Most polymers are electrically insulating. Most polymers are also thermally insulating, although some heat is passed on through a plastic. For this reason, electrical cables are often provided with plastic sheathing, sometimes at least partly cross-linked so that the sheathing is flexible and to an extent elastic. The plastic or rubber (if the plastic is cross-linked) will ensure that no electrical shortcutting will take place, whilst heat generated by the electrical current and running through the electrical wire is in a limited form flowing in a radial direction and passed on the ambience.
In case of a fire, there is the possibility that one end of an electrical cable is very close to the fire and heated up, while another end of the fire is at a relatively cold position, far away from the fire. Heat can then “travel” via the electrical wire ahead of the spreading of the fire to a part of a cooler part of a construction. Where the electrical wiring is extending through a ship, or an oil platform, this is highly undesirable. Ideally, the heat is through the sheathing passed on to the environment, i.e. flowing in a radial direction as opposed to a line direction of the electrical cable. The sheathing should for this scenario thus thermally insulate, but not in a perfect way.
However, in case of a fire, there also is the possibility, that the fire is very close to the cable, and that the temperature is very high, making the sheathing melt. Then the electrical wire, will be directly exposed to heat which will then “travel” very quickly along the wire throughout the construction. Ideally, for this scenario, the thermal insulation of the sheathing is very high, so that a high temperature of the ambience (for instance due to a nearby fire) is not quickly heating up the electrical wire.
Such insulating sheathing materials for electrical wires are particularly important in the ship building and off-shore building industry where the heat of a nearby fire, for as long as possible needs to be prevented from spreading. This may allow a crew and passengers as well as a significant part of a vessel or oil rig, to stay out of a zone of danger. Notably, in the shipbuilding and off-shore industry it may take a long time before rescue and evacuation services can be at the scene of the fire accident.
There is a need to provide a plastic base-layer that functions optimally in both scenarios, in that ideally heat is through the base-layer passed on to the environment when the environment is cooler than another side of the base-layer, and heat from the environment is not through the base-layer passed on the other side of the base-layer.
There is provided a multi-layered structure of at least a polymer base-layer and paint-based protective layer or a paste-based protective layer. The protective layer is non-intumescent. The protective layer exhibits at atmospheric pressure during an increase in ambient temperature, a drop in its thermal conductivity.
The ambient temperature is the air temperature of the environment in which the protective layer is kept.
The protective layer is non-intumescent, meaning that it does not puff up to form a foam when the temperature of the layer increases. The protective layer can be paint-based or paste-based, as will be explained further below. It can be applied to base-layers such as sheathing of cables which are already in use.
Advantageously, at higher ambient temperatures, when heat is ideally not transferred from the ambience through the base-layer, the protective layer tends to increase resistance to heat transfer from the ambience to the base-layer.
In an embodiment, the protective layer has a porous structure or forms pores at elevated temperatures. Without wishing to be bound by any theory, it is believed that these pores contribute significantly to a drop in the thermal conductivity of the protective layer, particularly at higher temperatures.
In a material having a porous structure, the thermal conductivity is to an extent determined by conduction of heat by gas. The pores provide many transitions from a pore, i.e. a small cavity (in which heat can be conducted by gas) to a material through which no conduction by gas can occur. A heated gas molecule can collide with the surface of the material, and as such pass on some of the thermal energy. However, such a collision will largely be elastic, so that the back-bouncing gas molecule will not have passed on much of its thermal energy to the material. As a consequence of this phenomenon, the thermal energy is effectively kept in the gas. The heat is not efficiently transported through the entire protective layer. This may explain, at least to an extent, the low thermal conductivity of the protective layer.
It is believed that also thermal conductivity by means of radiation (more detailed below) is suppressed in a material having pores. The smaller the pores, the smaller the thermal conductivity by radiation, is presently believed.
A number of different ways of forming a porous structure at elevated temperatures will be mentioned below. A way of forming pores at elevated temperatures could occur by evaporation of liquids out of the protective layer at elevated temperatures, leaving at these higher temperatures empty pores, or cavities, behind. It will also be possible to form pores by spraying material forming the paint-based protective layer onto the metal base-layer. Further, as discussed below, the type of material and size of its particles may be such that pores are formed.
In an embodiment, the pores comprise pores having a diameter of less than 700 nanometers. Again, without wishing to be bound by any theory, it is believed that such small pores contribute very significantly to a drop in thermal conductivity of the protective layer, when the ambient temperature rises, for instance, due to a nearby fire. First of all, many small pores would also mean many transitions between a cavity and a material. The heat will predominantly remain within the gas as the transitions do not provide smooth transfers of heat from the gas to the material and vice versa. The transport of the thermal energy will be frustrated.
