This application claims priority to Chinese Application No. 201510451677.1 filed on Jul. 28, 2015, and Chinese Application No. 201510512159.6 filed on Aug. 19, 2015, each of which application is incorporated herein by reference in its entirety.
The present disclosure relates to a movable socket assembly.
Socket is widely used in our daily life. Traditional socket assembly is generally fixed at a location and has a limited number of outlets. If an electrical equipment is located far away from the socket assembly or the number of outlets is not enough, then a socket/outlet strip and additional power cord are needed. This is less flexible and the messy power cords may cause potential safety issues in a house. Installing additional sockets on a wall complicates the wiring inside the wall. And it is difficult to predict the number of sockets that will be needed in the future. For this reason, there is a need for a type of socket assembly with more flexibility and removability.
According to one aspect of the present disclosure, provided herein is a movable socket assembly. Particularly, in some embodiments, the movable socket assembly comprises a housing, a plug part installed in said housing, a plurality of elastic conducting contact points formed on said plug part, and an adjusting mechanism for positioning the plug part out of the housing so that the plug part can be removably inserted into an external power outlet.
In some embodiments, the plug part comprises a flat insertion piece having two insulation layers and a plurality of conducting strips placed between the two insulation layers, and each conducting strip penetrates one of the two insulation layers to form one of the plurality of elastic conducting contact points at a surface of said insulation layer.
In some embodiments, the movable socket assembly comprises a plurality of holes formed on a side of the housing for receiving an external plug.
In some embodiments, the plurality of elastic conducting contact points are formed on a same side of the flat insertion piece.
In some embodiments, the plurality of elastic conducting contact points are formed on different sides of the flat insertion piece.
In some embodiments, each elastic conducting contact point has one of a curved surface, a plane surface, a waved surface, and a stepped surface.
In some embodiments, the adjusting mechanism comprises a slide guide and a spring for ejecting the flat insertion piece out of the housing along the slide guide.
In some embodiments, the movable socket assembly comprises a locking mechanism for locking the flat insertion piece into a position.
In some embodiments, the locking mechanism comprises a button, a second spring, and a lock key, wherein the second spring can push the lock key to engage a notch formed on the flat insertion piece to lock the flat insertion piece into the position, and wherein the button can push the lock key to disengage the notch to unlock the flat insertion piece from the position.
In some embodiments, the flat insertion piece further comprises a bulge which stops the flat insertion piece from being completely ejected from the housing.
In some embodiments, the movable socket assembly comprises a safety unit. The safety unit comprises a gate installed between the plurality of holes and a plurality of conductors, a spring attached to the gate, and a slope formed on the gate. When the external plug is inserted into the holes the external plug engages with the slope to push the gate aside so that the external plug can connect to the plurality of conductors.
In some embodiments, the housing of the movable socket assembly comprises a first housing and a second housing, and the second housing can retract into the first housing to extend the flat insertion piece out of the housing through an opening of the second housing.
In some embodiments, the adjusting mechanism comprises a spring for ejecting the second housing out of the first housing when the flat insertion piece is being removed from the external power outlet.
In some embodiments, the second housing of the movable socket assembly comprises an upper housing portion which has a safety unit mount part, a lower housing portion which has a socket core structure, and a bottom portion.
In some embodiments, the second housing of the movable socket assembly comprises a bulge for preventing the second housing from completely disengage the first housing, and wherein said bulge is formed at an end of the upper housing portion.
In some embodiments, the housing of the movable socket assembly comprises a chamber for installing a smart chip.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawing(s), all of which form a part of this specification. It is to be expressly understood, however, that the drawing(s) are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. As used in the specification and in the claims, the singular forms of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
After reading this description, it will become apparent to one skilled in the art how to implement the disclosure in various alternative embodiments and alternative applications. However, not all embodiments of the present disclosure are specifically described herein. It will be understood that the embodiments are presented by way of example only, and not limitation. As such, this detailed description of various alternative embodiments should not be construed to limit the scope or breadth of the present invention as set forth below.
According to one aspect of the present disclosure, provided herein are movable socket assemblies.
In one embodiment, the housing 110 includes a front housing portion 111 and a rear housing portion 113. The front housing portion 111 and the rear housing portion 113 are attached to each other to enclose the components installed inside the housing 110. The front housing portion 111 has a housing opening 201 through which the plug part 120 can be extended out of the housing 110.
In one embodiment, a plurality of holes 131a-e are formed on a side of the front housing portion 111. The movable socket assembly 100 further includes a socket core structure 218 and a plurality of conductors 216. Together, the plurality of holes 131a-e, the socket core structure 218, and the plurality of conductors 216 work as a socket for receiving an external plug. In a different embodiment, a separate socket part or a different electronic device (e.g., a router, a sensor, an alarm, a probe, a detector, a camera, a charger, or a converter) may be attached to the movable socket assembly.
