAGAGGGGGACATT
3180



............................................................



3181
TAAATATTTGATTAGCAAAAAGATCAGAAAACTGACAGAAATTATTGGGCATGATTTTTG
3240



............................................................



3241
GTGTGCAACCTTATGTTTTATTACAAGTTTATTGTGTGAAAAGTGGTGCTGCAGAATGCT
3300



............................................................



3301
CTACATAGAATTTTGTGTTGGACAATTGTTTTGCAACGTGGAAAAAGAAGTATTTAGACT
3360



............................................................



3361
TAACCTAAGTAAAAGTTGTAATTGCACTTAAATAGCTTAATAGTTCACAAGTTATATAAT
3420



............................................................



3421
CAAAATGTATTCAAAGTGCCTAAAGTAAACACACTCTTTATATAGAATGGCCCTTTTTTT
3480



............................................................



3481
CTCGTCTCTTTAATGAGGCAGCTGTTGATGAGTTTGATTCCTGATATATTGTTCAATAGA
3540



............................................................



3541
TTCATTTATAAAAAATACAATTAATGTACAAAATAAGAAGAAGCTAAAATAATTTGGGGT
3600



............................................................



3601
GGGCTAATGCCACTCCAAGCTCCTCCCCCTCCAAACATGCCTCTATGTAGACATAATCAA
3660



............................................................



3661
GACAACTTGCTAAAGTTCAAAATGAGCATCAGAATGGGAAAAAGGTGACTGAAGTGACTT
3720



............................................................



3721
TGAAAGTTTAATTGTTGTTGGTGCCAGATGGTCCCACATGTCGCCACAATCTGCTGGCCG
3780



............................................................



3781
GACTGCAAACTGATAGGAAAGCAACAGTAACTTAAATAACTTCTATACAATCAAGGTGTA
3840



............................................................



3841
CAAGTTACATAAGAAAACTGGGCATCACTTAGTCTGATAACTCTTGATTTCTATTCTGAC
3900



............................................................



3901
ATTCTTATAGTAGGTTCAGAGTTTGATTTAACTGAGCAAACTGAGTCACAAAGCTCAGAT
3960



............................................................



3961
CATCTAAAACTGATTTCTTGAAAATGAAAAGGAGTTCACCACAGTCACCACATTTCAATC
4020



............................................................



4021
CAGCAGAGCACATTTGGGATTTAGTCAAATGGGAGATTGCCATCACAGATGTGCAGCTGA
4080



............................................................



4081
CAAACTTGCAGCACCTGTGTGATGCTATCACATCAATATGGACCACAATCTCTGAGGAAT
4140



............................................................



4141
GTTTCCTCCACTCAATTCCAGTTGAATATATTTTAAAAATTAAGACAGTGTGAAGACAAA
4200



............................................................



4201
GGGGTGTTTAACCTAGCAAAATGTACCCAATAAAGTAGCTAGTGAGTGTAGTTTGACTAA
4260



............................................................



4261
ATCTGGGTCAGACAGCTCTTTTAGATACCCATGGGTTTCTTTTAACTCAAGTGAAGTGCC
4320



............................................................



4321
AGATGGGTGGAGTTCTCAGCAACATAATTTAGAGGTAAAAGAAGAAAAGAATGGAGGGGG
4380



............................................................



4381
GAGAAAACTAATGACTTCATCTACTATGTAACAAACACCATCCGTCTGGCATCCCAAGAT
4440



............................................................



4441
AATCTAACAAACTAAAATGCCTCAGAATGGTTTTTAAGCAGGTTGGATGCTTGGGATTTC
4500



............................................................



4501
AGCATATGCACACTGCAAAAGAAACATATTCATTCAACATTCAGTGCTGTGATTGAATGA
4560



............................................................



4561
TATTCATTAAGAAGAACACTGCAGGGACCTGCTGATTAACAATCTCCTCATACACCCAGT
4620



............................................................



4621
CTGCTGAACCTCTCAATGTCTACAATTTGCCACCAACTCCGTCTATTTTGTAAGCCACAG
4680



............................................................



4681
ACCTGTAATTATCTTTGAAATGTAATTATGTTTACGTTTTCAAACAAACATCCAATTAAG
4740



............................................................



4741
TGTCACTTTTGAATCTGTTTTCCTGAAGAATATTTCAATGTGCTGTTTTTTACACTATTT
4800



............................................................



4801
TATAAAGTGTTTTATTATATCCTCTCAGCTTGAATAGATTTTGTATGATGAATGTGAGCG
4860



............................................................



4861
TTTGAAGAGGCGTGACAAACAGAAAAACTCTCTCACACACACACATATGCAATAATTGAG
4920



............................................................



4921
CTGTCTTTATCTAGCAATGCTGTCCTTCAGAGCATCCAAAGCTTTCAAGGACAAAGTGAC
4980



............................................................



4981
CCTCCCAACCTCTGCTCTGTGCAGCAAAGTGGGTGGGTGGGCGTAGGAGGAGAGGTACGC
5040



............................................................



5041
AGCTGCTCTTTCTGCTTATTACGGGGGGATGGATATGGCAGCTAGATAAGCTGTGTGTGT
5100



............................................................



5101
GCGCGCACACACACACACACACACACACACAATAGCAACCCACACTCTCAAGGCTGCAGC
5160



............................................................



5161
TGCAAGAAGGAATCCAAGACCATCTCATTGATATGGATACACTGCCTCCTACATGCCAAC
5220



............................................................



5221
ATTCAAAGTTAGGGTGCAATTATATACTTTCACCACCAGGTGATGCTACTGGGGCTAGAT
5280



............................................................



5281
TTCTGGTGAGTTTACCTCCATCTGTTTGCACAAAAGTCCAAACAAATTCACCAGTCTCAG
5340



............................................................



5341
TAGATCCTACAAATTTTGCTCGATGTTGTCTTATGAGAAAAATAAATAAATAAATATTTT
5400



............................................................



5401
TTTCCTAAATTTGCTTTTTTTTAAAATAACTTTTTATTTCTACATAATTTTCATAAAAGA
5460



............................................................



5461
TTATATCAATTCCTGCATGAGGATTAATGCTCATCAGACAGTTACCTGTCCCCTACATAC
5520



............................................................



5521
ACTGTATTTCTTCTTCATTTTTATATCATATCATATAGTTTTCCAAGTAAAAGATAAATC
5580



............................................................



5581
ACTCTAATGCATTTGCACTCAAATTTATGTGCACAAAAAAAAGTGAGTGTTGCAATACAG
5640



............................................................



5641
AAAGACATGCCGTTATGCTCTCTGACATCTTCTCTAGACAGCACTGGAGATGGTATAACA
5700



............................................................



5701
AAACACCCTCAGTATAAAGCCTTCAAGTTCATGACTAATCGTTGGCAGCTAAACAATGCC
5760



............................................................



5761
CTCTGGTGGTCGTCGTGCATAATAAATATACAAGTTAAAGTGTTAAAGTTGTATTCCACT
5820



............................................................



5821
CAAAATCTGTAATTTGGTTTGGGGTCAGTGTCC
5853



.................................











SEQ ID NOs 104 and 106 (FSHR mutant allele- 5 nt deletion)


LENGTH: 5853 bp and 264 aa


TYPE: cDNA (SEQ ID NO: 104) and Protein (SEQ ID NO: 106)


ORGANISM: Nile tilapia









1
GCATTCACTACTGCATGACAGAAAACACCAAAACACCTCACATTTCTCTCTAGCTGACCT
60



............................................................



61
GGCGCCGAACCCTCGAGCGGACAGACAGGCAAAGGCGTTCATATCAAATGTGGAGTGTGG
120



...............................................-M--W--S--V--
4


121
ACCAGAGACAATATCAGAGTAAAATACACAAAAGAAGACAAACTAGAAAAGTGAAACCAC
180


5
D--Q--R--Q--Y--Q--S--K--I--H--K--R--R--Q--T--R--K--V--K--P--
24


181
TCTGTGGACCCAGGCAGACTGAAATGATGCTGGTGATGTTTGGAGTCACGGCGTTTCCCT
240


25
L--C--G--P--R--Q--T--E--M--M--L--V--M--F--G--V--T--A--F--P--
44


241
CCAACATCTCCAACGCCCAGTGCCTGGAAGTTAAGCAGACGCAGATCAGAGAGATTCAGC
300


45
S--N--I--S--N--A--Q--C--L--E--V--K--Q--T--Q--I--R--E--I--Q--
64


301
AGGGCGCCCTCTCCAGCCTCCAGCATCTAATGGAACTGACCATTTCTGAGAACGACCTGC
360


65
Q--G--A--L--S--S--L--Q--H--L--M--E--L--T--I--S--E--N--D--L--
84


361
TGGAGAGTATCGGTGCTTTTGCCTTTTCTGGCCTCCCTCACCTCACCAAAATCTTAATAT
420


85
L--E--S--I--G--A--F--A--F--S--G--L--P--H--L--T--K--I--L--I--
104


421
CTAAAAATGCTGCTCTGAGGAATATCGGGGCTTTTGTTTTCTCCAACCTCCCTGAACTCA
480


105
S--K--N--A--A--L--R--N--I--G--A--F--V--F--S--N--L--P--E--L--
124


481
GTGAGATAATCATAACAAAATCAAAACACCTGAGTTTCATCCACCCCGATGCATTCAGGA
540


125
S--E--I--I--I--T--K--S--K--H--L--S--F--I--H--P--D--A--F--R--
144


541
ACATGGCAAGACTACGGTTCTTGACTATCTCCAACACCGGGCTGAGGATTTTTCCAGACT
600


145
N--M--A--R--L--R--F--L--T--I--S--N--T--G--L--R--I--F--P--D--
164


601
TCTCCAAGATCCATTCCACCGCCTGCTTTCTGCTGGATCTTCAGGACAACAGCCACATAA
660


165
F--S--K--I--H--S--T--A--C--F--L--L--D--L--Q--D--N--S--H--I--
184


661
AGAGAGTCCCTGCCAATGCCTTCAGAGGCCTCTGCACTCAAACCTTCGCAGAGATACGGC
720


185
K--R--V--P--A--N--A--F--R--G--L--C--T--Q--T--F--A--E--I--R--
204


721
TCACCAGAAATGGCATCAAGGAGGTGGCAAGTGACGCCTTCAACGGAACAAAGATGCACA
780


205
L--T--R--N--G--I--K--E--V--A--S--D--A--F--N--G--T--K--M--H--
224


781
GACTGTTCCTAGGAGGCAACCGACAGCTTACTCACATCAGTCCCAATGCCTTTGTGGGTT
840


225
R--L--F--L--G--G--N--R--Q--L--T--H--I--S--P--N--A--F--V--G--
244


841
CCAGTGAGTTGGTGGTACTAGACGTCTCCGAAACAGCCCTCTTTGCCAGACTCGATCCTT
900


245
S--S--E--L--V--V--L--D--V--S--E--T--A--L--F--A--R--L--D--P--
264


901
GATGGCCTCAAGAGGCTGATTGCCGAGTCAGCCTTCAACCTGAAAGAACTTCCTCCTATT
960


265
*-
264










SEQ ID NOs 107 and 110 (wild-type VtgAa)


