The invention relates to the field of agriculture, food safety and post-harvest food treatments to address the lack of useful methods to prevent bacterial contamination of dry raw agricultural commodities. The novel composition provides unexpectedly high degree of control required for food safety. The invention also relates to a method of use thereof.
More particularly, the invention relates to a composition of water-soluble ingredients, said water-soluble ingredients comprising at least one oxidizer, at least one lower alcohol and optionally at least one wetting agent, which when solubilized in a water-containing solvent forms an aqueous, synergistic composition useful for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, more preferably edible seeds such as hemp seeds, flax seeds or chia seeds. Also, the invention relates to an aqueous, synergistic composition obtained by dissolving the above-mentioned composition in water, and relates to method and use of said aqueous, synergistic composition for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, more preferably edible seeds such as hemp seeds, flax seeds or chia seeds.
Published international application No. WO2007/092180 describes a fertilizer composition for application to a seed, plant, growth medium or growth solution, said composition comprising an oxidizing agent wherein bioavailable oxygen is released upon contact to the composition with water, optionally a solvent such as methyl ketone, methyl isobutyl ketone, cyclohexanonon, xylenes, toluene, chlorobenzene, paraffins, kerosene, white oil, alcohols, methylnaphthalene, trimethylbenzene, trichloroethylene, N-methyl-2-pyrrolidone and tetrahydrofurfuryl alcohol (THFA), and eventually other additives selected from the group consisting of companion cations, cation reducing agents, pH modulators, nutrients, organic compounds, penetrants, microorganisms, pesticides, fungicides, insecticides, nematocides, herbicides, water trapping agents, enzymes, surfactants, wetting agents, spreaders, stickers and growth hormones. This published international application WO2007/092180 further relates to a method of use of said fertilizer composition. However, this published international application does not provide a novel solution to control the high level of pathogens on edible food commodities.
Peracetic acid (C2H4O3) in an aqueous solution is a mixture which is further comprising acetic acid (CH3COOH) and hydrogen peroxide (H2O2). Typically, peracetic acid (also identified hereinafter under the acronym PAA) is produced by reacting acetic acid and hydrogen peroxide. It is also well known to generate a liquid solution comprising PAA starting from the dissolution of a powdered mixture (U.S. Pat. No. 7,291,276; UK patent application No. 2,355,198; FR patent application 2,728,171; Canadian patent application No. 2,569,025; International PCT patent application WO 95/02330 and EP patent application No. 0 648 418).
Also, peracetic acid (also known under the tradename peracid) is a strong oxidizing agent which is known for having virucidal, bactericidal, fungicidal and algaecidal properties. Peracetic acid was patented in 1950 for the treatment of raw plant tissue, especially for the treatment of fruits and vegetables, to reduce spoilage from bacteria and fungi destined for processing (U.S. Pat. No. 2,512,640). Nowadays, peracetic acid is commonly use in food processing and handling as a sanitizer for food contact surfaces and as a disinfectant for fruits, vegetables, meat and eggs (NOSB TAP Materials database compiled by OMRI, Nov. 3rd 2000, 7 pages). In the production of fruits and vegetables, peracetic aqueous solutions have been suggested to control pathogenic organisms on growing plants (U.S. Pat. No. 6,024,986; U.S. Pat. No. 6,165,483; and U.S. Pat. No. 6,238,685).
As per Applicant's published international patent application WO 2012/051699, a solution of peracetic acid generated in situ in combination with a plant defence enhancer demonstrated excellent anti-bactericidal and anti-fungal properties. More particularly, in this international patent application it was evidenced a synergy of peracetic acid and at least one plant defence enhancer for the control of pathogens in and onto growing plants. Furthermore, according to a particularly preferred embodiment of said published international patent application WO2012/051699, the presence of a surfactant in a synergistic mix of a precursor of peracetic acid and potassium silicate (i.e. a SAR inducer), enhances the release of peracetic acid when admixed with water.
However, concerning seeds, more particularly seeds having external shells, especially edible seeds such as hemp seeds, flax seeds and chia seeds, the person skilled in the art notes that existing compositions do not allow an oxidizer to cover the surface of the seeds efficiently in order to kill pathogens present thereon and/or therein.
Therefore, there was still a strong need for a composition allowing to obtain an efficient control and/or treatment of diseases associated with seeds, especially concerning seeds having external shells, especially edible grains and seeds such as hemp seeds. Also, there was a strong need for method and use allowing to control and/or treat efficiently seeds having pathogens present thereon.
Also, it is to be noted that literature did not recommend using alcohol on seeds because the person skilled in the art knows that alcohol at low dosage does not kill bacteria. In this regard, reference can be made to the content of the article of Mena et al., “Influence of Ethanol on Probiotic and Culture Bacteria Lactobacillus bulgaricus and Streptococcus thermophilus within a Therapeutic Product”, Open Journal of Medical Microbiology, 2012, 2, 70-76. In this article Mena et al. showed that ethanol added to yogurt does not affect the count of Lactobacillus sp.
Also, it is to be noted in addition to the teaching of the above-mentioned article of Mena et al. that not only alcohol does not kill bacteria at low levels but also it is used (at concentration of around 1 to 5%) as a carbon source for bacteria to promote their growth. In this regard, reference can be made to the content of the article of Smith et al., “Microbial Synergia via an Ethanol-Triggered Pathway”, Molecular and Cellular Biology, May 2004, p. 3874 -3884.