Preferably the pores comprise pores having a diameter of less than 70 nanometers. Where the main mechanism for transport of thermal energy is based on conduction of heat by gas, the transport mechanism can also be described as inelastic collisions of a gas molecule having a lot of thermal energy with a gas molecule having less thermal energy. It is thus the number of these collisions that determines to an extent the thermal conductivity of heat through a gas. A parameter related to the number of collisions is the so-called mean-free path of a gas molecule. This is defined as the average distance traveled by a moving gas molecule between successive collisions. The length of this mean-free path is known to increase with the temperature of the gas. If the mean-free path of the gas is longer than the diameter of the cavity in which the heated gas molecule is present, then the gas molecule is more likely to first hit the surface of the material that forms the boundary of the cavity, than with another gas molecule. As explained above, the gas molecule may on colliding with a material pass on some of its thermal energy, but the majority will remain with the gas molecule. For many gas molecules, particularly air molecules (oxygen molecules and nitrogen molecules) the mean-free path at elevated temperatures is higher than 70 nanometers. Collisions between gas molecules are then thus rare. A heated gas molecule has very little chance to pass on energy to another gas molecule. Conduction of heat through the gas phase is now thus even further frustrated. Accordingly, it is believed that heat cannot be swiftly transported through a material comprising many pores having a diameter of less than 70 nanometers, if the predominant mechanism for transport of heat is based on gas conduction.
In an embodiment the protective layer comprises clusterings of particles having a size within the range of 2-300 nanometers.
So far consideration is mainly given to heat conduction by gas. However, heat can also be transported through materials. Thus the bit of heat energy passed on to a material during a collision of a gas molecule with that material, could possibly “travel” down a temperature gradient in that material. Two mechanisms are known. One mechanism is based on electrons which pass on thermal energy. This is why metals, considered to have many so-called free electrons, are good heat conductors. Another mechanism is based on atoms which pass on thermal energy. It turns out that the more rigid the atomic structure is, and the more pure the structure is, the more likely it is that this mechanism for transport of heat works really well. In support of this view, it is to be noted that a single crystal diamond is one of the best heat conductors (having a very rigid and often pure atomic structure), even though it is electrically insulating (that is, no of the electrons are available for transport of heat through the material.
Advantageously, such a structure comprising clusterings of particles having a size within the range of 2-300 nanometers, has more likely many pores and thus the chracteristics described above.
Further, such a structure leads to a material having many impurities in the sense that each boundary of a particle, particularly when placed against the boundary of another particle, forms an irregularity in the structure of the particle.
Furthermore, due to the many pores, the material is also not dense, and not rigid. The result is that heat cannot efficiently be passed on from the structure of one particle to the structure of another particle. This does inherently lead to a low thermal conductivity of that material itself, i.e. regardless of the low thermal conductivity of gas in pores that may be present in such a material.
Furthermore, the presence of clusterings of nanoparticles, not only introduces irregularities, there are also “bottlenecks” formed where the particles join. It is believed that such necking between nanometer-sized particles introduces a problem for the heat to be passed on through the materials, based on, effectively, phonon-transport. Such a resistance contributes to a further drop in thermal conductivity of that material itself, i.e. regardless of the low thermal conductivity of gas in pores that may be present in such a material. This contributes to the low thermal conductivity of the protective layer.
In an embodiment, the pores are formed at temperatures in the range of 180-500° C. Consequently, it is possible that the outer layer of the protective layer being heated up by the higher ambient temperatures forms (more) pores, and as such contributes immediately more intensively to reducing the thermal conductivity of the remaining part of the protective layer before it weakens. As a result of that, the protective layer protects the base-layer against exposure to higher temperatures.
The formation of pores at temperatures in the range of 180-500° C. may be a result of release of water that at lower temperatures was bound to particles included in the protective layer.
In an embodiment the protective layer comprises opacities for reducing heat transfer by radiation.
Heat transfer by radiation, often referred to as thermal radiation, is electromagnetic radiation generated by the thermal motion of charged particles in matter. The surface of a heated material may emit such radiation through its surface. This is typically Infrared radiation. The rate of heat transfer by radiation is dependent on the temperature of a surface. With an increasing temperature, the heat transfer by radiation increases rapidly. Opacifiers in a material counteract that mechanism, for instance by scattering the radiation, or by absorbing the radiation. An example of an opacifier that scatters radiation is titanium dioxide. An example of an opacifier that absorbs radiation is carbon soot. Transparency of the material tends to become lower when opacifiers are used.
It is further believed that thermal conductivity by means of radiation is suppressed in a material that contains pores.
The smaller the pore, the smaller the transfer of thermal energy by radiation.
The protective layer is preferably a fire-retardant layer so that when a fire reaches the layer, it will exhibit low flame-spreading characteristics and exhibit “no-combustion” characteristics. It will sustain in a fire for a significant amount of time.
Preferably the fire-retardant layer is non-combustible in a fire reaching a temperature of up to 1100° C.
Preferably, the protective layer is within the temperature range of 50-1100° C. effectively free from shrinkage. This ensures that the protective layer does not generate cracks and tears and it will thus maintain a continuous layer carrying out its protective function.
Preferably the protective layer is within the temperature range of 50-1100° C. effectively free from thermal expansions. Advantageously, original dimensions can be maintained and no allowances need to be made for expansion upon exposure to heat.