LENGTH: 4974 bp and 1657 aa


TYPE: cDNA (SEQ ID NO: 107) and Protein (SEQ ID NO: 110)


ORGANISM: Nile tilapia









1
ATGAGAGCGCTCGTGCTCGCCCTGATTCTGGCCTTTGTGGCTGGTGATCTTCAACATCAA
60


1
-M--R--A--L--V--L--A--L--I--L--A--F--V--A--G--D--L--Q--H--Q-
20


61
GATCCTGTTTTTGAAGCTGATAAAACCTATGTGTACAAGTATGAGGCGCTGCTCCTGGCG
120


21
-D--P--V--F--E--A--D--K--T--Y--V--Y--K--Y--E--A--L--L--L--A-
40


121
GGCCTGCTCGAGAAAGGTTCAGCGAGAGCTGGACTAAATATCAGCAGCAAAGTTAGCATC
180


41
-G--L--L--E--K--G--S--A--R--A--G--L--N--I--S--S--K--V--S--I-
60


181
AATGCTATAGACCAGAACACATACTTCATTAAGCTTGAGGAACCTGAGCTCCAGGAGTAT
240


61
-N--A--I--D--Q--N--T--Y--F--I--K--L--E--E--P--E--L--Q--E--Y-
80


241
AGTGGAATTTGGCCTGAGGATCCTTTTATCCCAGCAACTGAGCTGACTTCAGCCCTCCAA
300


81
-S--G--I--W--P--E--D--P--F--I--P--A--T--E--L--T--S--A--L--Q-
100


301
GCTGAGCTCACGACTCCCATTAAGTTTGAATATGTCAATGGTGCTGTTGGAAAAGTCTTC
360


101
-A--E--L--T--T--P--I--K--F--E--Y--V--N--G--A--V--G--K--V--F-
120


361
GCCCCTGAAACCGTCTCAACAACAGTGCTTAACATCTACAGAGGTATCCTGAATGTCTTT
420


121
-A--P--E--T--V--S--T--T--V--L--N--I--Y--R--G--I--L--N--V--F-
140


421
CAGCTCAACGTCAAAAAGACACTAAATGTCTACGAGTTGCAGGAGGCTGGAACTCAGGGT
480


141
-Q--L--N--V--K--K--T--L--N--V--Y--E--L--Q--E--A--G--T--Q--G-
160


481
GTGTGCAAGACACTTTACTCCATCACTGAGGACACAGAGGCTGAACGTGTCTATCTGAGA
540


161
-V--C--K--T--L--Y--S--I--T--E--D--T--E--A--E--R--V--Y--L--R-
180


541
AAGACCAGGGACATGAGCCACTGTCAAGAAAGAATAACTAAAGACATGGGGTTAGCATAC
600


181
-K--T--R--D--M--S--H--C--Q--E--R--I--T--K--D--M--G--L--A--Y-
200


601
ACAGAGAAATGTGGAAAGTGCCAGGAGGACACTAAAAACCTGAAAGGAGTTTCATCATAC
660


201
-T--E--K--C--G--K--C--Q--E--D--T--K--N--L--K--G--V--S--S--Y-
220


661
AGTTACATCATGAAACCACTCGATAATGGCATCCAGATCAAGGAGGCATCGGTCCATGAG
720


221
-S--Y--I--M--K--P--L--D--N--G--I--Q--I--K--E--A--S--V--H--E-
240


721
CTGATCCAGTTCTCACCTTTCAGTGAGCAGCATGGAGCCGCCCATATGGAGACCAAGCAA
780


241
-L--I--Q--F--S--P--F--S--E--Q--H--G--A--A--H--M--E--T--K--Q-
260


781
TCCTTGATGCTCCTTGACGTTCGAAGACCCCCTTATGCACCCACTACACCACCACCCCAG
840


261
-S--L--M--L--L--D--V--R--R--P--P--Y--A--P--T--T--P--P--P--Q-
280


841
GCTGAGTATTCACACCGTGGAAATCTCACATATCAGTTCTCCACTGAGCTTCTTCAGTTA
900


281
-A--E--Y--S--H--R--G--N--L--T--Y--Q--F--S--T--E--L--L--Q--L-
300


901
CCCATTCTGCTCCTCAATATCAACGACATAGAGTCTCAGCTCGAGGACACTCTGGTCAAA
960


301
-P--I--L--L--L--N--I--N--D--I--E--S--Q--L--E--D--T--L--V--K-
320


961
CAGGCTGTAGAAAGAGTTCATGAAGATGCACCTCTGGAATTTTTGAAGTTTGTTCAACTC
1020


321
-Q--A--V--E--R--V--H--E--D--A--P--L--E--F--L--K--F--V--Q--L-
340


1021
CTCCGTGCAGCCTCCAATGAAACTCTGGAGAACCTCTGGAGCAAACACTCAGGGATTTCT
1080


341
-L--R--A--A--S--N--E--T--L--E--N--L--W--S--K--H--S--G--I--S-
360


1081
GCCCACAGAAAATGGATCATGGACGCCATCCCTGCTGTGGGAAATCCTGATGCTCTGAGA
1140


361
-A--H--R--K--W--I--M--D--A--I--P--A--V--G--N--P--D--A--L--R-
380


1141
TTTATCAAAGAGAAATACCTAGCAGAAACCATAACTGTGTTTGAAGCCGTTCAGGCTTTG
1200


381
-F--I--K--E--K--Y--L--A--E--T--I--T--V--F--E--A--V--Q--A--L-
400


1201
ATTACTTCATTTCACATGGTGACAGCAACCACTGAGGCCATTGAGGTCATCGAGAGCCTA
1260


401
-I--T--S--F--H--M--V--T--A--T--T--E--A--I--E--V--I--E--S--L-
420


1261
ACAAAGGAAAGCAAAATAGTGAGAAACCCAGTTCTGCGTCAGATTGTATTCCTTGGCTAC
1320


421
-T--K--E--S--K--I--V--R--N--P--V--L--R--Q--I--V--F--L--G--Y-
440


1321
GGTACCATGATTTACAAACACTGCTATGAGAGGACTTCCTGTCCTGCTGAGCTCATACAG
1380


441
-G--T--M--I--Y--K--H--C--Y--E--R--T--S--C--P--A--E--L--I--Q-
460


1381
CCCATTCAAGACCTTCTTGCGCAGGCACTGAAAGATGGAAACACAGAGGACATCATCCTG
1440


461
-P--I--Q--D--L--L--A--Q--A--L--K--D--G--N--T--E--D--I--I--L-
480


1441
TTTGTGAAGGCTTTGGGAAATGCTGCGCATCCTTCTAGCCTCAAGAAAATCACAAAGATG
1500


481
-F--V--K--A--L--G--N--A--A--H--P--S--S--L--K--K--I--T--K--M-
500


1501
CTGCCCCTACATAGTAAATTAGGTTCATCACTGCCAGTGAGAGTTCATGCTGAAGCCATG
1560


501
-L--P--L--H--S--K--L--G--S--S--L--P--V--R--V--H--A--E--A--M-
520


1561
ATGGCCTTGAAGAACATCGCCAAAAAGGAGCCTAAAACGGTCCAGTATTTAGCCTTTCAG
1620


521
-M--A--L--K--N--I--A--K--K--E--P--K--T--V--Q--Y--L--A--F--Q-
540


1621
CTCTACGGGGACAAGACTCTTCATTCAGAGATCCGCATGCTTGCGTGCATGGTGCTCTTT
1680


541
-L--Y--G--D--K--T--L--H--S--E--I--R--M--L--A--C--M--V--L--F-
560


1681
GAGACAAAACCTTCAATGAGTTTGGTGTCAGCTGTTGTTCATATTGTGAAGACAGATACA
1740


561
-E--T--K--P--S--M--S--L--V--S--A--V--V--H--I--V--K--T--D--T-
580


1741
AATTTGCAAGTAGTAAGCTTCACCTATTCCCACATGAAGTCCCTGACTAGGAGCACCAGC
1800


581
-N--L--Q--V--V--S--F--T--Y--S--H--M--K--S--L--T--R--S--T--S-
600


1801
GTTATTTATGCCTCAGTTGCTGCAGCATGCAAAGCTGCCCTGAGAATGTTGGGCCCAAAC
1860


601
-V--I--Y--A--S--V--A--A--A--C--K--A--A--L--R--M--L--G--P--N-
620


1861
CTGGACAAACTGAGCTCACGTTTCAGCAAAGCCATCCATGTCGACGTCTATAGCAGTCCC
1920


621
-L--D--K--L--S--S--R--F--S--K--A--I--H--V--D--V--Y--S--S--P-
640


1921
TTTATGCTTGGTGCTGCTGCGACTGCTTACTACATCAATGATGCTGCCACCATCATGCCC
1980


641
-F--M--L--G--A--A--A--T--A--Y--Y--I--N--D--A--A--T--I--M--P-
660


1981
AAATCTATTACGACTAGGATCAAGGCTTTCTTTGCTGGAGCTGCTGCTGACATTCTGGAG
2040


661
-K--S--I--T--T--R--I--K--A--F--F--A--G--A--A--A--D--I--L--E-
680


2041
GTTGGAGTAAGAACTGAGGGACTACAGGAGGCTTTTCTGAAAAACCCAGCAGTTTTTGAT
2100


681
-V--G--V--R--T--E--G--L--Q--E--A--F--L--K--N--P--A--V--F--D-
700


2101
AGTGCTGACAGGGTCACCAGGATGAAACATGTCATTAAGGCTCTCTCTCACTGGAAGTCT
2160


701
-S--A--D--R--V--T--R--M--K--H--V--I--K--A--L--S--H--W--K--S-
720


2161
GCACCCAACAGCAAATCCCTGACTTCCATCTATGTCAAGTTCTTTGGACAAGAAGTTGCC
2220


721
-A--P--N--S--K--S--L--T--S--I--Y--V--K--F--F--G--Q--E--V--A-
740


2221
TTTGTTGACTTTGACAAAATCTGGTTTGACAACATCTTTAATCTCATCTTTGCCAATAAC
2280


741
-F--V--D--F--D--K--I--W--F--D--N--I--F--N--L--I--F--A--N--N-
760


2281
AATGCTGACACGTTTGGTAGAGATGTTTTCAAGGCTCTGCAGTCTGGTCCTACTTTGCGC
2340


761
