The invention concerns a method of plugging and abandoning (P & A) a subterranean well. As such, the present method may be used for temporary or permanent plugging and abandonment of such a well. Further, the present method may be used in any type of subterranean well, including petroleum wells, for example production wells and injection wells.
The present method involves perforation, cleaning and plugging of a longitudinal section of the well located at a desired depth interval in the well. More specifically, the invention concerns a method that provides hydraulic isolation, in the form of a well plug, across a complete cross section of the well along at least the longitudinal section thereof. The plug provides pressure-isolation both horizontally and vertically along said longitudinal section of the well. The well is also provided with a pipe string in at least the longitudinal section of the well where the pressure-isolating well plug is to be formed.
It is known to establish a pressure-isolating barrier in a well by virtue of mechanically milling and removing a longitudinal section of casing in the well. Cement slurry is then placed into the milled-away section of the well so as to form, upon curing, a pressure-isolating cement barrier across the complete cross section of this milled-away section of the well. This technology is generally referred to as “section milling” and has been used for decades to plug and abandon wells. Such section milling operations are very time-consuming and very costly for operators of the wells. Section milling operations generally require the presence of surface installations to allow metal shavings, so-called swarf, to be separated from the well fluids used during such milling operations. Various types of cleaning fluids are frequently required to allow transportation of such metal shavings (swarf) up to the surface of the well. Further, such metal shavings may become lodged in other equipment in the well, for example in a blowout preventer (BOP), so as to represent obstructions in the well. Such metal shavings are also troublesome to dispose of and generally represent hazardous materials to handle.
It is also known to establish such a well plug by means of the method and washing tool disclosed in WO 2012/096580 A1 (termed HydraWash technology). This method is suitable for use together with the displacement apparatus and method disclosed in WO 2012/128644 A2 (termed Archimedes technology).
The object of the invention is to remedy or reduce at least one disadvantage of the prior art, which includes said section milling technology, or at least to provide a useful alternative to the prior art.
The object is achieved by virtue of features disclosed in the following description and in the subsequent claims.
The invention concerns a method of plugging and abandoning (P & A) a well temporarily or permanently. The method involves perforation, cleaning and plugging of a longitudinal section of the well, said longitudinal section comprising a wellbore, a pipe string placed within the wellbore, and an annulus located between the wellbore and the pipe string.
The present method comprises the following steps:
(A) lowering a perforation tool into the pipe string onto said longitudinal section of the well;
(B) by means of the perforation tool, forming perforations (i.e. penetrating holes) in the pipe string along said longitudinal section;
(C) by means of a flushing tool attached to a lower end portion of a tubular work string, which is lowered into the pipe string onto said longitudinal section, pumping a flushing fluid down through the tubular work string, out through at least one flushing outlet in the flushing tool, into the pipe string and further out into said annulus via the perforations in the pipe string, thereby cleaning both the pipe string and the annulus along said longitudinal section,
(D) pumping a fluidized plugging material down through the tubular work string and into the pipe string at said longitudinal section;
(E) placing the fluidized plugging material in the pipe string along at least said longitudinal section, thereby also placing the fluidized plugging material in said annulus via the perforations in the pipe string, whereupon the fluidized plugging material forms a plug covering substantially a complete cross section of the well along at least said longitudinal section of the well;
(F) pulling the tubular work string out of the well; and
(G) abandoning the well.
This non-perpendicular configuration of the at least one flushing outlet in the flushing tool ensures very effective flushing and cleaning of both the pipe string and the annulus outside the pipe string. This in turn ensures good filling and good adhesion of the subsequent plugging material in the pipe string and in the annulus.
Said pipe string may be composed of a well pipe of a type known per se, for example a casing or a liner. As such, the pipe string may extend fully or partially, respectively, to the surface of the well.
Typically, the tubular work string is comprised of a drill string or a coiled-tubing string of a type known per se.
In one embodiment, the flushing tool is formed with a plurality of flushing outlets having respective outlet axes (i.e. longitudinal axes through the flushing outlets) angled within ±80° of a plane being perpendicular to the longitudinal axis of the flushing tool. By so doing, corresponding flushing jets from the flushing tool are also angled within ±80° of said perpendicular plane.
Each of the at least one flushing outlet may also be provided with a releasable nozzle insert. As such, the nozzle insert may be releasably connected to the flushing tool via a threaded connection or similar. Such a nozzle insert is of a suitable size and shape for generating a flushing jet of desired concentration and distribution. The feature of being releasable also ensures that the nozzle insert is readily replaceable, if desired or required.