The plurality of holes 131a-e may be formed on a same side of the front housing portion 111 (e.g., on the top side of the front housing portion 111). Alternatively, the plurality of holes 131a-e may be formed on different sides of the front housing portion 111. For example, holes 131a and 131b may be on one side of the front housing portion 111, and holes 131c, 131d and 131e may be formed on a different side of the front housing portion 111.
In one embodiment, the movable socket assembly 200 has an adjusting mechanism for extending the plug part 120 out of the housing 110. The adjusting mechanism may be formed on the front housing portion 111 or the rear housing portion 113. For example, the rear housing portion 113 has a slide guide 204 on each side of the rear housing portion 113. A spring 203 is placed in each slide guide 204. One end of the spring 203 connects to the plug part 120 so that it can eject the plug part 120 out of the housing 110 for insertion into an external power outlet. The plug part 120 may slide in the housing 110 along the slide guide 204.
In one embodiment, a button 212 and a switch container 214 are installed on one end of the rear housing portion 113. The switch container 214 may be formed as part of the rear housing portion 113. The button 212 is connected to the switch container 214 through the lock key 206 and a spring 208. A pair of front notches 125a are formed on the front end of the plug part 120 and a pair of back notches 125b are formed on the rear end of the plug part 120. When the button 212 is not pressed, each spring 208 pushes down the corresponding lock key 206 to engage a front notch 125a to lock the plug part 120 inside the housing 110. When the button 212 is pressed, the button 212 pushes up each lock key 206 to disengage the corresponding front notch 125a. The plug part 120 is therefore unlocked and may be ejected out of the housing 110 through the housing opening 201 by the spring 203. A bulge 127 is formed on the rear end of the plug part 120 so that the front housing portion 111 can stop it from being completely ejected out of the housing 110. Once the button 212 is released, the pressure of the springs 208 pushes down the lock keys 206 to engage with the back notches 125b to lock the plug part 120 so that it may be inserted into an external power outlet.
In one embodiment, the plug part 120 is a flat insertion piece which has one or more insulation layers and a plurality of conducting strips. For example, the plug part 120 may have two insulation layers and three conducting strips placed between the two insulation layers. Each conducting strip has one end penetrating an insulation layer to form an elastic conducting contact point 123 on the outer surface of the insulation layer. Alternatively, the elastic contacting point 123 may be separately formed on the outer surface of an insulation layer and is then connected to the stripe. The plurality of elastic conducting contact points 123 may be formed on the same side or different sides of the plug part 120. The plurality of elastic conducting contact points 123 may be formed on one or more sides of the plug part 120. In addition, they may be arranged horizontally, diagonally, or in a different configuration on the surface of the plug part 120 if the insertion direction is the downward direction. When the plug part 120 is inserted into an external power outlet, the plurality of elastic conducting contact points 123 are electrically connected to the electrical wires to receive electricity.
The other end of each conducting strip may form a similar elastic conducting contact point 121. When the plug part 120 is fully ejected, these elastic conducting contact points 121 are electrically connected to a plurality of fixed contact points 210, which in turn are connected to the conductors 216. Further detailed disclosure regarding the elastic conducting contact point 121 is provided in
The structures and functions described above in relation to the movable socket assembly 100 are not exhaustive and are not limiting; numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompasses all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims.
In one embodiment, the plug part 120 has three elastic contact points 121 arranged in-line horizontally on the surface of the plug part 120 for connecting to the fixed contact points 210 (shown in
As illustrated in
The front housing portion 612 and the rear housing portion 614 are attached together to form a first housing. In one embodiment, a plug part, whose structure may be similar to the plug part 120 shown in
In one embodiment, a plurality of holes 131a-e are formed on a side of the front housing portion 612 and a socket core structure 701 (as shown in
The second housing 615 is attached to the first housing to contain the plug part when the movable socket assembly is not in use. The second housing 615 may be pressed to slide into the first housing so that the plug part is extended out of the second housing 615 for insertion into an external power outlet. A pair of springs 620 are installed inside the first housing. One end of each spring 620 is attached to the rear housing portion 614, and the other end of the spring 620 is attached to the second housing 615. When the plug part is unplugged, the second housing 615 is pushed back to its original position by the springs 620 to fully contain the plug part again.
In one embodiment, the safety gate 630 may move in the safety unit mount part 807. The safety gate spring 640 is attached to the upper housing portion 801. The spring guide post of the safety gate spring 640 is on the end of the connecting point of the safety gate 630 and the safety gate spring 640.
The structures and functions described above in relation to the movable socket assembly 600 are not exhaustive and are not limiting; numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompasses all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201510451677.1 | Jul 2015 | CN | national |
201510512159.6 | Aug 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/085142 | 6/7/2016 | WO | 00 |