-N--A--D--T--F--G--R--D--V--F--K--A--L--Q--S--G--P--T--L--R-
780


2341
TTTGTTAAGCCTCTGCTGGCTAATGAGGTGAGACGTATCATGCCTACTATAGCTGGTTTT
2400


781
-F--V--K--P--L--L--A--N--E--V--R--R--I--M--P--T--I--A--G--F-
800


2401
CCCATGGAGCTCGGTCTGTACACTGCTGCTGTGGCTGCTGTTCCTGGTCAAATCAAAGTC
2460


801
-P--M--E--L--G--L--Y--T--A--A--V--A--A--V--P--G--Q--I--K--V-
820


2461
ACCACGACTCCAGCTCTGCCAGAAGACTTTTATCTCAGATACCTTCTCAAGGCAGATATA
2520


821
-T--T--T--P--A--L--P--E--D--F--Y--L--R--Y--L--L--K--A--D--I-
840


2521
CACATTAGTACCAAGGTCACACCAAGTGTCGCTGTGAACACATTTGCTGTGTTTGGGATA
2580


841
-H--I--S--T--K--V--T--P--S--V--A--V--N--T--F--A--V--F--G--I-
860


2581
AACACTGCCATACTCCAGGCTGTCATGGTATCCAGAGCCAAACTCTACTCCATCACACCA
2640


861
-N--T--A--I--L--Q--A--V--M--V--S--R--A--K--L--Y--S--I--T--P-
880


2641
GCCAAAACTGAAGTCACATTTAACATCAATGAGGGCTACTTGAATTTCACAGCTCTTCCT
2700


881
-A--K--T--E--V--T--F--N--I--N--E--G--Y--L--N--F--T--A--L--P-
900


2701
GTTTCAGTGCCTGAAAACATTACAGCTGTGGAGGTTGAGACTTTTGCTGTGGTAAGAAAT
2760


901
-V--S--V--P--E--N--I--T--A--V--E--V--E--T--F--A--V--V--R--N-
920


2761
CCTGCTTCGGGAGAAAGAATCACTCCTGTGATCCCTGCCAACCCAAGACAGATTCTTATA
2820


921
-P--A--S--G--E--R--I--T--P--V--I--P--A--N--P--R--Q--I--L--I-
940


2821
TCCAGTAATACTTCTTCTGATGCTGTTAGTGAGTCAAGATCCGAAGAGTTCATTTCTCAG
2880


941
-S--S--N--T--S--S--D--A--V--S--E--S--R--S--E--E--F--I--S--Q-
960


2881
CGTCAGAAAGCTGGCATGCACATCAAATCTAAAATGGTGAAGAGTAAGAAGAAGTACTGC
2940


961
-R--Q--K--A--G--M--H--I--K--S--K--M--V--K--S--K--K--K--Y--C-
980


2941
GCTCAGACTGTTAACGCTGGACTCAAGGCCTGTCTCAAGATTGCCACTGCTTACACGGGG
3000


981
-A--Q--T--V--N--A--G--L--K--A--C--L--K--I--A--T--A--Y--T--G-
1000


3001
GATGCTGCAGTGTATAAACTGGCTGGAAAGCACTCCGCTGCTTTTTCTGTCACACCAATT
3060


1001
-D--A--A--V--Y--K--L--A--G--K--H--S--A--A--F--S--V--T--P--I-
1020


3061
GAAGGTGAAGCTGCTGAGAGACTGGAATTAGAGGTTCAACTTGGAAGTAAGGCTGCACAG
3120


1021
-E--G--E--A--A--E--R--L--E--L--E--V--Q--L--G--S--K--A--A--Q-
1040


3121
AAGATCATCAAACACATCACGCTTAGAGAAGAAGAAATCCCAGAGGAAACACCAGTCTTA
3180


1041
-K--I--I--K--H--I--T--L--R--E--E--E--I--P--E--E--T--P--V--L-
1060


3181
ATGAAGCTCCACAAAATCCTGGCCTCTACCCAGAAGAATAGCACCATGTCCTCCTCATCC
3240


1061
-M--K--L--H--K--I--L--A--S--T--Q--K--N--S--T--M--S--S--S--S-
1080


3241
TCCAGTTCCAGGAGCTCTCGCTTTCATGTCAGATCCTCTTCTTCCAATTCCAGCTCTTCA
3300


1081
-S--S--S--R--S--S--R--F--H--V--R--S--S--S--S--N--S--S--S--S-
1100


3301
TCCCATTCTAGCAGGAAGACCATTGATGCAACTGCTCAACAAGTCTTCAGCTTCTCCACC
3360


1101
-S--H--S--S--R--K--T--I--D--A--T--A--Q--Q--V--F--S--F--S--T-
1120


3361
TCTGTCAGTACTTCCAAGTCCAGCTTTGCATCGAGCTTTGCATCACTCTTCAGTCTTAGT
3420


1121
-S--V--S--T--S--K--S--S--F--A--S--S--F--A--S--L--F--S--L--S-
1140


3421
TCAAGCTCTTCTCACTACAGTGCGCACCACAGAAAGCATCCTGCGAGTCGCCACAAACCC
3480


1141
-S--S--S--S--H--Y--S--A--H--H--R--K--H--P--A--S--R--H--K--P-
1160


3481
AAGGAGAAACACAAGCATCCCACCTCTAAAGCCACATCGTCACAGGTTTTCAAAAGCAGA
3540


1161
-K--E--K--H--K--H--P--T--S--K--A--T--S--S--Q--V--F--K--S--R-
1180


3541
AGCAGTGGCTCAAGCTTGGACGCTATCCAACATAAGAAGCGGTTCCTTGACAGTCAAGCT
3600


1181
-S--S--G--S--S--L--D--A--I--Q--H--K--K--R--F--L--D--S--Q--A-
1200


3601
GCTATCTTTGGCATGATCTTCCGTGCTGTTAAAGCTGACACGAAGAAGCAGGGATACCAG
3660


1201
-A--I--F--G--M--I--F--R--A--V--K--A--D--T--K--K--Q--G--Y--Q-
1220


3661
TTCACTGCTTACATGGACAAAACCACCAGCAGACTTCAAATCATTCTAGATGACATTGTT
3720


1221
-F--T--A--Y--M--D--K--T--T--S--R--L--Q--I--I--L--D--D--I--V-
1240


3721
CCTGATAACAACTGGAGGCTCTGTGCTGATGGAGCCGTGTTGAGCATGCACAAAGTCAAA
3780


1241
-P--D--N--N--W--R--L--C--A--D--G--A--V--L--S--M--H--K--V--K-
1260


3781
GCTAAAATGAACTGGGGAGCAGAATGCAACCAATATGACACCACGATTACAACAGAAACT
3840


1261
-A--K--M--N--W--G--A--E--C--N--Q--Y--D--T--T--I--T--T--E--T-
1280


3841
GGTCTTGTCGGTCGAAACCCTGCAGCTCGGCTGAAGGTGGACTGGAATCGGCTACCGTCT
3900


1281
-G--L--V--G--R--N--P--A--A--R--L--K--V--D--W--N--R--L--P--S-
1300


3901
GATCTCAAGCACCATGCAAAGACGATGTATAAGTACATTTCTGCTCACATGCCTGCCGGC
3960


1301
-D--L--K--H--H--A--K--T--M--Y--K--Y--I--S--A--H--M--P--A--G-
1320


3961
TTGATTCAGGAAAAGGACAGAAACAGCGACAAGCAGCTCTCGTTGACTGTGGCTGTAGTA
4020


1321
-L--I--Q--E--K--D--R--N--S--D--K--Q--L--S--L--T--V--A--V--V-
1340


4021
TCTGACAAGATCATCGACCTGATTTGGAAAACACCGAGAAGCACTGTTCATAAGCGGGCT
4080


1341
-S--D--K--I--I--D--L--I--W--K--T--P--R--S--T--V--H--K--R--A-
1360


4081
TTGCATCTTCCCATCACTCTGCCACGTAACGAGATCAAAGATCTTACTTCCTTCAGTGAC
4140


1361
-L--H--L--P--I--T--L--P--R--N--E--I--K--D--L--T--S--F--S--D-
1380


4141
GTCTCTGGAAAAGTCAAGCACTTGTTAGCTGCGGCTGGCGCAGCTGAATGTAGCTTCACC
4200


1381
-V--S--G--K--V--K--H--L--L--A--A--A--G--A--A--E--C--S--F--T-
1400


4201
GACAATACGCTGACCACATTCAACAACAAGAAATTAAAGAACGAGATGCCCTCAAACTGC
4260


1401
-D--N--T--L--T--T--F--N--N--K--K--L--K--N--E--M--P--S--N--C-
1420


4261
TATCAGGTTCTGGCACAGGATGGCACAGACGAGCTGAAATTCATCGTTCTACTGAGGAAG
4320


1421
-Y--Q--V--L--A--Q--D--G--T--D--E--L--K--F--I--V--L--L--R--K-
1440


4321
GATCGCACTGAACAGAAGCAGATCAGTGTGAAAATTGCTCATATAGACATTGACCTCTAT
4380


1441
-D--R--T--E--Q--K--Q--I--S--V--K--I--A--H--I--D--I--D--L--Y-
1460


4381
CAGAGGAGAACCAGTGTGACTGTGAATGTGAATGGGCTGGAAATACCCATGAGCAACCTG
4440


1461
-Q--R--R--T--S--V--T--V--N--V--N--G--L--E--I--P--M--S--N--L-
1480


4441
CCATATCGTTATCCCCAAGCTGACATCCAGATCAAACAAAATGGCGAAGGCATCTCTGTG
4500


1481
-P--Y--R--Y--P--Q--A--D--I--Q--I--K--Q--N--G--E--G--I--S--V-
1500


4501
TATGCAGCTAGCTATGGTCTTCATGAAGTCTACTTTGACAAGAAGTCATGGAAGATTAAA
4560


1501
-Y--A--A--S--Y--G--L--H--E--V--Y--F--D--K--K--S--W--K--I--K-
1520


4561
GTTGTGGACTGGATGAAGGGGAAGACTTGTGGGCTCTGTGGAAAGGCTGACGGGGAGACC
4620


1521
-V--V--D--W--M--K--G--K--T--C--G--L--C--G--K--A--D--G--E--T-
1540


4621
ATGCAGGAGTATCGCACACCCACTGGATGGATAGCCACGACAGCAGTGAGCTTTGCTCAT
4680


1541