Surprisingly, the Applicant has recently discovered that when using at least one oxidizer in combination with at least one agriculturally acceptable solvent and/or wetting agent, soluble in water, and much more preferably at least one alcohol, optionally with or without at least one wetting agent (e.g. a surfactant), it is possible to obtain a synergy between above ingredients to provide an aqueous, synergistic composition, a method and a use allowing to cover the seeds surfaces efficiently with said at least one oxidizer in order and provide an efficient control and/or treatment of seeds having pathogens present thereon.
Furthermore, it is worth mentioning that the Applicant has surprisingly discovered that the presence of a wetting agent along with an oxidizer in an aqueous solution of the same:
Furthermore, it is worth mentioning that the Applicant has surprisingly discovered that the presence of alcohol along with an oxidizer in an aqueous solution of the same:
Furthermore, it is worth mentioning that the Applicant has surprisingly discovered that the presence of alcohol and a wetting agent, along with an oxidizer in an aqueous solution of the same:
Also, concerning the prevention of mucilage from seeds, it is to be noted that a person skilled in the art, would not have been motivated to use a composition containing water on seeds such as flax, which are recognized to produce mucilage when contacted with water. Surprisingly, the aqueous, synergistic composition according to the invention prevents mucilage from seeds. Preferably, an extra amount of an agriculturally acceptable alcohol may be added to said aqueous, synergistic composition in order to further reduce the amount of water in such case. Such an extra amount of an agriculturally acceptable alcohol does not affect the synergy mentioned hereinabove.
Also, it is worth mentioning that the Applicant has surprisingly discovered that contact of the aqueous, synergistic composition with the seeds can be extended up to 12 to 72 hours, thereby providing a better efficiency in reducing the pathogens. Optionally, in the case of extended contact of the seeds with the aqueous synergistic composition, it may be advantageous to lower the humitidy content of the seeds below 10% after the treatment with the synergistic solution (in order to prevent regrowth of pathogens in and/or on the seeds). The regulation of the humidity content of seeds can be achieved by any appropriate means well known to person skilled in the art.
Also, it is worth mentioning that said synergistic composition, method and use is particularly efficient to kill human pathogens such as bacteria (e.g. E. coli, Salmonella spp., Listeria monocytogenes), coliforms that may be present on the surface of said seeds, as well as yeast and mould which may be present on the surface of said seeds.
According to an embodiment, the invention relates to a first composition of water-soluble ingredients (CWSI) which when solubilized in water (W) and either in the presence of a wetting agent, or preferably in the presence of at least one agriculturally acceptable solvent, or more preferably in the presence of a wetting agent and at least one agriculturally acceptable solvent, forms a synergistic composition useful for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds, wherein (i) said composition of water-soluble ingredients (CWSI) comprises at least one oxidizer in liquid form or solid form, or a precursor thereof in liquid or solid form, and preferably
wherein (ii) said at least one agriculturally acceptable solvent is soluble in water (W);
wherein said at least one agriculturally acceptable solvent is preferably an agriculturally acceptable alcohol, glycol ether, propylene glycol, or ethylene glycol, and much more preferably an alcohol of formula ROH where R represents a linear alkyl group having from 1 to 6 carbon atoms, or a branched alkyl group having from 3 to 6 carbon atoms; wherein the water-soluble ingredients (CWSI) is dissolved in the water (W), in a weight ratio (CWSI)/(W) ranging from 1:100 to 1:4, and
wherein when present, said at least one agriculturally acceptable solvent represents from 2% by volume to 70% by volume, preferably about 50% by volume, of the total volume of the synergistic composition to be formed.
According to another embodiment, the invention relates to a second composition of water-soluble ingredients (CWSI) which when solubilized in water (W) and in the presence of a wetting agent, forms a synergistic composition useful for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds,
wherein (i) said composition of water-soluble ingredients (CWSI) comprises said wetting agent and at least one oxidizer in liquid form or solid form, or a precursor thereof in liquid or solid form, and preferably
According to another embodiment, the invention relates to the second composition defined hereinabove, wherein the at least one wetting agent is
According to another embodiment, the invention relates to the second composition defined hereinabove, wherein the at least one wetting agent is an alkyl polyglycoside surfactant, preferably manufactured from fatty alcohols and glucose/dextrose, and more preferably Alkyl polyglycoside APG 325N® liquid or GLUCOPON® 50 G powder.
According to another embodiment, the invention relates to the second composition defined hereinabove, wherein the wetting agent represents up to 25% by weight of the weight of the oxidizer, preferably about 4% by weight
According to another embodiment, the invention relates to a third composition of water-soluble ingredients (CWSI) which when solubilized in water (W) and at least one agriculturally acceptable solvent, forms a synergistic composition useful for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds,
wherein (i) said composition of water-soluble ingredients (CWSI) comprises at least one oxidizer in liquid form or solid form, or a precursor thereof in liquid or solid form, and preferably
wherein said at least one agriculturally acceptable solvent is preferably an agriculturally acceptable alcohol, glycol ether, propylene glycol, or ethylene glycol, and much more preferably an alcohol of formula ROH where R represents a linear alkyl group having from 1 to 6 carbon atoms, or a branched alkyl group having from 3 to 6 carbon atoms;
wherein the water-soluble ingredients (CWSI) is dissolved in the water (W), in a weight ratio (CWSI)/(W) ranging from 1:100 to 1:4, and
wherein said at least one agriculturally acceptable solvent represents from 2% by volume to 70% by volume, preferably about 50% by volume, of the total volume of the synergistic composition to be formed.