In an embodiment a protective layer has a base-layer side and an ambience side, wherein the protective layer is impermeable to gas when a pressure difference of 30 mBar is set between the base-layer side and the ambience side.
Preferably the protective layer is salt water resistant. This is of particular relevance when the multi-layered structure is provided onboard of a construction that will be out on the sea/ocean, or otherwise in proximity of seawater. Preferably the resistance to salt water is maintained when the protective layer has been exposed to a fire. This ensures that even when a fire has occurred there is no need to replace the multi-layered structure and the protective layer for reasons that it would no longer be resistant to salt water.
In an embodiment, the sprayed-on protective layer is a layer formed by spraying a water-based polymer emulsion onto the base-layer.
In an embodiment, the protective layer is impermeable to water.
In an embodiment, the polymer base-layer comprises vulcanizable and/or vulcanized polymer.
In an embodiment, the polymer base-layer is silicon based.
In an embodiment, the polymer base comprises silicon rubber.
In an embodiment, the base-layer forms at least a part of a cable sheath or a pipe.
In an embodiment, the base-layer forms at least a part of coaming.
The present disclosure is also related to a paint or paste formed using a water-based polymer emulsion suitable for forming a protective layer for forming a multi-layered structure according to embodiments covered by the present disclosure.
The disclosure is further explained on the basis of a drawing, in which:
In the drawing, like parts are provided with like references.
The protective layer 3 may be based on paint. Alternatively, the protective layer 3 is based on a paste.
The application shown is on a pipe 4 as extending out of a conduit (not shown) in a wall 8. A sealant 9 is applied to seal the annular gap between the pipe 4 and the conduit. However, a person skilled in the art can easily envisage how the application similarly would be applicable onto a flat base-layer.
The thickness of the layer can be as desired. Spraying for longer, or spraying more layers, will result in a thicker protective layer. The density of the protective layer can be varied, throughout the layer, or held constant per layer. The density can be varied, depending on the number and density of pores.
The protective layer 3 is non-intumescent, meaning that it does not puff up to form a foam when the temperature of the layer increases. The protective layer 3 can be provided by applying a waterbased polymer emulsion, such as the so-called “FISSIC coating”, as commercially available from the applicant (www.fissiccoating.com).
The protective layer 3 has a porous structure and/or forms pores at elevated temperatures. A porous structure may be present in the particles which at least partly make up the protective layer but may also be formed at elevated temperatures, for instance by release of bonded water out of the protective layer. Pores may also have been formed by the way the protective layer is applied, i.e. by entrapping air into the layer during spraying of the water-based polymer emulsion onto the base-layer 2. The pores may comprise pores having diameters of less than 700 nanometers. Preferably the pores comprise also pores having a diameter of less than 70 nanometers. The pore structure may comprise clusterings of particles having a size within the range of 2-300 nanometers. It is preferable that a number of the pores are formed at temperatures in the range of 180-500° C.
The protective layer may comprise opacities for reducing heat transfer by radiation. Opacities are known in the art, a typical example is titanium dioxide. Another typical example is carbon soot.
The protective layer 3 is preferably a fire-retardant layer. To this end, highly suitably, borates conventionally used as fire retardants; plasticizers of the organic phosphate type such as trialkyl phosphates and triaryl phosphates, and in particular trioctylphosphate, triphenylphosphate and diphenyl cresyl phosphate; solid fire retardants such as ammonium polyphosphate, for instance Antiblaze MCO: and melamine polyphosphate (melapur 200) can be used. These and more fire retardants are well known in the art.
The fire retardant layer is preferably non-combustible in a fire reaching a temperature up to 1100° C. The protective layer 3 is within a temperature range of 50-1100° C. effectively free from shrinkage and, preferably, free from thermal expansion.
The protective layer 3 is salt water resistant, preferably even after fire. Reference is made to KIWA Netherlands report 20150421 HN/01 for the performance of the so-called “FISSIC coating” in this respect. The protective layer 3 is impermeable to water and/or impermeable to gas (at least when the gas pressure difference is 30 mBar. The protective layer prevents corrosion under isolation (CIU) from taking place.
The polymer base-layer may be of polymer, vulcanizable and/or vulcanized, at least partly. The polymer base-layer may be silicon-based. The polymer may comprise silicon rubber. The base-layer may form at least a part of a cable sheath or a pipe. The base-layer may form at least a part of a coaming.
A sprayable emulsion suitable for forming by spraying a protective layer according to the present disclosure is on the day of this disclosure available, at least via the website www.fissiccoating.com. The same applies to a paint or a paste formed using such a water-based polymer emulsion.
Many applications, each making use of embodiments of the present disclosure, are easily conceivable. Not only in a maritime climate/environment but also in the chemical and petrochemical industry, and in the building industry, use can be made of embodiments of this disclosure.
Number | Date | Country | Kind |
---|---|---|---|
1041590 | Nov 2015 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/078536 | 11/23/2016 | WO | 00 |