-M--Q--E--Y--R--T--P--T--G--W--I--A--T--T--A--V--S--F--A--H-
1560


4681
TCTTGGATTCTGCCAGCTGAGAGCTGCAGAGACGCCACTGAGTGCCGTATGAGGCATGAA
4740


1561
-S--W--I--L--P--A--E--S--C--R--D--A--T--E--C--R--M--R--H--E-
1580


4741
TCTGTGCAGCTGGAGAAACAGGAAAACGTGCAAGCTCAGAACTCCAAGTGCTACTCTGTC
4800


1581
-S--V--Q--L--E--K--Q--E--N--V--Q--A--Q--N--S--K--C--Y--S--V-
1600


4801
GACCCTGTGCTGCGCTGCATGGCTGGGTGCTTCCCTGTGCGCACCACCAACGTCACTGTT
4860


1601
-D--P--V--L--R--C--M--A--G--C--F--P--V--R--T--T--N--V--T--V-
1620


4861
GGCTTCCACTGCCTTCCAGCTGGTTCCAGCCCCTCCAGCATGTATACGAGCGTGGACCTG
4920


1621
-G--F--H--C--L--P--A--G--S--S--P--S--S--M--Y--T--S--V--D--L-
1640


4921
ATGGAAACTACGGAGAGTCACCTCGCCTGCACCTGCACTGCTCAGTGTGCTTAA
4974


1641
-M--E--T--T--E--S--H--L--A--C--T--C--T--A--Q--C--A--*-
1657










SEQ ID NOs 108 and 111 (VtaAa mutant allele- 5 nt deletion)


LENGTH: 4974 bp and 279 aa


TYPE: cDNA (SEQ ID NO: 108) and Protein (SEQ ID NO: 111)


ORGANISM: Nile tilapia









1
ATGAGAGCGCTCGTGCTCGCCCTGATTCTGGCCTTTGTGGCTGGTGATCTTCAACATCAA
60


1
-M--R--A--L--V--L--A--L--I--L--A--F--V--A--G--D--L--Q--H--Q-
20


61
GATCCTGTTTTTGAAGCTGATAAAACCTATGTGTACAAGTATGAGGCGCTGCTCCTGGCG
120


21
-D--P--V--F--E--A--D--K--T--Y--V--Y--K--Y--E--A--L--L--L--A-
40


121
GGCCTGCTCGAGAAAGGTTCAGCGAGAGCTGGACTAAATATCAGCAGCAAAGTTAGCATC
180


41
-G--L--L--E--K--G--S--A--R--A--G--L--N--I--S--S--K--V--S--I-
60


181
AATGCTATAGACCAGAACACATACTTCATTAAGCTTGAGGAACCTGAGCTCCAGGAGTAT
240


61
-N--A--I--D--Q--N--T--Y--F--I--K--L--E--E--P--E--L--Q--E--Y-
80


241
AGTGGAATTTGGCCTGAGGATCCTTTTATCCCAGCAACTGAGCTGACTTCAGCCCTCCAA
300


81
-S--G--I--W--P--E--D--P--F--I--P--A--T--E--L--T--S--A--L--Q-
100


301
GCTGAGCTCACGACTCCCATTAAGTTTGAATATGTCAATGGTGCTGTTGGAAAAGTCTTC
360


101
-A--E--L--T--T--P--I--K--F--E--Y--V--N--G--A--V--G--K--V--F-
120


361
GCCCCTGAAACCGTCTCAACAACAGTGCTTAACATCTACAGAGGTATCCTGAATGTCTTT
420


121
-A--P--E--T--V--S--T--T--V--L--N--I--Y--R--G--I--L--N--V--F-
140


421
CAGCTCAACGTCAAAAAGACACTAAATGTCTACGAGTTGCAGGAGGCTGGAACTCAGGGT
480


141
-Q--L--N--V--K--K--T--L--N--V--Y--E--L--Q--E--A--G--T--Q--G-
160


481
GTGTGCAAGACACTTTACTCCATCACTGAGGACACAGAGGCTGAACGTGTCTATCTGAGA
540


161
-V--C--K--T--L--Y--S--I--T--E--D--T--E--A--E--R--V--Y--L--R-
180


541
AAGACCAGGGACATGAGCCACTGTCAAGAAAGAATAACTAAAGACATGGGGTTAGCATAC
600


181
-K--T--R--D--M--S--H--C--Q--E--R--I--T--K--D--M--G--L--A--Y-
200


601
ACAGAGAAATGTGGAAAGTGCCAGGAGGACACTAAAAACCTGAAAGGAGTTTCATCATAC
660


201
-T--E--K--C--G--K--C--Q--E--D--T--K--N--L--K--G--V--S--S--Y-
220


661
AGTTACATCATGAAACCACTCGATAATGGCATCCAGATCAAGGAGGCATCGGTCCATGAG
720


221
-S--Y--I--M--K--P--L--D--N--G--I--Q--I--K--E--A--S--V--H--E-
240


721
CTGATCCAGTTCTCACCTTTCAGTGAGCAGCATGGAGCCGCCCATATGGAGACCAAGCAA
780


241
-L--I--Q--F--S--P--F--S--E--Q--H--G--A--A--H--M--E--T--K--Q-
260


781
TCCTTGATGCTCCTTGACGTTCGAAGACCCCCTTATGCACCCACTACACCACCAGGCTGA
840


261
-S--L--M--L--L--D--V--R--R--P--P--Y--A--P--T--T--P--P--G--*-
279










SEQ ID NOs 109 and 112 (VtoAa mutant allele- 25 nt deletion)


LENGTH: 4974 bp and 301 aa


TYPE: cDNA (SEQ ID NO: 109) and Protein (SEQ ID NO: 112)


ORGANISM: Nile tilapia









1
ATGAGAGCGCTCGTGCTCGCCCTGATTCTGGCCTTTGTGGCTGGTGATCTTCAACATCAA
60


1
-M--R--A--L--V--L--A--L--I--L--A--F--V--A--G--D--L--Q--H--Q-
20


61
GATCCTGTTTTTGAAGCTGATAAAACCTATGTGTACAAGTATGAGGCGCTGCTCCTGGCG
120


21
-D--P--V--F--E--A--D--K--T--Y--V--Y--K--Y--E--A--L--L--L--A-
40


121
GGCCTGCTCGAGAAAGGTTCAGCGAGAGCTGGACTAAATATCAGCAGCAAAGTTAGCATC
180


41
-G--L--L--E--K--G--S--A--R--A--G--L--N--I--S--S--K--V--S--I-
60


181
AATGCTATAGACCAGAACACATACTTCATTAAGCTTGAGGAACCTGAGCTCCAGGAGTAT
240


61
-N--A--I--D--Q--N--T--Y--F--I--K--L--E--E--P--E--L--Q--E--Y-
80


241
AGTGGAATTTGGCCTGAGGATCCTTTTATCCCAGCAACTGAGCTGACTTCAGCCCTCCAA
300


81
-S--G--I--W--P--E--D--P--F--I--P--A--T--E--L--T--S--A--L--Q-
100


301
GCTGAGCTCACGACTCCCATTAAGTTTGAATATGTCAATGGTGCTGTTGGAAAAGTCTTC
360


101
-A--E--L--T--T--P--I--K--F--E--Y--V--N--G--A--V--G--K--V--F-
120


361
GCCCCTGAAACCGTCTCAACAACAGTGCTTAACATCTACAGAGGTATCCTGAATGTCTTT
420


121
-A--P--E--T--V--S--T--T--V--L--N--I--Y--R--G--I--L--N--V--F-
140


421
CAGCTCAACGTCAAAAAGACACTAAATGTCTACGAGTTGCAGGAGGCTGGAACTCAGGGT
480


141
-Q--L--N--V--K--K--T--L--N--V--Y--E--L--Q--E--A--G--T--Q--G-
160


481
GTGTGCAAGACACTTTACTCCATCACTGAGGACACAGAGGCTGAACGTGTCTATCTGAGA
540


161
-V--C--K--T--L--Y--S--I--T--E--D--T--E--A--E--R--V--Y--L--R-
180


541
AAGACCAGGGACATGAGCCACTGTCAAGAAAGAATAACTAAAGACATGGGGTTAGCATAC
600


181
-K--T--R--D--M--S--H--C--Q--E--R--I--T--K--D--M--G--L--A--Y-
200


601
ACAGAGAAATGTGGAAAGTGCCAGGAGGACACTAAAAACCTGAAAGGAGTTTCATCATAC
660


201
-T--E--K--C--G--K--C--Q--E--D--T--K--N--L--K--G--V--S--S--Y-
220


661
AGTTACATCATGAAACCACTCGATAATGGCATCCAGATCAAGGAGGCATCGGTCCATGAG
720


221
-S--Y--I--M--K--P--L--D--N--G--I--Q--I--K--E--A--S--V--H--E-
240


721
CTGATCCAGTTCTCACCTTTCAGTGAGCAGCATGGAGCCGCCCATATGGAGACCAAGCAA
780


241
-L--I--Q--F--S--P--F--S--E--Q--H--G--A--A--H--M--E--T--K--Q-
260


781
TCCTTGATGCTCCTTGACGTTCGAAGACACCCCAGGCTGAGTATTCACACCGTGGAAATC
840


261
-S--L--M--L--L--D--V--R--R--H--P--R--L--S--I--H--T--V--E--I-
280


841
TCACATATCAGTTCTCCACTGAGCTTCTTCAGTTACCCATTCTGCTCCTCAATATCAACG
900


281
-S--H--I--S--S--P--L--S--F--F--S--Y--P--F--C--S--S--I--S--T-
300


901
ACATAGAGTCTCAGCTCGAGGACACTCTGGTCAAACAGGCTGTAGAAAGAGTTCATGAAG
960


301
-T--*-
301










SEQ ID NOs 113 and 115 (wild-type VtgAb)


LENGTH: 5339 bp and 1747 aa


TYPE: cDNA (SEQ ID NO: 113) and Protein (SEQ ID NO: 115)


ORGANISM: Nile tilapia









1
CGCCATTTAGTTAATGATACATTTGATGGGCAACGTCAGCAAAAAATCTGCTTAAAAAGG
60



............................................................