According to another embodiment, the invention relates to the third composition defined hereinabove, which when solubilized in water (W) and at least one agriculturally acceptable solvent, forms a synergistic composition for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, wherein said composition of water-soluble ingredients (CWSI) is to be dissolved in water in a weight ratio (CWSI)/(W) in the range from 1:100 to 1:4;
wherein (i) said composition of water-soluble ingredients (CWSI) is
an in situ generated peracetic acid obtained from a powdered composition of water-soluble ingredients (PCWSI) defining a peracetic acid precursor and consisting of a dry, mixture of:
wherein (ii) said at least one agriculturally acceptable solvent is soluble in water (W) selected from the group consisting of an agriculturally acceptable alcohol, glycol ether, propylene glycol and ethylene glycol, and represents from 2% by volume to 70% by volume of the total volume of the synergistic composition to be formed.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one oxidizer is the liquid preformed peracetic acid and/or the in-situ generated peracetic acid from the powder precursors, preferably the in-situ generated peracetic acid from the powder precursors.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one agriculturally acceptable alcohol is further a food-grade alcohol which is listed in FDA's CFR 21 as Generally Regarded as Safe (GRAS) for use in food (section 184.1293), preferably ethanol, propanol or isopropanol, and more preferably a food graded ethanol.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein said composition of water-soluble ingredients further comprises:
(iii) at least one wetting agent.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one wetting agent is
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one wetting agent is an alkyl polyglycoside surfactant, preferably manufactured from fatty alcohols and glucose/dextrose, and more preferably Alkyl polyglycoside APG 325N® liquid or GLUCOPON® 50 G powder.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the wetting agent represents up to 25% by weight of the weight of the oxidizer, preferably about 4% by weight
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one additional agriculturally acceptable solvent is selected from the group consisting of C1-C6 alcohols and glycol ethers, more particularly from the group consisting of ethanol, isopropanol and monobutyl ether of ethylene glycol, and much more preferably being food grade ethanol.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one agriculturally acceptable alcohol is a food-grade alcohol which is listed in FDA's CFR 21 as Generally Regarded as Safe (GRAS) for use in food (section 184.1293), preferably ethanol, propanol or isopropanol, and more preferably a food graded ethanol.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein said powdered composition composition of water-soluble ingredients (PCWSI) further comprises at least one wetting agent.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the wetting agent is
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the at least one wetting agent is alkyl polyglycoside surfactant, preferably manufactured from fatty alcohols and glucose/dextrose, and more preferably Alkyl polyglycoside APG 325N® liquid or GLUCOPON® 50 G powder.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the wetting agent represents up to 25% by weight of the weight of the peracetic precursor, preferably about 4% by weight
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the peracetic acid precursor is a dry, water-soluble mixture of:
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein said powdered composition of water-soluble ingredients (PCWSI) comprises is a dry, water-soluble mixture of:
1. about 58% w/w of the solid hydrogen peroxide precursor,
2. about 18% w/w the pH adjusting agent,
3. about 20% w/w of the acetylating agent;
4. about 4% w/w of a wetting agent as defined hereinabove; and
wherein (1), (2) and (3) represent the peracetic acid precursor; and wherein when 2 g of said dry, water-soluble mixture of (1), (2), (3) and (4) is admixed with 1000 g of water, 100 to 250 ppm of peracetic acid (PAA) are generated in situ at pH 9.0±3.
According to another embodiment, the invention relates to the third composition defined hereinabove, wherein the peracetic acid precursor generates about 200 ppm of peracetic acid (PAA).
According to another embodiment, the invention relates to any one of the compositions defined hereinabove, wherein the acylating agent is acetylsalicylic acid or tetraacetylethylenediamine (TAED), preferably tetraacetylethylenediamine (TAED).
According to another embodiment, the invention relates to any one of the compositions defined hereinabove, wherein the solid hydrogen peroxide precursor is a persalt, preferably sodium perborate, sodium percarbonate, ammonium percarbonate, sodium peroxyhydrate, calcium peroxide, sodium peroxide, sodium perborate monohydrate, sodium perborate tetrahydrate, sodium persulfate, potassium monopersulfate, perphosphate, magnesium peroxide, zinc peroxide, urea hydrogen peroxide, perhydrate of urea, thiourea dioxide, or mixtures thereof, and more preferably sodium percarbonate or ammonium percarbonate, and much more preferably sodium percarbonate.
According to another embodiment, the invention relates to any one of the compositions defined hereinabove, wherein the pH adjusting agent is an organic acid or an inorganic acid, preferably sulfuric acid, citric acid, phosphoric acid, nitric acid, hydrochloric acid, glycolic acid, formic acid, acetic acid, hydrofluoric acid, nitrous acid, hydrocyanic acid, benzoic acid, carboxylic acid, lactic acid, acetic acid, oxalic acid, sulfa mic acid, phosphorous acid, dipicolinic acid, urea.HCl, boric acid, or mixtures thereof, and more preferably citric acid.