As such, said nozzle insert may be radially telescopic relative to the flushing tool, and wherein the telescopic motion of the nozzle insert is selectively activated. Such a feature allows the nozzle insert to be selectively extended or retracted relative to the flushing tool. By so doing, the flushing tool may be lowered into the pipe string of the well with the at least one nozzle insert retracted into the flushing tool. Once placed in the well, said nozzle insert may be selectively extended outward from the body of the flushing tool. Such an embodiment of the flushing tool may prove advantageous in cases where the pipe string has one or more restrictions therein requiring a smaller sized flushing tool to be used for allowing access into the pipe string.
Further, the flushing fluid may comprise drilling mud. This is generally a suitable flushing fluid given that drilling mud usually is readily available and also functions as a pressure barrier in a well.
The flushing fluid may also contain a cleaning agent, for example a suitable soap or acid.
Yet further, the fluidized plugging material may comprise cement slurry for formation of a cement plug.
As an alternative or addition, the fluidized plugging material may comprise a fluidized particulate mass for formation of a plug made of particulate mass. Such a particulate mass is generally in an unconsolidated form. A somewhat different use of such a fluidized particulate mass in a well is disclosed in e.g. WO 01/25594 A1 and in WO 02/081861 A1.
Between steps (B) and (C), the method may also comprise the following steps:
As an alternative, and before step (A), the method may also comprise the following steps:
Naturally, these steps will save on the time and cost of plugging and abandoning the well.
Further to the latter alternative, the method may also comprise the following steps:
In another embodiment, step (C) of the method comprises rotating the tubular work string whilst flushing. Such rotation ensures larger area coverage of the flushing motion and thus enables better cleaning of the pipe string and the annulus.
Additionally or alternatively, step (C) of the method may also comprise moving the tubular work string in a reciprocating motion whilst flushing. Such reciprocation also ensures larger area coverage of the flushing motion and thus enables better cleaning of the pipe string and the annulus.
Step (E) of the method may also comprise moving the tubular work string within the pipe string whilst placing the fluidized plugging material therein. As such, the tubular work string may be moved in a suitable manner along the perforated longitudinal section of the pipe string for effective placement of the plugging material in the well.
Before step (C), the method may comprise adding an abrasive agent to the flushing fluid. This is particularly appropriate if the annulus is filled with e.g. cement residues (or some other casting material) and/or solid particles settled out within the annulus, e.g. barite particles settled out from drilling mud in the annulus. Such solid materials may become difficult to remove from the annulus if the flushing fluid is void of such an abrasive agent.
In one embodiment, the method comprises adding the abrasive agent to the flushing fluid in an amount of between 0.05 percent by weight and 1.00 percent by weight. The abrasive agent may comprise sand particles. As such, and as an example, adding approximately 0.1 percent by weight of sand to the flushing fluid appears to be a suitable mixture.
Further, the method may comprise discharging the flushing fluid from said at least one flushing outlet in the flushing tool at a discharge velocity of at least 15 metres per second. The present applicant has carried out tests showing that a discharge velocity of 15 metres per second is a minimum value required for allowing the flushing tool to clean sufficiently in the well.
In an advantageous embodiment, the method therefore comprises discharging the flushing fluid from the at least one flushing outlet at a discharge velocity of at least 50 metres per second. The above-mentioned tests have also shown that a discharge velocity of at least 50 metres per second provides a particularly effective cleaning result in the well.
Optimum discharge velocities for the flushing fluid, as well as optimum amounts of abrasive agent added thereto, depend on the type of flushing fluid used, and particularly with respect to the viscosity of the flushing fluid. High-viscosity flushing fluids usually require higher discharge velocities from the flushing tool than those of low-viscosity flushing fluids. This is simply because high-viscosity flushing fluids experience more internal friction, hence are slowed down faster, than that of low-viscosity flushing fluids.
Another embodiment of the method comprises discharging the flushing fluid from the at least one flushing outlet as a substantially rotation-free flushing jet. If such a flushing jet discharges from a nozzle insert disposed in the flushing outlet, this nozzle insert requires less space for support in the flushing tool than that of an alternative nozzle insert having a design capable of instilling a rotational/spinning effect on the flushing jet.
Before step (D), the method may also comprise disposing and anchoring a plug base in the pipe string, and below the longitudinal section of the well. Such a plug base may comprise a mechanical plug, a packer element and/or at least one cup-shaped element, e.g. swab cup, of a type known per se. The purpose of such a plug base is to support the fluidized plugging material once placed in the well. Typically, such a plug base (e.g. mechanical plug) is deployed into the pipe string carried on a so-called wireline or on a tubular work string, e.g. drill pipe string or coiled tubing, extending up to the surface of the well.
Alternatively, a column of a viscous fluid, i.e. a so-called viscous pill, may be pumped into the pipe string, and below the longitudinal section of the well, to support said fluidized plugging material.
Further, if said longitudinal section is located at a relatively short distance from the bottom of the pipe string, it may not be necessary to set such a plug base in the pipe string. Instead, the fluidized plugging material is filled from the bottom of the pipe string and upward until the plugging material covers the longitudinal section of the well.