61
ACGCCTCTGCCTGCAGATCCTCACATCCACCAGCCATGAGGGTGCTTGTACTAGCTCTTG
120



...................................-M--R--V--L--V--L--A--L--
8


121
CTGTGGCTCTCGCAGTGGGGGACCAGTCCAACTTGGCCCCAGGATTCGCCTCTGTTAAGA
180


9
A--V--A--L--A--V--G--D--Q--S--N--L--A--P--G--F--A--S--V--K--
28


181
CCTACATGTACAAATATGAAGCGGTTCTTATGGGCGGCCTGCCTGAAGAGGGCCTGGCTC
240


29
T--Y--M--Y--K--Y--E--A--V--L--M--G--G--L--P--E--E--G--L--A--
48


241
GAGCTGGGGTTAAAATCCGGGGCAAAGTTTTGATCAGTGCAACAAGTGCCAACGACTACA
300


49
R--A--G--V--K--I--R--G--K--V--L--I--S--A--T--S--A--N--D--Y--
68


301
TTCTGAAGCTTGTAGACCCTCAGTTGCTGGAGTACAGTGGCATCTGGCCCAAAGATCCTT
360


69
I--L--K--L--V--D--P--Q--L--L--E--Y--S--G--I--W--P--K--D--P--
88


361
TCCATCCAGCCACCAAGCTCACCACAGCCCTGGCTACTCAGCTCTCGACACCGGTCAAGT
420


89
F--H--P--A--T--K--L--T--T--A--L--A--T--Q--L--S--T--P--V--K--
108


421
TTGAGTATACAAACGGCGTTGTTGGGAGACTGGCTGCACCTCCTGGGGTCTCCACAACAG
480


109
F--E--Y--T--N--G--V--V--G--R--L--A--A--P--P--G--V--S--T--T--
128


481
TGCTGAATATCTACAGGGGCATCATCAACCTCCTGCAGCTGAATGTAAAGAAGACACAGA
540


129
V--L--N--I--Y--R--G--I--I--N--L--L--Q--L--N--V--K--K--T--Q--
148


541
ATGTCTACGAGATGCAAGAGTCTGGAGCTCATGGTGTGTGCAAGACCAACTATGTGATCA
600


149
N--V--Y--E--M--Q--E--S--G--A--H--G--V--C--K--T--N--Y--V--I--
168


601
GGGAGGACGCGAGGGCCGAACGCATTCATCTGACCAAGACCAAGGACCTGAACCACTGCC
660


169
R--E--D--A--R--A--E--R--I--H--L--T--K--T--K--D--L--N--H--C--
188


661
AGGAGAAAATCATGAAGGCCATCGGCTTGGAACACGTAGAGAAATGCCATGATTGTGAAG
720


189
Q--E--K--I--M--K--A--I--G--L--E--H--V--E--K--C--H--D--C--E--
208


721
CTAGAGGAAAGAGCCTGAAGGGAACTGCTTCCTATAACTACATCATGAAGCCAGCACCCA
780


209
A--R--G--K--S--L--K--G--T--A--S--Y--N--Y--I--M--K--P--A--P--
228


781
GTGGTTCTCTGATTATGGAGGCTGTCGCTAGAGAGGTCATCGAGTTTTCACCTTTCAACA
840


229
S--G--S--L--I--M--E--A--V--A--R--E--V--I--E--F--S--P--F--N--
248


841
TTTTGAATGGCGCTGCTCAGATGGAGTCTAAGCAAATTCTGACCTTCCTGGATATTGAGA
900


249
I--L--N--G--A--A--Q--M--E--S--K--Q--I--L--T--F--L--D--I--E--
268


901
ACACCCCTGTGGATCATGCCAGATACACCTATGTTCACCGCGGATCCCTGCAGTATGAGC
960


269
N--T--P--V--D--H--A--R--Y--T--Y--V--H--R--G--S--L--Q--Y--E--
288


961
ATGGCAGCGAGATTCTCCAGACACCCATCCATCTTCTGAGGGTCACCCATGCCGAGGCTC
1020


289
H--G--S--E--I--L--Q--T--P--I--H--L--L--R--V--T--H--A--E--A--
308


1021
AGATTGTCAGCACTCTGAACCACCTGGTAGCCTCCAACGTGGCCAAGGTCCATGAAGATG
1080


309
Q--I--V--S--T--L--N--H--L--V--A--S--N--V--A--K--V--H--E--D--
328


1081
CCCCTCTGAAGTTTGTTGAGCTCATCCAGGTGATGCGTGTGGCCAGATTTGAGACTATTG
1140


329
A--P--L--K--F--V--E--L--I--Q--V--M--R--V--A--R--F--E--T--I--
348


1141
AGTCCCTCTGGGCTCAGTTTAAATCTAGACCTGATCACAGGTACTGGTTACTGAATGCTG
1200


349
E--S--L--W--A--Q--F--K--S--R--P--D--H--R--Y--W--L--L--N--A--
368


1201
TCCCCCACATTCGCACTCACGCTGCGCTTAAGTTCCTCATTGAGAAGCTCCTTGCTAATG
1260


369
V--P--H--I--R--T--H--A--A--L--K--F--L--I--E--K--L--L--A--N--
388


1261
AGTTAAGTGAGACTGAAGCTGCTATGGCTCTCTTGGAATGTCTGCACTCTGTGACAGCTG
1320


389
E--L--S--E--T--E--A--A--M--A--L--L--E--C--L--H--S--V--T--A--
408


1321
ACCAGAAAACCATTGAACTTGTCAGAAGCCTGGCTGAGAACCACAGAGTGAAACGTAACG
1380


409
D--Q--K--T--I--E--L--V--R--S--L--A--E--N--H--R--V--K--R--N--
428


1381
CTGTGCTCAACGAGATTGTGATGCTGGGCTGGGGCACTGTAATTTCCAGGTTCTGTAAAG
1440


429
A--V--L--N--E--I--V--M--L--G--W--G--T--V--I--S--R--F--C--K--
448


1441
CGCAGCCATCTTGCTCATCTGATCTTGTGACACCTGTACATAGACAAGTTGCAGAGGCTG
1500


449
A--Q--P--S--C--S--S--D--L--V--T--P--V--H--R--Q--V--A--E--A--
468


1501
TTGAAACTGGTGACATCGATCAGCTCACTGTCACTCTCAAATGCCTGGATAACGCTGGAC
1560


469
V--E--T--G--D--I--D--Q--L--T--V--T--L--K--C--L--D--N--A--G--
488


1561
ATCCTGCTAGCCTTAAGACAATCATGAAGTTCCTGCCTGGCTTTGGCAGTGCTGCTGCCC
1620


489
H--P--A--S--L--K--T--I--M--K--F--L--P--G--F--G--S--A--A--A--
508


1621
GAGTCCCACTCAAAGTTCAGGTTGACGCTGTTCTAGCCCTGAGGAGAATTGCAAAGAGGG
1680


509
R--V--P--L--K--V--Q--V--D--A--V--L--A--L--R--R--I--A--K--R--
528


1681
AACCCAAGATGGTCCAGGAAATAGCTGCTCAGTTGCTCATGGAAAAGCATCTCCATGCAG
1740


529
E--P--K--M--V--Q--E--I--A--A--Q--L--L--M--E--K--H--L--H--A--
548


1741
AACTGCGTATGGTTGCTGCCATGGTGCTCTTTGAGACTAAACTCCCCGTGGGTCTAGCAG
1800


549
E--L--R--M--V--A--A--M--V--L--F--E--T--K--L--P--V--G--L--A--
568


1801
CTAGCATTTCCACAGCCTTGATCAAAGAAAAGAACCTGCAGGTCGTTAGCTTTGTCTACT
1860


569
A--S--I--S--T--A--L--I--K--E--K--N--L--Q--V--V--S--F--V--Y--
588


1861
CTTACATGAAGGCCATGGCCAAGACCACATCCCCTGACCACGTTTCTGTTGCTGCAGCAT
1920


589
S--Y--M--K--A--M--A--K--T--T--S--P--D--H--V--S--V--A--A--A--
608


1921
GTAATGTTGCCTTGAGGTTCCTCAACCCCAAATTAGGCAGACTGAACTTCCGCTACAGCC
1980


609
C--N--V--A--L--R--F--L--N--P--K--L--G--R--L--N--F--R--Y--S--
628


1981
GAGCCTTCCATGTGGATACCTATAACAATGCCTGGATGATGGGTGCTGCCGCCAGTGCCG
2040


629
R--A--F--H--V--D--T--Y--N--N--A--W--M--M--G--A--A--A--S--A--
648


2041
TCTTAATTAACGACGCTGCAACCGTGTTACCAAGAATGATTATGGCCAAAGCCCGTACTT
2100


649
V--L--I--N--D--A--A--T--V--L--P--R--M--I--M--A--K--A--R--T--
668


2101
ACATGGCCGGAGCTTATGTTGATGCTTTTGAGGTTGGAGTGAGGACTGAGGGAATCCAGG
2160


669
Y--M--A--G--A--Y--V--D--A--F--E--V--G--V--R--T--E--G--I--Q--
688


2161
AGGCTCTTTTGAAAAGACGACATGAAAATTCTGAGAATGCAGACAGGATCACCAAGATTA
2220


689
E--A--L--L--K--R--R--H--E--N--S--E--N--A--D--R--I--T--K--I--
708


2221