According to another embodiment, the invention relates to a first synergistic composition for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds, wherein said synergistic composition comprises:
wherein the composition of water-soluble ingredients (CWSI) is contacted with water (W), in a weight ratio (CWSI)/(W) ranging from 1:100 to 1:4, preferably 1:5, wherein, when present, the at least one agriculturally acceptable solvent either forming a mixture with the water (W) or being preferably added to a solution of peracetic acid resulting from the contact of the composition of water-soluble ingredients (CWSI) with water, to form the synergistic composition; and
wherein when present, the at least one agriculturally acceptable solvent is present in the synergistic composition in such an amount that it represents from 2% by volume to 70% by volume, preferably about 50% by volume, of the total volume of the synergistic composition.
According to another embodiment, the invention relates to a second synergistic composition for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds, wherein said synergistic composition comprises:
According to another embodiment, the invention relates to a third synergistic composition for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds and much more preferably hemp, flax and chia seeds, wherein said synergistic composition comprises:
wherein the composition of water-soluble ingredients (CWSI) is contacted with water (W), in a weight ratio (CWSI)/(W) ranging from 1:100 to 1:4, preferably 1:5, the at least one agriculturally acceptable solvent either forming a mixture with the water (W) or being preferably added to a solution of peracetic acid resulting from the contact of the composition of water-soluble ingredients (CWSI) with water, to form the synergistic composition; and
wherein the at least one agriculturally acceptable solvent being present in the synergistic composition in such an amount that it represents from 2% by volume to 70% by volume, preferably about 50% by volume, of the total volume of the synergistic composition.
According to another embodiment, the invention relates to the third synergistic composition defined hereinabove, wherein the composition of water-soluble ingredients (CWSI) is contacted with water (W), in a weight ratio (CWSI)/(W) ranging from 1:100 to 1:4, preferably 1:5, the at least one agriculturally acceptable solvent being added to a solution of peracetic acid resulting from the contact of the composition of water-soluble ingredients (CWSI) with water, to form the synergistic composition.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the at least one oxidizer is the preformed liquid peracetic acid, wherein the volume ratio of the preformed liquid peracetic to the water (W) is about 1:5, and wherein said synergistic composition has about 5% by weight of dissolved peracetic acid with respect to the total weight of the synergistic composition.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the at least one oxidizer is the preformed liquid peracetic which have the following formulation:
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the composition of water-soluble ingredients (CWSI) is a powdered composition of water-soluble ingredients (PCWSI) as defined hereinabove, and wherein the powdered composition of water-soluble ingredients (PCWSI) is dissolved in water (W) in the weight ratio (PCWSI)/(W) ranging from 1:100 to 1:4, preferably about 1:10.
According to another embodiment, the invention relates to the third synergistic composition defined hereinabove, wherein when the at least one additional agriculturally acceptable solvent is selected from the group consisting of C1-C6 alcohols and glycol ethers, more particularly from the group consisting of ethanol, isopropanol and monobutyl ether of ethylene glycol, and much more preferably being food grade ethanol, and said aqueous synergistic composition further prevents the release of mucilage from seeds, especially on flax seeds and chia seeds.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein said synergistic composition is for an application to the seeds by spraying, vaporizing, soaking, fumigating, or electrostatic spraying, preferably spraying.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the pathogens selected from the group consisting of viruses, bacteria, fungi, yeasts and moulds.
According to another embodiment, the invention relates to the third synergistic composition defined hereinabove, for the further prevention of mucilage from seeds.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein pathogens are bacteria, preferably bacteria are selected from the group consisting of E. Coli, Listeria monocytogenes and Salmonella spp., and more preferably E. coli in hemp seed and Salmonella in chia seeds.
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are bacteria (including but not limited to Agrobacterium spp., Burkholderia spp., Clavibacter spp., Corynebacterium spp., Erwinia spp., Pseudomonas spp., Ralstonia spp., Rhizomonas spp., Xanthomonas spp., and Xylella spp.).
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are fungi (including but not limited to Albugo spp., Alternaria spp., Armillaria spp., Aspergillus spp., Athelia spp., Bipolaris spp., Botryosphaeria spp., Botryotinia spp., Botrytis spp., Bremia spp., Capnodium spp., Ceratobasidium spp., Ceratocystis spp., Cercospora spp., Choanephora spp., Claviceps spp., Corynespora spp., Cronartium spp., Cryphonectria spp., Cylindrocladium spp., Cytospora spp., Diaporthe spp., Dipodia spp., Dreschlera spp., Elsinoe spp., Erexohilum spp., Erysiphe spp., Eutypha spp., Exobasidium spp., Fusarium spp., Gaeumannomyces spp., Gliocladium spp., Gymnosporangium spp., Heterobasidium spp., Hypoxylon spp., Kutilakesa spp., Lophiodermium spp., Magnaporthe spp., Melampsora spp., Monilinia spp., Mycosphaerella spp., Myrothecia spp., Nectriella spp., Nematospora spp., Oidium spp., Olpidium spp., Ophiostoma spp., Penicillium spp., Peronospora spp., Phakospora spp., Phoma spp., Phomopsis spp., Phragmidium spp., Phyllactinia spp., Physoderma spp., Phytophthora spp., Plasmodiophora spp., Plasmopara spp., Pseudoperonospora spp., Puccinia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Rhytisma spp., Sclerotinia spp., Sclerotium spp., Spongospora spp., Synchytrium spp., Taphrina spp., Thanatephorus spp., Thielaviopsis spp., Tilletia spp., Uncinula spp., Urocystis spp., Ustilago spp., Valsa spp., Venturia spp., Verticillium spp., and Xylaria spp.).