In yet another embodiment, and between steps (C) and (D), the method also comprises the following steps:
Steps (D) and (E) of the method may also comprise pumping the fluidized plugging material into the pipe string via at least one spraying outlet in the flushing tool so as to discharge as a corresponding spraying jet from the flushing tool. By so doing, flushing with the flushing fluid and spraying with the fluidized plugging material are performed in one and the same trip into the well. Naturally, these steps will save on the time and cost of plugging and abandoning the well. By virtue of embodying the fluidized plugging material as a spraying jet emanating from the flushing tool, the plugging material also becomes directional and somewhat concentrated. This is advantageous in that such a spraying jet reaches further out from the flushing tool and may thus engage the formation wall defining the wellbore more readily and forcefully. Such a spraying jet also gains better access to potential voids in said annulus surrounding the pipe string along the longitudinal section of the well.
In one embodiment of the latter variant of the method, the flushing tool comprises a first section for discharging, in step (C), the flushing fluid via said at least one flushing outlet, and a second section for spraying, in steps (D) and (E), the fluidized plugging material via said at least one spraying outlet in the flushing tool.
As such, the diameter of said spraying jet of fluidized plugging material discharging from said second section of the flushing tool may be larger than the diameter of said flushing jet of flushing fluid discharging from said first section of the flushing tool. By so doing, and as opposed to general placing and displacement of the fluidized plugging material in the well, the plugging material may engage said formation wall more readily and forcefully. The fluidized plugging material will also gain better access to potential voids in the annulus along the longitudinal section of the well. A smaller diameter of said flushing jet of flushing fluid, however, ensures a more concentrated jet for breaking up and flushing away solids and particles along its flow path in the well.
In the latter context, the method may also comprise discharging said spraying jet of fluidized plugging material at a discharge velocity in the order of 15-25 metres per second, and preferably in the order of 18-22 metres per second. This range of discharge velocities is advantageous in achieving the spraying effect of the fluidized plugging material.
In another embodiment of said latter variant of the method, said at least one flushing outlet and said at least one spraying outlet in the flushing tool are one and the same, whereby both the flushing fluid and the fluidized plugging material will discharge through said at least one outlet in the flushing tool; and
As such, the method may comprise discharging the flushing fluid at a discharge velocity of at least 50 metres per second, and then discharging the subsequent fluidized plugging material at a discharge velocity in the order of 15-25 metres per second.
Yet further, the method may also comprise the following steps:
Hereinafter, an exemplary embodiment of the method is described and depicted in the accompanying drawings, where:
The figures are schematic and merely show steps, details and equipment being essential to the understanding of the invention. Further, the figures are distorted with respect to relative dimensions of elements and details shown in the figures. The figures are also somewhat simplified with respect to the shape and richness of detail of such elements and details. Elements not being central to the invention may also have been omitted from the figures. Further, equal, equivalent or corresponding details shown in the figures will be given substantially the same reference numerals.
In this particular embodiment, the flushing tool 33 is formed with several flushing outlets 331 distributed in a desired pattern around the flushing tool 33. These flushing outlets 331 have respective outlet axes “b” angled within ±80° of a plane “c” being perpendicular to the longitudinal axis “a” of the flushing tool 33. By so doing, corresponding flushing jets discharging from the flushing tool 33 are also angled within ±80° of the perpendicular plane “c”. Longitudinal axis “a”, outlet axis “b” and perpendicular plane “c” are also shown in
Before plugging the longitudinal section L1 of the well 1, a further cleaning and conditioning fluid is typically pumped in the described manner through the flushing tool 33 and into the casing string 5 and annulus 8, thereby further cleaning and conditioning the wellbore 2 and the casing string 5 for the purpose of allowing cement slurry 37, i.e. a fluidized plugging material, to be introduced into at least the longitudinal section L1 thereafter (cf.
Alternatively, and not shown in the figures, the flushing tool 33 may remain connected to the drill string 3 after having flushed and cleaned the longitudinal section L1. Cement slurry 37 is then pumped down the drill string 3 and discharges from the nozzle inserts 332 provided in the flushing outlets 331 of the flushing tool 33. In this case, the cement slurry 37 may discharge as spraying jets from the flushing tool 33, and at a significantly lower discharge velocity than that of the high discharge velocity of the preceding flushing jets of flushing fluid 35.
Upon having placed the cement slurry 37 into and along at least said longitudinal section L1 of the well 1, the drill string 3 is pulled out of the well 1. The well 1 is then abandoned temporarily or permanently.
Number | Date | Country | Kind |
---|---|---|---|
20150744 | Jun 2015 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2016/050112 | 6/1/2016 | WO | 00 |