AACAAGCCATGAGAGCTCTTTCTGAGTGGAGGGCTAATCCTTCGAGCCAGGCCCTGGCCT
2280


709
K--Q--A--M--R--A--L--S--E--W--R--A--N--P--S--S--Q--A--L--A--
728


2281
CTATGTATGTGAAGGTCTTCGGACAAGAAATTGCATTTGCCAACATTGACAAATCCAAGG
2340


729
S--M--Y--V--K--V--F--G--Q--E--I--A--F--A--N--I--D--K--S--K--
748


2341
TTGACCAGCTTATCCAGTTTGCCAGTGGACCTTTGAGAAACGTATTCAGAGATGCTGTGA
2400


749
V--D--Q--L--I--Q--F--A--S--G--P--L--R--N--V--F--R--D--A--V--
768


2401
ATTCTGTGCTGTCTGGTTATGCAACACATTTTGCTAAACCAATGCTGCTCGGTGAGCTCC
2460


769
N--S--V--L--S--G--Y--A--T--H--F--A--K--P--M--L--L--G--E--L--
788


2461
GTCTCATCCTTCCCACCACTGTTGGGTTGCCCATGGAGATCAGCCTCATTACATCCGCTG
2520


789
R--L--I--L--P--T--T--V--G--L--P--M--E--I--S--L--I--T--S--A--
808


2521
TGACTGCTGCATCTGTTGACGTCCAAGCCACTGTGTCACCACCTCTGCCTGTCAACTACC
2580


809
V--T--A--A--S--V--D--V--Q--A--T--V--S--P--P--L--P--V--N--Y--
828


2581
GAGTTTCCCAGCTTCTGGAGTCCGATATCCAACTGAGGGCTACAGTTGCTCCAAGTCTTG
2640


829
R--V--S--Q--L--L--E--S--D--I--Q--L--R--A--T--V--A--P--S--L--
848


2641
CCATGCAGACCTATGCATTCATGGGTGTGAACACCGCCTTAATCCAGGCTGCAGTGATGA
2700


849
A--M--Q--T--Y--A--F--M--G--V--N--T--A--L--I--Q--A--A--V--M--
868


2701
CAAAAGCCAAAGTTTACACAGCTGTTCCTGCACAGATAAAAGCAAGGATTGACATTGTTA
2760


869
T--K--A--K--V--Y--T--A--V--P--A--Q--I--K--A--R--I--D--I--V--
888


2761
AGGGCAACTTGAAGGTTGAGTTCCTGTCACTCCAGGGCATTAACACAATTGCATCTGCAC
2820


889
K--G--N--L--K--V--E--F--L--S--L--Q--G--I--N--T--I--A--S--A--
908


2821
ATGCGGAGACGGTTGCCATTGCAAGAAATGTGGAAGACCTCCCAGCCGCAAGAAGCACAC
2880


909
H--A--E--T--V--A--I--A--R--N--V--E--D--L--P--A--A--R--S--T--
928


2881
CACTGATCTCATCTGAAACTGCATCACAACTTTCAAAGGCCTCTCTCAACTCAAAGATCT
2940


929
P--L--I--S--S--E--T--A--S--Q--L--S--K--A--S--L--N--S--K--I--
948


2941
CCAGGATGGCATCCTCTGTGACTGGTGGCATGTCTGCGTCATCTGAAATCATTCCTGCTG
3000


949
S--R--M--A--S--S--V--T--G--G--M--S--A--S--S--E--I--I--P--A--
968


3001
ACCTGCCAAGTAAGATTGGGAGGAAAATGAAACTCCCTAAAACCTACAGGAAGAAAATCC
3060


969
D--L--P--S--K--I--G--R--K--M--K--L--P--K--T--Y--R--K--K--I--
988


3061
GTGCTTCAAGCAGAATGCTAGGATTCAAGGCCTACGCTGAGATTAAATCTCACAATGCCG
3120


989
R--A--S--S--R--M--L--G--F--K--A--Y--A--E--I--K--S--H--N--A--
1008


3121
CCTACATCAGAGACTGCCCTCTCTACGCTCTGATCGGAAAGCATGCTGCTTCTGTTAGGA
3180


1009
A--Y--I--R--D--C--P--L--Y--A--L--I--G--K--H--A--A--S--V--R--
1028


3181
TTGCTCCAGCTTCTGGACCAGTCATTGAGAAGATTGAAGTTGAGATTCAGGTCGGAGATA
3240


1029
I--A--P--A--S--G--P--V--I--E--K--I--E--V--E--I--Q--V--G--D--
1048


3241
AAGCAGCAGAAAATATGATTAAAGCGATTGACATGAGCGAAGAGGAGGAAGCTCTTGAGG
3300


1049
K--A--A--E--N--M--I--K--A--I--D--M--S--E--E--E--E--A--L--E--
1068


3301
ATAAGAATGTCCTCTTGAAAATCAAGAAAATACTGGCACCTGGTCTCAAGAACACCACAT
3360


1069
D--K--N--V--L--L--K--I--K--K--I--L--A--P--G--L--K--N--T--T--
1088


3361
CATCTTCCTCCAGCTCCTCCAGCTCCTCTTCATCCAGCTCTAGCTCCAACAAGTCTTCTT
3420


1089
S--S--S--S--S--S--S--S--S--S--S--S--S--S--S--S--N--K--S--S--
1108


3421
CATCCAGTTCCCGCTCCAGCAGCTCCCAGTCATCCAGCTCTCGTTCCCATAGGTCTCGCT
3480


1109
S--S--S--S--R--S--S--S--S--Q--S--S--S--S--R--S--H--R--S--R--
1128


3481
CCAGAAAGTCCCAGTCTAGCAGCTCTCAGTCAAGCCGCTCTCCCTCAAGCTCTTCCTCCT
3540


1129
S--R--K--S--Q--S--S--S--S--Q--S--S--R--S--P--S--S--S--S--S--
1148


3541
CTTCCTCCTCTTCATCATCCAGATCTTCTTCCAGGTCATCTTCCAGATCATCTTCCAGAT
3600


1149
S--S--S--S--S--S--S--R--S--S--S--R--S--S--S--R--S--S--S--R--
1168


3601
CTTCTTCTAGGTCCTCCTCTCGCTCCAGAACTAAGATGGCTGACATTGTTGCTCCTATTA
3660


1169
S--S--S--R--S--S--S--R--S--R--T--K--M--A--D--I--V--A--P--I--
1188


3661
TCACGACGTCCACCAGAGTGAGCAGTTCCTCCAGTCGATCAGCCTCTAACAGCTCCTCCA
3720


1189
I--T--T--S--T--R--V--S--S--S--S--S--R--S--A--S--N--S--S--S--
1208


3721
GCAGTGCTTCATACTTGCTCAGCTCATCTAAGTCATCAAGCTCTAGATCCTCTCGGCGCA
3780


1209
S--S--A--S--Y--L--L--S--S--S--K--S--S--S--S--R--S--S--R--R--
1228


3781
GTGCTCAGTCTAAGCAACAACTGCTTGCCTTGAAGTTCAGAAAGAACCACGTCCACAGGC
3840


1229
S--A--Q--S--K--Q--Q--L--L--A--L--K--F--R--K--N--H--V--H--R--
1248


3841
ATGCCATCTCCACACAGCGCGGCAGCAGTCACAGCAGTGCCCGCAGCTTCGATTCCATCT
3900


1249
H--A--I--S--T--Q--R--G--S--S--H--S--S--A--R--S--F--D--S--I--
1268


3901
ACAATAAGGCCAAGTACCTCGCTAACACACTCACTCCTGCCATGTCCATTGCAATCCGTG
3960


1269
Y--N--K--A--K--Y--L--A--N--T--L--T--P--A--M--S--I--A--I--R--
1288


3961
CCGTGAGAGTCGACCACAAGGTCCAGGGATACCAGCTAGCAGCTTACCTGGACAAACAGA
4020


1289
A--V--R--V--D--H--K--V--Q--G--Y--Q--L--A--A--Y--L--D--K--Q--
1308


4021
CCAATAGACTGCAGCTGATTTTTGCCAGAGTCGCTGAGAAGGACAACTGGAGAATCTGTG
4080


1309
T--N--R--L--Q--L--I--F--A--R--V--A--E--K--D--N--W--R--I--C--
1328


4081
CCGACATTGTGCAGCTGAGTTCGCACAAGATGATGGCCAAGATTGCCTGGGGTGCTGAAT
4140


1329
A--D--I--V--Q--L--S--S--H--K--M--M--A--K--I--A--W--G--A--E--
1348


4141
GCAAGCAATACTCCACCATGATTGTAGCTGAAACTGGTCTTTTGGGTCATGAGCCCGCAG
4200


1349
C--K--Q--Y--S--T--M--I--V--A--E--T--G--L--L--G--H--E--P--A--
1368


4201
CCCGCTTGAAGCTGACCTGGGACAAACTGCCAGGAAGCATAAAGCACTACGCAAAGAGGG
4260


1369
A--R--L--K--L--T--W--D--K--L--P--G--S--I--K--H--Y--A--K--R--
1388


4261
CGTTGAAATCCATTGTCCCTATTGCTCAAGAATATGGAGTAAACTACGCAAAGGCCAAGA
4320


1389
A--L--K--S--I--V--P--I--A--Q--E--Y--G--V--N--Y--A--K--A--K--
1408


4321
ATCCTCGTAATCAAATCAAACTGACTGTAGCTGTTGCTACTGAGACAAGCATGAATATTG
4380


1409