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the seeds are edible seeds, grains raw and/or cooked, seeds of transplantable crops, or seeds for sprouting, such as:
According to another embodiment, the invention relates to any one of the synergistic compositions defined hereinabove, wherein the seeds are edible post-harvest seeds, spices and grains, and preferably whole dried pear, split pea dried, pea fiber, oregano, vanilla, basil, black pepper, chia, sesame, sprouted flax and chia, flax and hemp, and more preferably hemp, flax and chia seeds.
According to another embodiment, the invention relates to a first method for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp, flax and chia seeds, said method comprising a step of contacting said seeds with the first synergistic composition defined hereinabove, wherein the synergistic composition is contacted with seeds.
According to another embodiment, the invention relates to a second method for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp, flax and chia seeds, said method comprising a step of contacting said seeds with the second synergistic composition defined hereinabove, wherein the synergistic composition is contacted with seeds in such an amount that said at least one agriculturally acceptable solvent represents less than 10% by volume, preferably from 1 to 5% by volume, and more preferably about 2% by volume as final concentration of the at least one agriculturally acceptable solvent admixed with seeds.
According to another embodiment, the invention relates to a third method for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp, flax and chia seeds, said method comprising a step of contacting said seeds with the third synergistic composition defined hereinabove, wherein the synergistic composition is contacted with seeds in such an amount that said at least one agriculturally acceptable solvent represents less than 10% by volume, preferably from 1 to 5% by volume, and more preferably about 2% by volume as final concentration of the at least one agriculturally acceptable solvent admixed with seeds.
According to another embodiment, the invention relates to the any one of the methods defined hereinabove, wherein the pathogens selected from the group consisting of viruses, bacteria, fungi, yeasts and moulds.
According to another embodiment, the invention relates to the third method defined hereinabove, wherein the pathogens selected from the group consisting of viruses, bacteria, fungi, yeasts and moulds, and further for the prevention of mucilage from seeds.
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein pathogens are bacteria, preferably bacteria are selected from the group consisting of E. Coli, Listeria monocytogenes and Salmonella spp., and more preferably E. coli on hemp seeds and Salmonella on chia seeds.
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are bacteria (including but not limited to Agrobacterium spp., Burkholderia spp., Clavibacter spp., Corynebacterium spp., Erwinia spp., Pseudomonas spp., Ralstonia spp., Rhizomonas spp., Xanthomonas spp., and Xylella spp.).
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are fungi (including but not limited to Albugo spp., Alternaria spp., Armillaria spp., Aspergillus spp., Athelia spp., Bipolaris spp., Botryosphaeria spp., Botryotinia spp., Botrytis spp., Bremia spp., Capnodium spp., Ceratobasidium spp., Ceratocystis spp., Cercospora spp., Choanephora spp., Claviceps spp., Corynespora spp., Cronartium spp., Cryphonectria spp., Cylindrocladium spp., Cytospora spp., Diaporthe spp., Dipodia spp., Dreschlera spp., Elsinoe spp., Erexohilum spp., Erysiphe spp., Eutypha spp., Exobasidium spp., Fusarium spp., Gaeumannomyces spp., Gliocladium spp., Gymnosporangium spp., Heterobasidium spp., Hypoxy/on spp., Kutilakesa spp., Lophiodermium spp., Magnaporthe spp., Melampsora spp., Monilinia spp., Mycosphaerella spp., Myrothecia spp., Nectriella spp., Nematospora spp., Oidium spp., Olpidium spp., Ophiostoma spp., Penicillium spp., Peronospora spp., Phakospora spp., Phoma spp., Phomopsis spp., Phragmidium spp., Phyllactinia spp., Physoderma spp., Phytophthora spp., Plasmodiophora spp., Plasmopara spp., Pseudoperonospora spp., Puccinia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Rhytisma spp., Sclerotinia spp., Sclerotium spp., Spongospora spp., Synchytrium spp., Taphrina spp., Thanatephorus spp., Thielaviopsis spp., Tilletia spp., Uncinula spp., Urocystis spp., Ustilago spp., Valsa spp., Venturia spp., Verticillium spp., and Xylaria spp.).
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein the seeds are edible seeds, grains raw and/or cooked, seeds of transplantable crops, or seeds for sprouting, such as:
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein the seeds are seeds of whole dried pear, split pea dried, pea fiber, oregano, vanilla, basil, chia, sesame, sprouted flax and chia, flax and hemp, and more preferably hemp seeds, flax seeds and chia seeds.
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein said synergistic composition is for an application to the seeds by spraying, vaporizing, soaking, fumigating, or electrostatic spraying, preferably spraying.
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein said synergistic composition is for an application to the seeds by spraying and keeping the synergistic composition in contact with the seeds and grains for 2 minutes to 48 hours and preferably 24 hours before drying.
According to another embodiment, the invention relates to any one of the methods defined hereinabove, wherein seeds are dried after contact with the synergistic composition and contact time, to reduce the moisture content of the seeds below 10% and further contribute to prevent a regrowth of microorganisms.
According to another embodiment, the invention relates to a first use of the first synergistic composition defined hereinabove, for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp seeds, chia seeds and flax seeds.
According to another embodiment, the invention relates to a second use of the second synergistic composition defined hereinabove, for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp seeds, chia seeds and flax seeds.
According to another embodiment, the invention relates to a third use of the third synergistic composition defined hereinabove, for the control of pathogens and/or the prevention of diseases associated with the presence of said pathogens in and/or on seeds, preferably seeds having external shells, more preferably edible seeds such as hemp seeds, chia seeds and flax seeds.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein the pathogens selected from the group consisting of viruses, bacteria, fungi, yeasts and moulds.
According to another embodiment, the invention relates to the third use defined hereinabove, wherein the pathogens selected from the group consisting of viruses, bacteria, fungi, yeasts and moulds, and further for the prevention of mucilage from seeds.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein pathogens are bacteria, preferably bacteria are selected from the group consisting of E. Coli, Listeria monocytogenes and Salmonella spp., and more preferably E. coli.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are bacteria (including but not limited to Agrobacterium spp., Burkholderia spp., Clavibacter spp., Corynebacterium spp., Erwinia spp., Pseudomonas spp., Ralstonia spp., Rhizomonas spp., Xanthomonas spp., and Xylella spp.).
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein pathogens cause disease in crop plants; said pathogens are fungi (including but not limited to Albugo spp., Alternaria spp., Armillaria spp., Aspergillus spp., Athelia spp., Bipolaris spp., Botryosphaeria spp., Botryotinia spp., Botrytis spp., Bremia spp., Capnodium spp., Ceratobasidium spp., Ceratocystis spp., Cercospora spp., Choanephora spp., Claviceps spp., Corynespora spp., Cronartium spp., Cryphonectria spp., Cylindrocladium spp., Cytospora spp., Diaporthe spp., Dipodia spp., Dreschlera spp., Elsinoe spp., Erexohilum spp., Erysiphe spp., Eutypha spp., Exobasidium spp., Fusarium spp., Gaeumannomyces spp., Gliocladium spp., Gymnosporangium spp., Heterobasidium spp., Hypoxylon spp., Kutilakesa spp., Lophiodermium spp., Magnaporthe spp., Melampsora spp., Monilinia spp., Mycosphaerella spp., Myrothecia spp., Nectriella spp., Nematospora spp., Oidium spp., Olpidium spp., Ophiostoma spp., Penicillium spp., Peronospora spp., Phakospora spp., Phoma spp., Phomopsis spp., Phragmidium spp., Phyllactinia spp., Physoderma spp., Phytophthora spp., Plasmodiophora spp., Plasmopara spp., Pseudoperonospora spp., Puccinia spp., Pythium spp., Rhizoctonia spp., Rhizopus spp., Rhytisma spp., Sclerotinia spp., Sclerotium spp., Spongospora spp., Synchytrium spp., Taphrina spp., Thanatephorus spp., Thielaviopsis spp., Tilletia spp., Uncinula spp., Urocystis spp., Ustilago spp., Valsa spp., Venturia spp., Verticillium spp., and Xylaria spp.).
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein the seeds are edible seeds, grains raw and/or cooked, seeds of transplantable crops, or seeds for sprouting, such as:
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein the seeds are seeds of whole dried pear, split pea dried, pea fiber, oregano, vanilla, basil, chia, sesame, sprouted flax and chia, flax and hemp, and more preferably hemp seeds, flax seeds and chia seeds.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein said aqueous, synergistic composition is for an application to the seeds by spraying, vaporizing, soaking, fumigating, or electrostatic spraying, preferably spraying.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein said synergistic composition is for an application to the seeds by spraying and keeping the synergistic composition in contact with the seeds and grains for 2 minutes to 48 hours and preferably 24 hours before drying.
According to another embodiment, the invention relates to any one of uses defined hereinabove, wherein seeds are dried after contact with the synergistic composition and contact time, to reduce the moisture content of the seeds below 10% and further contribute to prevent a regrowth of microorganisms.
According to another embodiment of the invention relates to the use defined hereinabove, wherein said aqueous, synergistic composition is for an application to the seeds by spraying, vaporizing, soaking, fumigating, or electrostatic spraying, preferably spraying. Of course, said spraying, vaporizing, soaking, fumigating or electrostatic spraying can be carried out according to any conventional technics well known to the person skilled in the art.
According to another embodiment, the composition of water-soluble ingredients (CWSI) or the powdered composition of water-soluble ingredients (PCWSI), may further comprises a plant defence enhancer selected from the group consisting of at least one pesticide comprising a water soluble silicate salt , at least one biopesticide comprising a water soluble silicate salt , acibenzolar-S-methyl, silica/silicate, DL-α-amino-n-butyric acid (AABA), DL-β-amino-n-butyric acid (BABA), γ-amino-n-butyric acid (GABA), p-aminobenzoic acid (PABA), riboflavin, salicylic acid (SA), and Harpin protein (messenger).
According to another embodiment, the composition of water-soluble ingredients (CWSI) or the powdered composition of water-soluble ingredients (PCWSI), may further comprises a sequestering agent, preferably in amounts ranging from 0.01 to 10% w/w, relative to the total weight of said composition.
According to another embodiment, the invention relates to the powdered composition defined hereinabove, wherein the acetylating agent is an organic acid containing at least one acyl group which is susceptible to perhydrolysis.