N--P--R--N--Q--I--K--L--T--V--A--V--A--T--E--T--S--M--N--I--
1428


4381
TGCTGAACACACCAAAGGCAATCATTTACAAGCGTGGGGTGTGTCTACCTGTTGCTTTAC
4440


1429
V--L--N--T--P--K--A--I--I--Y--K--R--G--V--C--L--P--V--A--L--
1448


4441
CAATTGGAAACACTGCTGCCGAGCTGCAAGCGACCCGGGACAACTGGGCTGACAAGATGT
4500


1449
P--I--G--N--T--A--A--E--L--Q--A--T--R--D--N--W--A--D--K--M--
1468


4501
CCTATTTGGTTACCAAAGCTAACGCAGTTGAATGCTCCCTCATCAACAACACACTGACCA
4560


1469
S--Y--L--V--T--K--A--N--A--V--E--C--S--L--I--N--N--T--L--T--
1488


4561
CATTCAACAACAGGAAAGCTAGAGATGAGCTGCCACACTCGTGCTACCAGGTCTTGGCTC
4620


1489
T--F--N--N--R--K--A--R--D--E--L--P--H--S--C--Y--Q--V--L--A--
1508


4621
AGGATTGCACACCAGAACTCAAATTCATGGTTCTGCTGAAGAAAGACCAAATACAGGATC
4680


1509
Q--D--C--T--P--E--L--K--F--M--V--L--L--K--K--D--Q--I--Q--D--
1528


4681
AGAAGCAGATCAATGTTAAGATTTCAGACATCGATGTGGACATGTATCGGAAGAACAACG
4740


1529
Q--K--Q--I--N--V--K--I--S--D--I--D--V--D--M--Y--R--K--N--N--
1548


4741
CCATTGCGGTGATGGTTAACGGAGTTGAAATCCCTAACAGCAACCTGCCATACCTGCATC
4800


1549
A--I--A--V--M--V--N--G--V--E--I--P--N--S--N--L--P--Y--L--H--
1568


4801
CATCAGGTAACATACATATAAGACAGTCAAATGAAGGCATTACTCTCAATGCACCCAGCC
4860


1569
P--S--G--N--I--H--I--R--Q--S--N--E--G--I--T--L--N--A--P--S--
1588


4861
ATGGTCTTCAGGAGGTCTTCCTTGGCTTCAACGAGCTGAGGGTTAAAGTTGCAGACTGGA
4920


1589
H--G--L--Q--E--V--F--L--G--F--N--E--L--R--V--K--V--A--D--W--
1608


4921
TGAAAGGAAAGACTTGTGGTGCCTGTGGAACGGCAAGCGGAAATGTCGGAGACGAGTACC
4980


1609
M--K--G--K--T--C--G--A--C--G--T--A--S--G--N--V--G--D--E--Y--
1628


4981
GCACACCCAGTGAACAGGTGACCAAGGATGCCATCAGCTACGCCCACTCCTGGGTTCTGT
5040


1629
R--T--P--S--E--Q--V--T--K--D--A--I--S--Y--A--H--S--W--V--L--
1648


5041
CTTCAAACACCTGCCGTGATCCCTCCGAGTGTTCCATCAAGCAGGAATCTGTGAAGCTGG
5100


1649
S--S--N--T--C--R--D--P--S--E--C--S--I--K--Q--E--S--V--K--L--
1668


5101
AGAAGCGGGTGATCTTTGAAGGTGTGGAGTCCAAATGCTACTCTGTTGAGCCCGTGCTGC
5160


1669
E--K--R--V--I--F--E--G--V--E--S--K--C--Y--S--V--E--P--V--L--
1688


5161
AGTGCCTGCCCGGCTGTATCCCAGTGAGAACCACTACCGTCAACGTTGGCTTTCACTGCC
5220


1689
Q--C--L--P--G--C--I--P--V--R--T--T--T--V--N--V--G--F--H--C--
1708


5221
TGCCCAGTGACACAACTGTGGACCGTTCTGGTCTGAGCAGCTTCTTTGAGAAGAGCATCG
5280


1709
L--P--S--D--T--T--V--D--R--S--G--L--S--S--F--F--E--K--S--I--
1728


5281
ACCTGAGGGATACTGCAGAAGCCCACCTGGCCTGTCGCTGCACTCCTCAGTGTGCTTAA
5339


1729
D--L--R--D--T--A--E--A--H--L--A--C--R--C--T--P--Q--C--A--*-
1747










SEQ ID NOs 114 and 116 (VtgAb mutant allele- 8 nt deletion)


LENGTH: 5339 bp and 202 aa


TYPE: cDNA (SEQ ID NO: 114) and Protein (SEQ ID NO: 116)


ORGANISM: Nile tilapia









1
CGCCATTTAGTTAATGATACATTTGATGGGCAACGTCAGCAAAAAATCTGCTTAAAAAGG
60



............................................................



61
ACGCCTCTGCCTGCAGATCCTCACATCCACCAGCCATGAGGGTGCTTGTACTAGCTCTTG
120



...................................-M--R--V--L--V--L--A--L--
8


121
CTGTGGCTCTCGCAGTGGGGGACCAGTCCAACTTGGCCCCAGGATTCGCCTCTGTTAAGA
180


9
A--V--A--L--A--V--G--D--Q--S--N--L--A--P--G--F--A--S--V--K--
28


181
CCTACATGTACAAATATGAAGCGGTTCTTATGGGCGGCCTGCCTGAAGAGGGCCTGGCTC
240


29
T--Y--M--Y--K--Y--E--A--V--L--M--G--G--L--P--E--E--G--L--A--
48


241
GAGCTGGGGTTAAAATCCGGGGCAAAGTTTTGATCAGTGCAACAAGTGCCAACGACTACA
300


49
R--A--G--V--K--I--R--G--K--V--L--I--S--A--T--S--A--N--D--Y--
68


301
TTCTGAAGCTTGTAGACCCTCAGTTGCTGGAGTACAGTGGCATCTGGCCCAAAGATCCTT
360


69
I--L--K--L--V--D--P--Q--L--L--E--Y--S--G--I--W--P--K--D--P--
88


361
TCCATCCAGCCACCAAGCTCACCACAGCCCTGGCTACTCAGCTCTCGACACCGGTCAAGT
420


89
F--H--P--A--T--K--L--T--T--A--L--A--T--Q--L--S--T--P--V--K--
108


421
TTGAGTATACAAACGGCGTTGTTGGGAGACTGGCTGCACCTCCTGGGGTCTCCACAACAG
480


109
F--E--Y--T--N--G--V--V--G--R--L--A--A--P--P--G--V--S--T--T--
128


481
TGCTGAATATCTACAGGGGCATCATCAACCTCCTGCAGCTGAATGTAAAGAAGACACAGA
540


129
V--L--N--I--Y--R--G--I--I--N--L--L--Q--L--N--V--K--K--T--Q--
148


541
ATGTCTACGAGATGCAAGAGTCTGGAGCTCATGGTGTGTGCAAGACCAACTATGTGATCA
600


149
N--V--Y--E--M--Q--E--S--G--A--H--G--V--C--K--T--N--Y--V--I--
168


601
GGGAGGGCCGAACGCATTCATCTGACCAAGACCAAGGACCTGAACCACTGCCAGGAGAAA
660


169
R--E--G--R--T--H--S--S--D--Q--D--Q--G--P--E--P--L--P--G--E--
188


661
ATCATGAAGGCCATCGGCTTGGAACACGTAGAGAAATGCCATGATTGTGAAGCTAGAGGA
720


189
N--H--E--G--H--R--L--G--T--R--R--E--M--P--*-
202










SEQ ID NO 117


LENGTH: 18


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: 5′ tailed primer extension sequence (FAM)


SEQUENCE: 1



TGTAAAACGACGGCCAGT






SEQ ID NO 118


LENGTH: 18


TYPE: DNA


ORGANISM: Artificial Sequence


OTHER INFORMATION: Description of Artificial Sequence: 5′ tailed primer extension sequence (NED)


SEQUENCE: 3



TAGGAGTGCAGCAAGCAT










In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the embodiments. However, it will be apparent to one skilled in the art that these specific details are not required.


The above-described embodiments are intended to be examples only. Alterations, modifications and variations can be effected to the particular embodiments by those of skill in the art. The scope of the claims should not be limited by the particular embodiments set forth herein, but should be construed in a manner consistent with the specification as a whole.