According to another embodiment, the invention relates to the powdered composition defined hereinabove, wherein the acetylating agent is a N-acyl compound or a O-acyl compound containing an acyl radical R1—CO— wherein R1 is an aliphatic group having from 5 to 18 carbon atoms, or an alkylaryl group having from 11 to 24 carbon atoms, with 5 to 18 carbon atoms in the alkyl chain. Preferably, Fe is an aliphatic group having from 5 to 12 carbon atoms.
According to another embodiment, the invention relates to the wetting agent is Bio-Terge® AS-90 (a surfactant) consisting of an alpha olefin sulfonate having from 12 to 18 carbon atoms.
For example, the powdered composition of water-soluble ingredients defined hereinabove, can be mixed with water at a concentration of 0.4 to 0.6% (4 to 6 Kg of formula diluted in potable water (i.e. 40L) in order to sanitize 1 ton of edible seeds (i.e. hemp seeds). To do so, according to a particularly preferred aspect of the invention, first the above mentioned the powdered composition of water-soluble ingredients was dissolved in water and mixed for at least 10 minutes, and then the solution obtained was applied to the seeds to be treated. Then seeds were kept in contact with the solution for 2 to 5 minutes, and preferably then rinsed thoroughly with abundant potable water and finally the seeds were dried very well.
It is to be noted that according to another preferred embodiment of the invention, a contact time of 2 minutes reveals to be sufficient for reducing the total population of bacteria present on seeds surface to below 1 million CFU per gram and reduce the E. coli, coliforms, yeast and mould to undetectable levels.
Alternatively, in the case some edible seeds such as flax, cannot tolerate water; other types of spraying with no added water can be used. In such case, for example fumigation and electrostatic spraying may be preferred. According to an embodiment of the invention, fogging and electrostatic spraying are preferred. Indeed, fogging and electrostatic spraying reduce the water particle size to produce smaller droplets that do not alter the external shell of the seed. Of course, said spraying, vaporizing, soaking, fumigating or electrostatic spraying can be carried out according to any conventional technics well known to the person skilled in the art.
The present invention will be better understood with reference to the following preferred drawing illustrating particularly preferred and non-limitative embodiments of the invention.
More particularly preferred embodiments of the invention will be illustrated in the following examples.
1. Wetting Agent (i.e. Surfactant) Preparation:
APG® 325 is a liquid wetting agent (i.e. a surfactant) composed of alkyl polyglycoside and derived from natural sources. It is a foaming surfactant.
5 g of liquid APG 325 surfactant were diluted in 1 L water, and mixed for 5 minutes, to make 0.5% solution of wetting agent (i.e. surfactant).
A food-grade alcohol based on ethanol at 94% concentration minimum (provided by Greenfield Ethanol).
100 ml of the above-mentioned ethanol were diluted in 100 ml water to a make a 50% food grade ethanol.
3. Powdered Peracetic Acid Preparation without Surfactant:
A blend of sodium percarbonate (62% w/w), TAED (20% w/w) and citric acid (18% w/w) that generates peracetic acid and hydrogen peroxide in-situ. It is a non-foaming solution and free of surface-active agents. This Powdered PAA is equivalent to 10% peracetic acid.
100 g of Powdered PAA was dissolved in 1 L water and mixed for 10-15 min until peracetic acid is generated in-situ. Both peracetic acid and hydrogen peroxide can be tested via Lamotte test kit code 7191-02. This solution was to be used within 6 hours to maintain a high concentration of peracetic acid.
Neo Pure is a powdered composition that generates peracetic acid in-situ via TAED, sodium percarbonate and citric acid mixture. Also, it generates hydrogen peroxide and contains a poylglycoside wetting agent (i.e. a surfactant). Neo Pure is equivalent to 10% peracetic acid. More particularly, the Neo Pure had the following formulation:
100 g of Neo Pure was dissolved in 1 L water and mixed for 10-15 min until peracetic acid was generated in-situ. Both peracetic acid and hydrogen peroxide can be tested via Lamotte test kit code 7191-02. This solution was to be used within 6 hours to maintain a high concentration of peracetic acid.
5. Neo Pure Preparation with Alcohol:
Neo Pure is a powdered composition that generates peracetic acid in-situ via TAED, sodium percarbonate and citric acid mixture. Also it generates hydrogen peroxide and contains a poylglycoside wetting agent (i.e. a surfactant). Neo Pure is equivalent to 10% peracetic acid.
100 g of Neo Pure were dissolved in 1 L water and mixed for 10-15 min until peracetic acid was generated in-situ. Then, 100 ml of the solution so obtained was mixed with 100 ml ethanol 94% for 10 minutes. More particularly, the Neo Pure had the following formulation:
PERCID is a CFIA approved liquid preformed peracetic acid. PERCID is a concentrated 5% peracetic acid formula composed of mixing liquid acetic acid with liquid hydrogen peroxide.
200 ml of PERCID was dissolved in 1 L water and mixed for 5 minutes. A non-foaming solution free of surface-active agents such as a wetting agent, was obtained.
7. Liquid Peracetic Acid Preparation with a Wetting Agent (i.e. a Surfactant):
PERCID is a CFIA approved liquid preformed peracetic acid. Percid is a concentrated 5% peracetic acid formula composed of mixing liquid acetic acid with liquid hydrogen peroxide. PERCID solution is mixed a liquid wetting agent (i.e. surfactant) APG 325.