Claims
  • 1. (canceled)
  • 2. A method of generating a sterile sex-determined fish, crustacean, or mollusk, comprising the step of: (a) breeding (i) a fertile homozygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile homozygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation to produce the sterile sex-determined fish, crustacean, or mollusk,wherein the first mutation disrupts one or more genes that specify sexual differentiation,wherein the second mutation disrupts one or more genes that specify gamete function, andwherein the fertility of the fertile homozygous female fish, crustacean, or mollusk and the fertile homozygous mutated male fish, crustacean, or mollusk has been rescued, or(b) breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation; andselecting a progenitor that is homozygous by genotypic selection, the homozygous mutated progenitor being the sterile sex-determined fish, crustacean, or mollusk,wherein the first mutation disrupts one or more genes that specify sexual differentiation, andwherein the second mutation disrupts one or more genes that specify gamete function.
  • 3. The method of claim 2, wherein the fertility rescue comprises germline stem cell transplantation, and optionally sex steroid alteration, for example, an alteration of estrogen, or an alteration of an aromatase inhibitor.
  • 4-5. (canceled)
  • 6. The method of claim 3, wherein the germine stem cell transplantation comprises the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; andtransplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk, orobtaining a spermatogonial stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a oogonial stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; andtransplanting the spermatogonial stem cell into a testis of a germ cell-less fertile male fish, crustacean, or mollusk or the oogonial stem cell into an ovary of a germ cell-less fertile female fish, crustacean, or mollusk.
  • 7. The method of claim 6, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk are homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 8. The method of claim 6, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 9-11. (canceled)
  • 12. The method of claim 6, wherein the germ cell-less fertile male fish, crustacean, or mollusk and the germ cell-less fertile female fish, crustacean, or mollusk are homozygous for the mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 13. The method of claim 6, wherein the germ cell-less male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 14.-15. (canceled)
  • 16. The method of claim 2, wherein the sterile sex-determined sterile fish, crustacean, or mollusk is a sterile male fish, crustacean, or mollusk.
  • 17. The method of claim 2, wherein the first mutation comprises a mutation in one or more genes that modulates the synthesis of androgen and/or estrogen.
  • 18. The method of claim 17, wherein the first mutation comprises a mutation in one or more genes that modulate the expression of: (a) aromatase Cyp19a1a, for example one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof; (b) Cyp17, for example, cyp17l or an ortholog thereof; or (c) a combination thereof.
  • 19-20. (canceled)
  • 21. The method of claim 2, wherein the second mutation comprises a mutation in one or more genes that modulate spermiogenesis.
  • 22. The method of claim 21, wherein the second mutation comprises a mutation in one or more genes that cause globozoospermia, for example one or more genes that cause sperm with round-headed, round nucleus, disorganized midpiece, partially coiled tails, or a combination thereof, such as Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, and an ortholog thereof.
  • 23-24. (canceled)
  • 25. The method of claim 2, wherein the sterile sex-determined sterile fish, crustacean, or mollusk is a sterile female fish, crustacean, or mollusk.
  • 26. The method of claim 25, wherein the first mutation comprises a mutation in one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor, for example, one or more genes selected from the group consisting of Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof.
  • 27. (canceled)
  • 28. The method of claim 25, wherein the second mutation comprises a mutation in one or more genes that modulate: (a) oogenesis, for example, one or more genes that modulate the synthesis of estrogen, such as FSHR or an ortholog thereof;(b) folliculogenesis, for example, (i) one or more genes that modulate the expression of vitellogenins, such as vtgs or an ortholog thereof; or (ii) a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochromo p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof; or(c) a combination thereof.
  • 29-33. (canceled)
  • 34. A method of generating a sterile sex-determined fish, crustacean, or mollusk, comprising the step of: breeding (i) a fertile female fish, crustacean, or mollusk having a one or more homozygous mutations with (ii) a fertile male fish, crustacean, or mollusk having one or more homozygous mutations to produce the sterile sex-determined fish, crustacean, or mollusk,wherein the one or more mutations directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis, andwherein the fertility of the fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk have been rescued.
  • 35. The method of claim 34, wherein the one or more mutations that directly or indirectly disrupts spermiogenesis is a mutation in Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, or an ortholog thereof.
  • 36. The method of claim 34, wherein the one or more mutations that directly disrupts vitellogenesis is a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof.
  • 37. (canceled)
  • 38. The method of claim 34, wherein the fertility rescue comprises germline stem cell transplantation, and optionally sex steriod alteration, for example, an alteration of estrogen, or an alteration of an aromatase inhibitor.
  • 39-40. (canceled)
  • 41. The method of claim 38, wherein the germline stem cell transplantation comprises the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the homozygous mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the homozygous mutation; andtransplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk.
  • 42. The method of claim 41, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk are homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 43. The method of claim 41, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 44-45. (canceled)
  • 46. The method of claim 34, wherein the fertile female fish, crustacean, or mollusk and the fertile male fish, crustacean, or mollusk have an additional homozygous mutation that specifies sexual differentiation.
  • 47. The method of claim 46, wherein the mutation that specifies sexual differentiation modulates the expression of: (a) aromatase Cyp19a1a; (b) Cyp17, for example, a mutation in cyp17l or an ortholog thereof; (c) an inhibitor to aromatase Cyp19a1a, for example, a mutation in Gsdf, dmrt1, Amh, Amhr, or an ortholog thereof; or (d) a combination thereof.
  • 48-49. (canceled)
  • 50. The method of claim 34, wherein the breeding step comprises hybridization or hormonal manipulation and breeding strategies, to specify sexual differentiation.
  • 51. (canceled)
  • 52. A fertile homozygous mutated fish, crustacean, or mollusk for producing a sterile sex-determined fish, crustacean, or mollusk, the fertile homozygous mutated fish, crustacean, or mollusk having at least a first mutation and a second mutation, wherein the first mutation disrupts one or more genes that specify sexual differentiation, wherein the second mutation disrupts one or more genes that specify gamete function, and wherein the fertility of the fertile homozygous mutated fish, crustacean, or mollusk has been rescued.
  • 53. The fertile homozygous mutated fish, crustacean, or mollusk of claim 52, wherein the fertility rescue comprises germline stem cell transplantation, and optionally sex steroid alteration, for example, an alteration of estrogen, or an alteration of an aromatase inhibitor.
  • 54-55. (canceled)
  • 56. The fertile homozygous mutated fish, crustacean, or mollusk of claim 53, wherein the germline stem cell transplantation comprises the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; andtransplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusks, orobtaining a spermatogonial stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the first mutation and the second mutation or a oogonial stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the first mutation and the second mutation; andtransplanting the spermatogonial stem cell into a testis of a germ cell-less fertile male fish, crustacean, or mollusk or the oogonial stem cell into an ovary of a germ cell-less fertile female fish, crustacean, or mollusk.
  • 57. The fertile homozygous mutated fish, crustacean, or mollusk of claim 56, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk are homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 58. The fertile homozygous mutated fish, crustacean, or mollusk of claim 56, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 59-61. (canceled)
  • 62. The fertile homozygous mutated fish, crustacean, or mollusk of claim 56, wherein the germ cell-less fertile male fish, crustacean, or mollusk and the germ cell-less fertile female fish, crustacean, or mollusk are homozygous for the mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 63. The fertile homozygous mutated fish, crustacean, or mollusk of claim 56, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 64-65. (canceled)
  • 66. The fertile homozygous mutated fish, crustacean, or mollusk of claim 52, wherein the sterile sex-determined sterile fish, crustacean, or mollusk is a sterile male fish, crustacean, or mollusk.
  • 67. The fertile homozygous mutated fish, crustacean, or mollusk of claim 52, wherein the first mutation comprises a mutation in one or more genes that modulates the synthesis of androgen and/or estrogen.
  • 68. The fertile homozygous mutated fish, crustacean, or mollusk of claim 67, wherein the first mutation comprises a mutation in one or more genes that modulate the expression of: (a) aromatase Cyp19a1a, for example, one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof; (b) Cyp17, for example, cyp17l or an ortholog thereof; or (c) a combination thereof.
  • 69-70. (canceled)
  • 71. The fertile homozygous mutated fish, crustacean, or mollusk of claim 52, wherein the second mutation comprises a mutation in one or more genes that modulate spermiogenesis.
  • 72. The fertile homozygous mutated fish, crustacean, or mollusk of claim 71, wherein the second mutation comprises a mutation in one or more genes that cause globozoospermia, for example, one or more genes that cause sperm with round-headed, round nucleus, disorganized midpiece, partially coiled tails, or a combination thereof, such as Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, and an ortholog thereof.
  • 73-74. (canceled)
  • 75. The fertile homozygous mutated fish, crustacean, or mollusk of claim 52, wherein the sterile sex-determined sterile fish, crustacean, or mollusk is a sterile female fish, crustacean, or mollusk.
  • 76. The fertile homozygous mutated fish, crustacean, or mollusk of claim 75, wherein the first mutation comprises a mutation in one or more genes that modulate the expression of an aromatase Cyp19a1a inhibitor, for example, one or more genes selected from the group consisting of Gsdf, dmrt1, Amh, Amhr, and an ortholog thereof.
  • 77. (canceled)
  • 78. The fertile homozygous mutated fish, crustacean, or mollusk of claim 75, wherein the second mutation comprises a mutation in one or more genes that modulate: (a) oogenesis, for example, one or more genes that modulate the synthesis of estrogen, such as FSHR or an ortholog thereof;(b) folliculogenesis, for example, (i) one or more genes that modulate the expression of vitellogenins, such as vtgs or an ortholog thereof; or (ii) a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochromo p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof; or(c) a combination.
  • 79-83. (canceled)
  • 84. A fertile fish, crustacean, or mollusk having a homozygous mutation for producing a sterile sex-determined fish, crustacean, or mollusk, wherein the mutation directly or indirectly disrupts spermiogenesis, and/or directly disrupts vitellogenesis, and wherein the fertility of the fertile fish, crustacean, or mollusk has been rescued.
  • 85. The fertile fish, crustacean, or mollusk of claim 84, wherein the mutation that directly or indirectly disrupts spermiogenesis is a mutation in Gopc, Hiat1, Tjp1a, Smap2, Csnk2a2, or an ortholog thereof.
  • 86. The fertile fish, crustacean, or mollusk of claim 84, wherein the mutation that directly disrupts vitellogenesis is a mutation in a gene encoding or regulating: Vitellogenin; Estrogen receptor1; Cytochrome p450, family 1, subfamily a; zona pellucida glycoprotein; Choriogenin H; Peroxisome proliferator-activated receptor; Steroidogenic acute regulatory protein, or an ortholog thereof.
  • 87. The fertile fish, crustacean, or mollusk of claim 84, wherein the fertile fish, crustacean, or mollusk has a plurality of homozygous mutations that, in combination: directly or indirectly disrupt spermiogenesis; directly disrupt vitellogenesis; or both.
  • 88. The fertile fish, crustacean, or mollusk of claim 84, wherein the fertility rescue comprises germline stem cell transplantation, and optionally sex steroid alteration, for example, an alteration of estrogen, or an alteration of an aromatase inhibitor.
  • 89-90. (canceled)
  • 91. The fertile fish, crustacean, or mollusk of claim 88, wherein the germline stem cell transplantation comprises the steps of: obtaining a germline stem cell from a sterile homozygous male fish, crustacean, or mollusk having at least the homozygous mutation or a germline stem cell from a sterile homozygous female fish, crustacean, or mollusk having at least the homozygous mutation; andtransplanting the germline stem cell into a germ cell-less recipient male fish, crustacean, or mollusk, or into a germ cell-less recipient female fish, crustacean, or mollusk.
  • 92. The fertile fish, crustacean, or mollusk of claim 91, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish, crustacean, or mollusk are homozygous for a null mutation of the dnd, Elavl2, vasa, nanos3, or piwi-like gene.
  • 93. The fertile fish, crustacean, or mollusk of claim 91, wherein the germ cell-less recipient male fish, crustacean, or mollusk and the germ cell-less recipient female fish crustacean, or mollusk are created using ploidy manipulation, hybridization, or exposure to high levels of sex hormones.
  • 94-95. (canceled)
  • 96. The fertile fish, crustacean, or mollusk of claim 84, wherein the fertile fish, crustacean, or mollusk has an additional homozygous mutation that specifies sexual differentiation.
  • 97. The fertile fish, crustacean, or mollusk of claim 96, wherein the mutation that specifies sexual differentiation modulates the expression of: (a) aromatase Cyp19a1a, for example, one or more genes selected from the group consisting of cyp19a1a, FoxL2, and an ortholog thereof; (b) Cyp17, for example, Gsdf, dmrt1, Amh, Amhr, or an ortholog thereof; (c) an inhibitor to aromatase Cyp19a1a; or (d) a combination thereof.
  • 98-99. (canceled)
  • 100. The fertile fish, crustacean, or mollusk of claim 84, wherein producing a sterile sex-determined fish, crustacean, or mollusk comprises a breeding step comprising hybridization or hormonal manipulation and breeding strategies, to specify sexual differentiation.
  • 101. (canceled)
  • 102. A method of making a fertile homozygous mutated fish, crustacean, or mollusk that generates a sterile sex-determined fish, crustacean, or mollusk, comprising the steps of: breeding (i) a fertile hemizygous mutated female fish, crustacean, or mollusk having at least a first mutation and a second mutation with (ii) a fertile hemizygous mutated male fish, crustacean, or mollusk having at least the first mutation and the second mutation;selecting a progenitor that is homozygous by genotypic selection; andrescuing the fertility of the homozygous progenitor,wherein the first mutation disrupts one or more genes that specify sexual differentiation, andwherein the second mutation disrupts one or more genes that specify gamete function.
STATEMENT OF GOVERNMENT RIGHTS

Aspects of the work described herein were supported by grant award #2018-33522-28745 from the USDA-National Institute of Food and Agriculture. The United States Government may have certain rights in these inventions.

PCT Information
Filing Document Filing Date Country Kind
PCT/US19/46088 8/12/2019 WO 00
Provisional Applications (1)
Number Date Country
62717201 Aug 2018 US