200 ml of PERCID was dissolved in 1 L water and mixed for 5 minutes. Then, 5 g of APG® 325 was added to the solution so obtained, and mixed for 5 minutes. A foaming PAA solution was obtained.
8. Liquid Peracetic Acid Preparation with Wetting Agent (i.e. Surfactant) and Alcohol:
PERCID is a CFIA approved liquid preformed peracetic acid. PERCID is a concentrated 5% peracetic acid formula composed of mixing liquid acetic acid with liquid hydrogen peroxide. PERCID solution is mixed a liquid wetting agent (i.e. surfactant) APG® 325.
200 ml of PERCID was dissolved in 1 L water, and mixed for 5 minutes. Then, 5g of APG® 325 were added to the resulting solution, and mixed for 5 minutes.A foaming PAA solution was obtained. Then, 100 ml of this foaming PAA was mixed with 100 ml ethanol 94% for 10 minutes, to provide the liquid peracetic acid preparation with wetting agent and alcohol.
9. Powdered Peracetic Acid Preparation with Alcohol:
A blend of sodium percarbonate (62%), TAED (20%) and citric acid (18%) that generates peracetic acid and hydrogen peroxide in-situ. It is a non-foaming solution and free of surface active agents. This powdered PAA is equivalent to 10% peracetic acid.
100 g of Powdered PAA were dissolved in 1 L water, and mixed for 10-15 min until peracetic acid is generated in-situ. Then, 100 ml of the solution so obtained was mixed with 100 ml ethanol 94% for 10 minutes.
10. Liquid Peracetic Acid Preparation with Alcohol:
PERCID is a CFIA approved liquid preformed peracetic acid. PERCID is a concentrated 5% peracetic acid formula composed of mixing liquid acetic acid with liquid hydrogen peroxide.
200 ml of PERCID were dissolved in 1 L water, and mixed for 5 minutes. A non-foaming PAA solution was obtained. Then, 100 ml of this non-foaming PAA was mixed with 100 ml Ethanol 94% for 10 minutes, to provide the liquid peracetic acid preparation with alcohol.
Seeds were mechanically cleaned and spread in stainless steel containers. Each 100 grams seeds were sprayed with 4 ml total solutions descried above via conventional trigger vaporizer. This solution is equivalent to 40 L disinfecting solution total sprayed on 1-ton seeds. Seeds, grains and spices were selected to represent all families and types of seeds, grains and spices. Another criteria was to select seeds and grains contaminated with a high count of total aerobic bacteria, yeast, mold, E. coli, Salmonella sp. and other pathogenic microorganisms.
Seeds, grains and spices treated were:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Conclusion:
Several tons of hemp seeds were cleaned mechanically using regular grain conditioning equipment. The total bacterial count was determined to be about 18 million CFU/g (before mechanical cleaning and separation). After mechanical cleaning, the total bacterial count was found to be about 2 million CFU/g. This microbial load does not comply with the market standard which is 1 million CFU/g.
Treatment with Peracetic Acid and Hydrogen Peroxide Without an Alcohol and/or a Wetting Agent:
Hemp seeds (with a microbial load of about 2 million CFU/g) were sanitized with a powdered product based on sodium percarbonate, TAED and citric acid that generates peracetic acid and hydrogen peroxide in situ. An equivalent of 4 Kg of this formula were dissolved in potable water and mixed thoroughly for 10 minutes and then applied to 1 ton of hemp seeds and allowed to remain in contact with them for 30 minutes. The seeds were thoroughly dried after the treatment. The results did not show a significant reduction in microbial load as compared to untreated seeds (2 million CFU/g). These results were not satisfactory. In addition, coliforms, E. coli, yeast and mould were detected. The powdered formulation that generates PAA in-situ was based on 70% w/w sodium percarbonate, mixed with 20% w/w TAED and mixed with 10% citric acid.
Treatment with Formula (Peracetic acid Generated In-Situ with a Wetting Agent):
1 ton of cleaned hemp seeds (2 million CFU per gram) were sanitized with a 0.4% concentration (4 kg of formula 18/18). Said formula 18/18 is powdered formulation is based on 40% sodium percarbonate, mixed with 20% TAED; mixed with 18% potassium silicate; mixed with 18% EDTA acid; and finally mixed with 4% Bioterge AS 90 surfactant. The 4 Kg were diluted in 40 L water and were mixed thoroughly for 10 minutes and then applied to treat 1 ton of hemp seed for 30 minutes, then the treated seeds were dried very well as per the grain conditioner process. The results showed a reduction in total bacterial count to 54,000 CFU per gram. These results were satisfactory and complied with the market standards. Coliforms, E. coli, yeast and mould were not detected.
Based on the results shown above, there was noted a synergy between oxidizers (i.e. peracetic acid and hydrogen peroxide) and wetting agent (i.e. surfactant) in reducing the populations of human pathogens on edible seeds.
Objective: The objective of this study is to determine the effective contact-time of the sanitizing solutions (PAA with an alcohol and a wetting agent) sprayed on hemp seeds in controlling pathogens.
Protocol: 1 kg of hemp seeds per mix was treated with 50 ml of solution by applying small amounts at a time using a hand sprayer and mixing thoroughly in between. Batches were stored in 3.3 L containers at room temperature with lids on to avoid loss of moisture due to evaporation.
Solutions Used:
Conclusions:
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the present invention and scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2014/051088 | 11/13/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61907560 | Nov 2013 | US |